
MPRI Concurrency (course number 2-3) 2005-2006:
π-calculus

7 December 2005

http://pauillac.inria.fr/∼leifer/teaching/mpri-concurrency-2005/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

7 December 2005 0

Strong bisimulation up to ≡ and ∼ℓ

Suppose for all (P, Q) ∈ R and P
α

−→ P ′, where bn(α) ∩ fn(Q) = ∅, there
exists Q′ such that Q

α
−→ Q′ and (P ′, Q′) ∈ ≡R≡, and symmetrically.

P P ′

·

·

Q Q′

α

R

≡

R

≡
α

P P ′

·

·

Q Q′

α

R

∼ℓ

R

∼ℓ
α

Then ≡R≡ is a strong bisimulation. Likewise for ∼ℓ in place of ≡. Is R also
a strong bisimulation?

7 December 2005 1

Evaluation contexts

Let E be the set of evaluation contexts; these are generated by the grammar:

D ∈ E ::= −
D | P
P | D
νx.D

What isn’t an evaluation context?

7 December 2005 2

Strong bisimulation up to contexts

Suppose for all (P, Q) ∈ R and P
α

−→ P ′, where bn(α) ∩ fn(Q) = ∅, there
exists D ∈ E , P ′′, and Q′′ such that P ′ = D[P ′′] and Q

α
−→ D[Q′′] and

(P ′′, Q′′) ∈ R, and symmetrically.

P P ′ = D[P ′′] P ′′

Q D[Q′′] Q′′

α

R R

α

Then {(D[P], D[Q]) / (P, Q) ∈ R, D ∈ E} is a strong bisimulation.

Example: !!P ∼ℓ !P .

7 December 2005 3

Easier reduction rules for replication

To prove this example, we use easier reduction rules for replication:

P
α

−→ P ′

!P
α

−→ P ′ | !P
if bn(α) ∩ fn(P) = ∅ (lab-bang-simple)

P
xy
−→ P ′ P

xy
−→ P ′′

!P
τ

−→ (P ′ | P ′′) | !P
(lab-bang-comm)

P
x(y)
−→ P ′ P

xy
−→ P ′′

!P
τ

−→ νy.(P ′ | P ′′) | !P
if y /∈ fn(P) (lab-bang-close)

7 December 2005 4

Weak bisimulation up to?

Yes! We can work up to:

• strong bisimilarity

• evaluation contexts

• expansion

• ...

But, be careful: weak bisimulation up to weak bisimilarity doesn’t work!
Consider the processes 0 and τ.x.0.

It’s interesting to see what goes wrong in the proof. Try it!

7 December 2005 5

Congruence?

A relation R is a congruence if for all (P, Q) ∈ R and all contexts C, we have
(C[P], C[Q]) ∈ R.

Theorem: Strong bisimilarity, ∼ℓ, is a congruence with respect to all non
input-prefixing contexts, i.e. P ∼ℓ Q implies C[P] ∼ℓ C[Q] where

C ::= −
C | S
S | C
νx.C
!C
xy.C

But is it a congruence?

7 December 2005 6

Congruences and substitution preservation

A relation R is preserved by substitution if for all (P, Q) ∈ R and any
substitution σ, we have (σP, σQ) ∈ R.

Claim: If R is a strong bisimulation and a congruence then it is preserved by
substitution.

To see why, consider the input-prefixing context C = z(y).− | zx. Suppose
(P, Q) ∈ R. Since R is a congruence, (C[P], C[Q]) ∈ R.

Since C[P]
τ

−→ {x/y}P and R is a bisimulation, C[Q] must be able to match
this τ transition with the only one it is capable of, namely C[Q]

τ
−→ {x/y}Q,

and ({x/y}P, {x/y}Q) ∈ R, as desired.

7 December 2005 7

Strong bisimilarity is not a congruence

By the contrapositive, if ∼ℓ is not preserved by substitution, then it is not a
congruence.

• Counter example with sum: x | y ∼ℓ x.y + y.x

• Counter example with sum: νw.(x.w | y.w.a) ∼ℓ x.y.τ.a + y.x.τ.a

• Counter example without sum:

!(νw.(x.w | y.w.a))
∼ℓ !(x.y.τ.a + y.x.τ.a) by the previous exercise and (1)
∼ℓ !(x.y.τ.a) | !(y.x.τ.a) by (2)

where we know that ∼ℓ is a congruence with respect to replication

P ∼ℓ Q implies !P ∼ℓ !Q (1)

and that replication “distributes” through sum:

!(xu.P + y(v).Q) ∼ℓ !xu.P | !y(v).Q (2)

7 December 2005 8

Strong bisimilarity and full strong bisimilarity

As we’ve just seen, ∼ℓ isn’t a congruence with respect to input prefixing.

Definition (full strong bisimilarity): The relation ≃ℓ is defined as follows. For
all P and Q, we have that P ≃ℓ Q iff for all substitutions σ, σP ∼ℓ σQ.

Theorem: ≃ℓ is a congruence.

Proof sketch: The most interesting case is that of input prefixing. Suppose
P ≃ℓ Q. We want to show that x(y).P ≃ℓ x(y).Q, i.e. for all σ we have
σ(x(y).P) ∼ℓ σ(x(y).Q). Assuming y is fresh, we can push the substitution
in: (σx)(y).(σP) ∼ℓ (σx)(y).(σQ). The LHS’s only labelled transition

(σx)(y).(σP)
(σx)z
−→ {z/y}σP is matched by a similar one on the RHS to

{z/y}σQ. Finally, the hypothesis P ≃ℓ Q implies {z/y}σP ∼ℓ {z/y}σQ, as
desired.

7 December 2005 9

Operational equivalences and process calculi: from
automata to compositional languages

1956: E. F. Moore. “Gedanken-experiments on sequential machines”.

“finite automata from the experimental point of view” — trace refinement and trace
equivalence of automata

1980: R. Milner. A Calculus of Communicating Systems.

a compositional syntax, namely CCS; operational equivalences based on bisimulation;
congruence results for compositional reasoning.

1981: D. Park. “Concurrency and automata on infinite sequences”.

bisimulation: an operational equivalence that is sensitive to nondeterminism.

1989: R. Milner, J. Parrow, and D. Walker. “A calculus of mobile processes, parts I and II”.

π-calculus without structural congruence or reductions

7 December 2005 10

Operational equivalences and process calculi: from
labelled transitions to reductions

1990: G. Berry and G. Boudol. “The chemical abstract machine”

structural congruence and reduction rules

1990: R. Milner. “Functions as processes”.

(written while visiting INRIA Sophia) structural congruence and reduction rules to π-
calculus

1992: R. Milner and D. Sangiorgi. “Barbed bisimulation”.

equivalence based on reduction and observations of “barbs”, not labelled transitions.

... followed by a wealth of new reduction-based process calculi, e.g.

1998: L. Cardelli and A. D. Gordon. “Mobile ambients”.

n[in m.P | Q] | m[R] −→ m[n[P | Q] | R]

...

2003: M. Merro and F. Zappa Nardelli. “Bisimulation proof methods for Mobile Ambients”.

first LTS for ambients that recovers barbed bisimilarity

7 December 2005 11

Operational equivalences based on reduction

• For all (P, Q) ∈ R and P −→ P ′, there exists Q′ such that Q −→ Q′ and
(P ′, Q′) ∈ R, and vice versa.

Problem: this definition equates xy and 0.

• For all (P, Q) ∈ R and P −→ P ′, there exists Q′ such that Q −→ Q′ and
(P ′, Q′) ∈ R, and vice versa; moreover, for all x, we have P↓x iff Q↓x.

We say that P has a strong barb x, written P↓x iff there exists P0, P1, and
~y such that P ≡ ν~y.(xu.P0 | P1) and x 6∈ ~y.

Strong barbed barbed bisimilarity is the largest such R and is written ∼̇.

Problem: ∼̇ equates xy and xz, thus it is not a congruence since it
distinguishes between C[xy] and C[xz] where C = − | x(u).uw.

• Strong barbed congruence ≃̇◦ is the context closure of ∼̇, i.e. P ≃̇◦ Q iff
for all contexts C we have C[P] ∼̇ C[Q]

7 December 2005 12

Barbs can be simple!

Why no input barbs? How do we check that a process P is capable
of inputting on x, i.e. that there exists P0, P1, and ~y such that P ≡
ν~y.(x(u).P0 | P1) and x 6∈ ~y?
Easy! Just use the context − | xv.kw for k fresh and check for a barb on k.

Are a variety of output barbs even necessary? No. All we need is just one
(or sometimes two) distinguished observables. Let us add a new construct
beep:

P ::= ...
beep

We can observe that a process beeps, written P↓beep, if there exists D ∈ E ,
an evaluation context, such that P ≡ D[beep].
Then P has an output barb x, i.e. P↓x, iff C[P]−→↓beep where C = − |
x(u).beep.

7 December 2005 13

Advantages and disadvantages of barbed congruence

Advantages: even for complex process calculi, it’s easy to work with barbs:
they’re just “beeps” or “print statements”. Compare this to the difficulty
of modifying the π-calculus’s labelled transitions to cope with polyadic
communication, code mobility, etc.

Disadvantages: the quantification over all contexts is heavy.

7 December 2005 14

Exercises for next lecture

1. You might have noticed that the “up to” technique we used in the proof of
!!P ∼ℓ !P was different from those justified by the theorems. In particular,
we combined “up to contexts” and “up to structural congruence” without
justification. The goal of this exercise is to show some general criteria for
composing “up to” techniques.

Let us say that a relation R strongly progresses to a relation T , written
R T , if for all (P, Q) ∈ R and P

α
−→ P ′, where bn(α) ∩ fn(Q) = ∅,

there exists Q′ such that Q
α

−→ Q′ and (P ′, Q′) ∈ T , and symmetrically.

P P ′

Q Q′

α

R T

α

Next, say that a function F on relations is strongly safe if R ⊆ T and
R T implies F(R) ⊆ F(T) and F(R) F(T).

7 December 2005 15

(a) Prove that if R ⊆ R′
 T ′ ⊆ T then R T .

(b) Consider two families of relations {Ri / i ∈ I} and {Tj / j ∈ J}.
Suppose that for all i ∈ I there exists j ∈ J such that Ri Tj. Prove
that

⋃
i∈I Ri

⋃
j∈J Tj.

(c) Principle of “up to”: Prove that if F is strongly safe and R F(R) then
R and F(R) are included in ∼ℓ.
Hint: Let Ri = R and Ri+1 = Ri ∪ F(Ri). Let R∗ =

⋃
i∈NRi. Show

that R∗ is a bisimulation.

(d) Example: structural congruence: Let F≡(R) = ≡R≡. Show that F≡ is
strongly safe.

(e) Example: Evaluation contexts: Let FE(R) = {(D[P], D[Q]) / (P, Q) ∈
R and D ∈ E}. Show that FE is strongly safe.

(f) Composition: Suppose that F and F ′ are strongly safe. Show that their
composition, F ◦ F ′ is too, where (F ◦ F ′)(R) = F(F ′(R)).

(g) The initial motivation for all this work(!): Deduce that F≡◦FE is strongly
safe and give the inferred “up to” principle explicitly.

7 December 2005 16

2. Prove !P | !P ∼ℓ !P using the easier derivation rules for replication and
the “up to” techniques. (I gave this exercise last week, but now you have
all the necessary knowledge to do it.)

3. When arguing that bisimilarity isn’t preserved by substitution, we relied on
the following result: !(xu.P + y(v).Q) ∼ℓ !xu.P | !y(v).Q. Prove it using
“up to” techniques.

7 December 2005 17

