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A brief summary: Syntax of CCS

(channel, port) names: a, b, c, . . .

co-names: a, b, c, . . . Note: a = a
silent action: τ

actions, prefixes: µ ::= a | a | τ

processes: P, Q ::= 0 inaction
| µ.P prefix
| P | Q parallel
| P + Q (external) choice
| (νa)P restriction
| K (#a) process name with parameters

Process definitions: D ::= K (#x)
def
= P where fn(P) ⊆ #x

fn(P) is the set of free (channel) names in P (occurrences not in the scope of ν)
conversely, bn(P) is the set of bound names in P (occurrences in the scope of ν)
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A brief summary: Labeled transition system for CCS

We assume a given set of definitions D

[Act]
µ.P µ→ P

[Res] P µ→ P′ µ"=a,a
(νa)P µ→ (νa)P′

[Sum1] P µ→ P′

P+Q µ→ P′
[Sum2] Q µ→ Q′

P+Q µ→ Q′

[Par1] P µ→ P′

P|Q µ→ P′|Q
[Par2] Q µ→ Q′

P|Q µ→ P|Q′

[Com] P a→ P′ Q a→ Q′

P|Q τ→ P′|Q′ [Rec] P["a/"x ]
µ→ P′ K ("x)

def
=P ∈ D

K ("a)
µ→ P′
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A brief summary: (Strong) Bisimulation and Bisimilarity

Definition We say that a relation R on processes is a bisimulation if

P R Q implies that if P µ→ P′ then ∃Q′ s.t. Q µ→ Q′ and P′ R Q′

if Q µ→ Q′ then ∃P′ s.t. P µ→ P′ and P′ R Q′

Note that this property does not uniquely defines R. There may be several
relations that satisfy it.

Definition (Bisimilarity) ∼ =
S
{R | R is a bisimulation}

Theorem ∼ is a bisimulation.

P ∼ Q (P is bisimilar to Q) intuitively means that Q can do everything that P can
do, and vice versa, at every step of the computation.
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A brief summary: The coinductive method

Bisimilarity is a coinductive definition.

In order to prove that P ∼ Q it is sufficient to find a
bisimulation R such that P R Q
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Bisimilarity is a congruence

Bisimilarity in CCS is a congruence

Definition A relation R on a language is a congruence if
R is an equivalence relation (i.e. it is reflexive, symmetric,
and transitive), and
R is preserved by all the operators of the language, namely
if P R Q then op(P1, . . . , P, . . . , Pn) R op(P1, . . . , Q, . . . , Pn)

Theorem ∼ is a congruence relation

This is an important property as it allows to prove
equivalence in a modular way.
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Bisimilarity is a congruence

Proof of the congruence theorem

Bisimilarity is an equivalence relation.
Reflexivity. Let R = {(P, P) | P is a CCS process }. Then
R is a bisimulation (Immediate).
Symmetry. If P R Q, with R bisimulation, then Q R−1 P
holds and R−1 is a bisimulation (Immediate).
Transitivity. If P R Q and Q S R, with R,S bisimulations,
then P R ◦ S R holds and R ◦ S is a bisimulation (Proof:
exercise).

We have to prove now that ∼ is preserved by the operators
of CCS. We prove it for the most complicated case, the
parallel operator, and we leave the others as exercise.
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Bisimilarity is a congruence

Proof of the congruence theorem: case of the parallel
operator

Assume P ∼ Q. We prove that for any R, P | R ∼ Q | R holds. (The case
R | P ∼ R | Q is analogous). Let

R = {(P′ | R′, Q′ | R′) | P′, Q′, R′ are CCS processes and P′ ∼ Q′ }

We only need to prove that R is a bisimulation.

(Decomposition phase) Assume P′ | R′ µ→ P′′ | R′′. There are three cases,
corresponding to the three rules for parallel composition.

(Rule Par1) In this case P′ µ→ P′′ and R′′ = R′. Since P′ ∼ Q′, there
exists Q′′ such that Q′ µ→ Q′′ and P′′ ∼ Q′′.
(Rule Par2) In this case P′′ = P′ and R′ µ→ R′′. Take Q′′ = Q′.
(Rule Com) In this case P′ a→ P′′, R′ a→ R′′, and µ = τ . Since
P′ ∼ Q′, there exists Q′′ such that Q′ a→ Q′′ and P′′ ∼ Q′′.

(Composition phase) In each of the three cases, Q′ | R′ µ→ Q′′ | R′′ for some
Q′′ such that P′′ ∼ Q′′, and therefore P′′ | R′′ R Q′′ | R′′ holds.
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Some interesting bisimilarities

Some interesting bisimilarities

The following bisimilarities hold

P + 0 ∼ P P | 0 ∼ P
P + Q ∼ Q + P P | Q ∼ Q | P

(P + Q) + R ∼ P + (Q + R) (P | Q) | R ∼ Q | (P | R)
P + P ∼ P

(νa)0 ∼ 0
(νa)(P | Q) ∼ P | (νa)Q if a %∈ fn(P)

(νa)(P + Q) ∼ P + (νa)Q if a %∈ fn(P)
(νa)(νb)P ∼ (νb)(νa)P

(νa)(P) ∼ (νb)P[b/a] if a not in the scope of (νb) in P (α conversion)
(νa)b.P ∼ 0 if b = a or b = a
(νa)b.P ∼ b.(νa)P if b %= a and b %= a

K (#a) ∼ P[#a/#x ] if K (#x)
def
= P

Proof: Exercise
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Some interesting bisimilarities

Some interesting bisimilarities: The Expansion Laws

The following bisimilarities hold

a.P | b.Q ∼ a.(P | b.Q) + b.(a.P | Q) if b %= a
a.P | a.Q ∼ a.(P | a.Q) + a.(a.P | Q) + τ.(P | Q)

More in general:

(P | Q) ∼ (µ.
P

P
µ→ P′ P′ | Q) + (µ.

P
Q

µ→ Q′ P | Q′) + (τ.
P

P a→ P′

Q a→ Q′

P′ | Q′)

Proof: Exercise
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Axiomatization of strong bisimilarity
An equational theory for CCS: the axioms are the “=” version of the bisimilarities seen
in previous pages. That is:

P + 0 = P P | 0 = P
P + Q = Q + P P | Q = Q | P

(P + Q) + R = P + (Q + R) (P | Q) | R = Q | (P | R)
P + P = P

(νa)0 = 0
(νa)(P | Q) = P | (νa)Q if a %∈ fn(P)

(νa)(P + Q) = P + (νa)Q if a %∈ fn(P)
(νa)(νb)P = (νb)(νa)P

(νa)(P) = (νb)P[b/a] if a not in the scope of (νb) in P (α conversion)
(νa)b.P = 0 if b = a or b = a
(νa)b.P = b.(νa)P if b %= a and b %= a

K (#a) = P[#a/#x ] if K (#x)
def
= P

(P | Q) = (µ.
P

P
µ→ P′ P′ | Q) + (µ.

P
Q

µ→ Q′ P | Q′) + (τ.
P

P a→ P′

Q a→ Q′

P′ | Q′)
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Axiomatization of strong bisimilarity

To prove equivalence of recursive processes, it is convenient to introduce also the
following conditional axiom (Unique solution of equations):

Given a context C[ ] (that is, a term with some “holes” [ ]), in which all the holes are
guarded (that is, occur in the context of a prefix), then, for every P and Q

if P = C[P] and Q = C[Q] then P = Q

Definition We write Ax ' P = Q iff P = Q is derivable from the above axioms Ax
and the usual rules for equality

Theorem (Soundness of the axiomatization) If Ax ' P = Q then P ∼ Q.

The converse of the above theorem does not hold, i.e. the axiomatization is not
complete. Note that the existence of a sound and complete axiomatization would imply
the decidability of bisimilarity (because the complement of the bisimarity relation is
semidecidable). However, bisimilarity is not decidable in CCS.

The characterization of subsets of CCS in which bisimulation is decidable is an
important research field in Concurrency Theory.
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Bisimulation up-to ∼

The axiomatization can be combined with the coinductive method to ease proving
bisimilarity. The idea is based on the so-called “bisimulation up-to ∼” technique.

Definition We say that a relation R on processes is a bisimulation up-to ∼ if

P R Q implies that if P µ→ P′ then ∃Q′ s.t. Q µ→ Q′ and P′ ∼ R ∼ Q′

if Q µ→ Q′ then ∃P′ s.t. P µ→ P′ and P′ ∼ R ∼ Q′

Notation: P′ ∼ R ∼ Q′ means: ∃P′′, Q′′ s.t. P′ ∼ P′′, P′′ R Q′′, and Q′′ ∼ Q′.
Note that in order to prove P′ ∼ P′′ and Q′′ ∼ Q′, it is sufficient to prove
Ax ' P′ = P′′ and Ax ' Q′′ = Q′ .
Theorem If there exists R such that R is a bisimulation up-to ∼, and P R Q
holds, then P ∼ Q holds.

The advantage of the above technique is that it is usually easier to define a relation that
is a bisimulation up-to ∼, rather than a bisimulation.
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Exercises

Prove that A ∼ B where A def
= a.A and B def

= a.B + a.a.B

Prove that the two definitions of semaphores given in
previous lecture are equivalent (that is, the semaphores
given by those two definitions are bisimilar)
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Value-passing CCS

In pure CCS processes communicate via channel (or port) names, but the
communication does not carry data (or values). We now illustrate how we can modify
CCS so that processes can send (and receive) values.

(data) variables: y , z, . . .

(data) values: v , w , . . .

(channel, port) names: a, b, c, . . .

co-names: a, b, c, . . .

silent action: τ

actions, prefixes: µ ::= a〈#y〉 | a〈#v〉 | τ

processes: P, Q ::= 0 inaction
| µ.P prefix
| P | Q parallel
| P + Q (external) choice
| (νa)P restriction
| K (#a)〈#v〉 process name with parameters

Process definitions: D ::= K (#x)〈#y〉 def
= P where fn(P) ⊆ #x

16



Summary Bisimilarity Axiomatization Bisimulation up-to ∼ Value-passing CCS Weak bisimilarity

The labeled transition system for value-passing CCS

We assume a given set of definitions D

[Send]
a〈"v〉.P a〈"v〉→ P

[Receive]
a〈"y〉.P a〈"v〉→ P["v/"y ]

[Res] P µ→ P′ µ"=a,a
(νa)P µ→ (νa)P′

[Sum1] P µ→ P′

P+Q µ→ P′
[Sum2] Q µ→ Q′

P+Q µ→ Q′

[Par1] P µ→ P′

P|Q µ→ P′|Q
[Par2] Q µ→ Q′

P|Q µ→ P|Q′

[Com] P
a〈"v〉→ P′ Q

a〈"v〉→ Q′

P|Q τ→ P′|Q′ [Rec] P["a/"x ]["v/"y ]
µ→ P′ K ("x)〈"y〉def

=P ∈ D
K ("a)〈"v〉 µ→ P′

Bisimulation and bisimilarity are defined as usual, considering as
labels those of the form a〈!v〉 and a〈!v〉
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Translating value-passing CCS into pure CCS
If the domain V of values is finite, we can emulate value-passing CCS by translating it
into pure CCS in the following way. We denote this translation by

[[·]] : value-passing CCS → pure CCS

For simplicity we assume channel arity 1.

[[0]] = 0

[[a〈v〉.P]] = av .[[P]]

[[a〈y〉.P]] =
P

v∈V av .[[P[v/y ]]]

[[P | Q]] = [[P]] | [[Q]]

[[P + Q]] = [[P]] + [[Q]]

[[(νa)P]] = (νa)[[P]]

[[K (#a)〈v〉]] = Kv (#a)

Furthermore, each definition K (#x)〈#y〉 def
= P is replaced by the following set of

definitions, one for each v ∈ V :

Kv (#x)
def
= [[P[v/y ]]]
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Weak Bisimulation and Weak Bisimilarity
Motivation: abstract from internal actions (i.e. τ actions)

We introduce the following notation

P(
τ→ )∗Q iff P = P0

τ→ P1
τ→ . . .

τ→ Pn = Q

P "µ⇒ Q iff
P = P0 (

τ→ )∗
µ1→ (

τ→ )∗ P1 (
τ→ )∗

µ2→ (
τ→ )∗ . . . (

τ→ )∗
µn→ (

τ→ )∗ Pn = Q
and #µ = µ1µ2 . . . µn

P bµ⇒ Q iff
P "µ⇒ Q and bµ is obtained from #µ by removing all the τ ’s

Examples: ba = a, dτaτ = a, bτ = ε (empty string), daτb = ab.

Note:

P
ba⇒ Q means P (

τ→ )∗
a→ (

τ→ )∗ Q,

P bτ⇒ Q means P ε⇒ Q, namely P (
τ→ )∗ Q,

P τ⇒ Q means P (
τ→ )∗

τ→ (
τ→ )∗ Q, namely P (

τ→ )+ Q (at least
one τ -step).
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Weak Bisimulation and Weak Bisimilarity

Definition We say that a relation R on processes is a weak bisimulation if

P R Q implies that if P µ→ P′ then ∃Q′ s.t. Q bµ⇒ Q′ and P′ R Q′

if Q µ→ Q′ then ∃P′ s.t. P bµ⇒ P′ and P′ R Q′

Note that this property does not uniquely defines R. There may be several
relations that satisfy it.

Definition (Bisimilarity) ≈ =
S
{R | R is a weak bisimulation}

Theorem ≈ is a weak bisimulation.

P ≈ Q (P is weakly bisimilar to Q) intuitively means that at every step of the
computation Q can do everything that P can do, and vice versa, if we ignore the
internal actions.
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Observation congruence

Unfortunately ≈ is not a congruence.
Example: a.P ≈ τ.a.P but a.P + b.Q %≈ τ.a.P + b.Q

Definition We say that P and Q are observation-congruent (notation P ∼= Q) iff

if P µ→ P′ then ∃Q′ s.t. Q µ⇒ Q′ and P′ ≈ Q′

if Q µ→ Q′ then ∃P′ s.t. P µ⇒ P′ and P′ ≈ Q′

The difference between ≈ and ∼= is when the first step is a τ -step. If P τ→ P′

and P ≈ Q, then we can take Q′ = Q provided that P′ ≈ Q′. On the contrary, if
P ∼= Q, then we are obliged to find a Q′ such that Q τ⇒ Q′ (which means, at
least one τ -step from Q to Q′), and P′ ≈ Q′.

Theorem ∼ ⊆ ∼= ⊆ ≈

Proof: exercise.

Theorem ∼= is a congruence, and more precisely, it is the largest congruence
on CCS contained in ≈.
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Properties of observation congruence

Properties of observation congruence

Proposition The following properties hold:

µ.τ.P ∼= µ.P
P + τ.P ∼= τ.P

µ.(P + τ.Q) + µ.Q ∼= µ.(P + τ.Q)

Proof: exercise.

The above properties are used to give an axiomatization observation congruence. The
“=” version of the above are called τ -laws:

µ.τ.P = µ.P
P + τ.P = τ.P

µ.(P + τ.Q) + µ.Q = µ.(P + τ.Q)

Definition We write Axτ ' P = Q iff P = Q can be derived from the axioms Ax, the
τ -laws, and the usual rules for equality.

Theorem (Soundness) If Axτ ' P = Q then P ∼= Q.
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Properties of observation congruence

Properties of observation congruence

The following properties that can be useful to prove observation congruence
If P ≈ Q then µ.P ∼= µ.Q
P ≈ Q iff P ∼= Q or P ∼= τ.Q or τ.P ∼= Q

Exercise:

Assume A def
= a.b.0 + a.c.0 and B def

= a.(τ.b.0 + τ.c.0). Prove that A ∼= B.

Assume A def
= (νb)(a.b.c.0 + a.b̄.c.0) and B def

= a.a.c.c.0. Prove that A ∼= B.

23

Summary Bisimilarity Axiomatization Bisimulation up-to ∼ Value-passing CCS Weak bisimilarity

Example: FIFO Queues

Two equivalent definitions of FIFO Queues

Consider the following definitions of a FIFO queue with 2 positions in value-passing
CCS

First definition

Q2(in, out) def
= in(y).Q1(in, out)〈y〉

Q1(in, out)〈y〉 def
= in(z).Q0(in, out)〈z, y〉 + out〈y〉.Q2(in, out)

Q0(in, out)〈z, y〉 def
= out〈y〉.Q1(in, out)〈z〉

Second definition

Here we define a 2-positions queue as the concatenation of two 1-position buffers
B(in, out) def

= in(y).B′(in, out)〈y〉
B′(in, out)〈y〉 def

= out〈y〉.B(in, out)
Queue(in, out) def

= (νc)(B(in, c) | B(c, out))

Exercise Prove that Q2(in, out) is observation-congruent to Queue(in, out).
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