$Master = \sum_{i=0}^{2} \tau . \overline{m}_{i} \mathsf{p} . \overline{m}_{i \oplus 1} \mathsf{n} . \overline{m}_{i \oplus 2} \mathsf{n} . 0$ $+ \tau . \overline{m}_0 \mathbf{n} . \overline{m}_1 \mathbf{n} . \overline{m}_2 \mathbf{n} . 0$ $Crypt_i = m_i(x) \cdot c_{i,i}(y) \cdot c_{i,i\oplus 1}(z)$. if x = pthen \overline{pay}_i . if y = zthen \overline{out}_i disagree else $\overline{out}_i agree$ else if y = zthen out; agree else out; disaaree $Coin_i = \tau$. $Head_i + \tau$. Tail_i $Head_i = \overline{c}_{i,i}head \cdot \overline{c}_{i \ominus 1,i}head \cdot 0$ $Tail_i = \overline{c}_i \, itail \, \overline{c}_{i \cap 1} \, itail \, 0$ $DCP = (\nu \vec{m})(Master$ $| (\nu \vec{c})(\Pi_{i=0}^2 Crypt_i | \Pi_{i=0}^2 Coin_i))$