
We start by considering a nondeterministicmaster, which is in a sense the basic case:

the fact that the master is nondeterministic means that we cannot assume any regularity

in its behavior, nobody has any information about it, not even a probabilistic one. The

anonymity system must then assure that this complete lack of knowledge be preserved

through the observations of the possible outcomes (except, of course, for gaining the

information on whether the payer is one of the cryptographers or not).

We use the probabilistic π-calculus (πp) introduced in [12, 19] to represent the prob-

abilistic system. The essential difference with respect to the π-calculus is the presence
of a probabilistic choice operator of the form

∑
i piαi.Pi, where the pi’s represents

probabilities, i.e. they satisfy pi ∈ [0, 1] and
∑

i pi = 1, and the αi’s are non-output

prefixes, i.e. either input or silent prefixes. (Actually, for the purpose of this paper, only

silent prefixes are used.) For the detailed presentation of this calculus we refer to [12,

19, 4].

The only difference with respect to the program presented in Section 3.1 is the

definition of the Coin i’s, which is as follows (ph and pt represent the probabilities of

the outcome of the coin tossing):

Coin i = phτ .Head i + ptτ .Tail i

It is clear that the system obtained in this way combines probabilistic and nondeter-

ministic behavior, not only because the master is nondeterministic, but also because the

various components of the system and their internal interactions can follow different

scheduling policies, selected nondeterministically (although it can be proved that this

latter form of nondeterminism is not relevant for this particular problem).

This kind of systems (combining probabilistic and nondeterministic choices) is by

now well established in literature, see for instance the probabilistic automata of [25],

and have been provided with solid mathematical foundations and sophisticated tools

for verification. In particular, we are interested here in the definition of the probability

associated to a certain observable. The canonical way of defining such a probability is

the following: First we solve the nondeterminism, i.e. we determine a function (sched-

uler) which, for each nondeterministic choice in the the computation tree, selects one

alternative. After pruning the tree from all the non-selected alternatives, we obtain a

fully probabilistic automaton, and we can define the probabilities of (measurable) sets

of runs (and therefore of the intended observables) in the standard way. See [4] for the

details.

One thing that should be clear, from the description above, is that in general the

probability of an observable depends on the given scheduler.

4 Probabilistic anonymity for nondeterministic users

In this section we propose our notion of probabilistic anonymity for the case in which

the anonymous user is selected nondeterministically.

The system in which the anonymous users live and operate is modeled as a prob-

abilistic automaton M ([25], see [4]. Following [24, 22] we classify the actions of M

7


