Exercise on probability

Consider the following process P:

 $a.(b.0 \oplus_{1/2} c.0) + a.(\tau.b.0 + \tau.c.0)$

Assume that a, b and c are pairwise different. P gives rise to the following transition graph:

- How may different schedulers we have for P?
- What is the probability that *b* will be executed, under the different schedulers?

Solution

- There are 3 different schedulers:
 - The scheduler σ_1 , which selects the transition **I**,
 - the scheduler σ_2 , which selects the transition II and then III,
 - the scheduler σ_3 , which selects the transition II and then IV.
- The probability of performing b is
 - -1/2 under σ_1 ,
 - -1 under σ_2 ,
 - 0 under σ_3 .