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Announcement

The class of Wednesday 26 October will follow the usual
schedule (16h15 - 19h15).
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The semaphore

Define in CCS a semaphore with initial value n

First Solution

recSn down.recSn−1
(up.Sn + down.recSn−2

(. . . (up.S2 + down.recS0
up.S1) . . .))

Second solution
Let S = recX down.up.X

Then Sn = S | S | . . . | S n times
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Maximal trace equivalence is not a congruence

Consider the following processes
P = a.(b.0 + c.0)

Q = a.b.0 + a.c.0
R = ā.b̄.d̄ .0

P and Q have the same maximal traces, but
(νa)(νb)(νc)(P | R) and (νa)(νb)(νc)(Q | R) have different
maximal traces.
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Syntax

Syntax of “modern” CCS

(channel, port) names: a, b, c, . . .

co-names: ā, b̄, c̄, . . . Note: ¯̄a = a

silent action: τ

actions, prefixes: µ ::= a | ā | τ

processes: P, Q ::= 0 inaction
| µ.P prefix
| P | Q parallel
| P + Q (external) choice
| (νa)P restriction
| K (~a) process name with parameters

Process definitions:
D ::= K (~x)

def
= P where P may contain only the ~x

as channel names
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Labeled transition System

Labeled transition system for “modern” CCS

We assume a given set of definitions D

[Act]
µ.P

µ→ P
[Res] P

µ→ P′ µ6=a,a
(νa)P

µ→ (νa)P′

[Sum1] P
µ→ P′

P+Q
µ→ P′

[Sum2] Q
µ→ Q′

P+Q
µ→ Q′

[Par1] P
µ→ P′

P|Q µ→ P′|Q
[Par2] Q

µ→ Q′

P|Q µ→ P|Q′

[Com] P a→ P′ Q a→ Q′

P|Q τ→ P′|Q′ [Rec] P[~a/~x ]
µ→ P′ K (~x)

def
=P ∈ D

K (~a)
µ→ P′

The reason for moving to “modern” CCS was to get static scope
(thanks to the presence of the parameters). The old version had
dynamic scope.
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Simulation

Simulation

Definition We say that a relation R on processes is a simulation if

P R Q implies that if P
µ→ P′ then ∃Q′ s.t. Q

µ→ Q′ and P′ R Q′

Note that this property does not uniquely defines R. There may be several
relations that satisfy it.

Define . =
S
{R | R is a simulation}

Theorem . is a bisimulation (Proof: Exercise)

P . Q intuitively means that Q can do everything that P can do. Q simulates P.
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Bisimulation

Bisimulation

Definition We say that a relation R on processes is a bisimulation if

P R Q implies that if P
µ→ P′ then ∃Q′ s.t. Q

µ→ Q′ and P′ R Q′

if Q
µ→ Q′ then ∃P′ s.t. P

µ→ P′ and P′ R Q′

Again, this property does not uniquely defines R. There may be several relations
that satisfy it.

Define ∼ =
S
{R | R is a bisimulation}

Theorem ∼ is a bisimulation (Proof: Exercise)

P ∼ Q intuitively means that Q can do everything that P can do, and vice versa,
at every step of the computation. Q is bisimilar to P.
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Proof methods

Proof methods

Simulation and bisimulation are coinductive definitions.

In order to prove that P . Q it is sufficient to find a
simulation R such that P R Q

Similarly, in order to prove that P ∼ Q it is sufficient to find
a bisimulation R such that P R Q
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Examples and exercises

Examples and exercises

Consider the following processes
P = a.(b.0 + c.0)

Q = a.b.0 + a.c.0
Prove that Q . P but P 6. Q and Q 6∼ P

Assume that Q . P and P . Q (for two generic P and Q). Does it follow that
P ∼ Q?

Consider the following processes
R = a.(b.0 + b.0)

S = a.b.0 + a.b.0
Prove that Q ∼ P

Consider the two definitions of semaphore given at the beginning of this lecture.
Prove that they are bisimilar.

Consider the processes H(a) and K (a) defined by H(x)
def
= x .H(x) and

K (x)
def
= x .K (x) | x .K (x). Are they bisimilar?

What is the smallest bisimulation?
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Alternative characterization of bisimulation

Bisimulation as greatest fixpoint

Consider the set of relations on processes (that is, on the powerset of the
cartesian product on processes) ordered by set inclusion. Obviously, this is a
complete lattice.

Definition Let F be a function on relation defined in the following way:

P F(R) Q iff if P
µ→ P′ then ∃Q′ s.t. Q

µ→ Q′ and P′ R Q′

if Q
µ→ Q′ then ∃P′ s.t. P

µ→ P′ and P′ R Q′

Lemma F is monotonic

Theorem (Knaster-Tarski) F has (unique) least and greatest fixpoints, and

lfp(F) =
\
{R | F(R) ⊆ R}

gfp(F) =
[
{R | R ⊆ F(R)}

Corollary ∼ = gfp(F)

A similar characterization, of course, holds for . as well.
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µ→ Q′ then ∃P′ s.t. P

µ→ P′ and P′ R Q′

Lemma F is monotonic

Theorem (Knaster-Tarski) F has (unique) least and greatest fixpoints, and

lfp(F) =
\
{R | F(R) ⊆ R}

gfp(F) =
[
{R | R ⊆ F(R)}

Corollary ∼ = gfp(F)

A similar characterization, of course, holds for . as well.
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Alternative characterization of bisimulation
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Bisimulation in CCS is a congruence
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Bisimulation in CCS is a congruence

Bisimulation in CCS is a congruence

Definition A relation R on a language is called congruence
if

R is an equivalence relation (i.e. it is reflexive, symmetric,
and transitive), and
R is preserved by all the operators of the language, namely
if P R Q then op(P, ~R) R op(P, ~R)

Theorem ∼ is a congruence relation
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Bisimulation in CCS is a congruence

Bisimulation in CCS is a congruence

Definition A relation R on a language is called congruence
if

R is an equivalence relation (i.e. it is reflexive, symmetric,
and transitive), and
R is preserved by all the operators of the language, namely
if P R Q then op(P, ~R) R op(P, ~R)

Theorem ∼ is a congruence relation
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Exercises

Complete the proof that bisimulation in CCS is a
congruence

Prove that if P . Q then the traces of P are contained in
the traces of Q

Prove that if P ∼ Q then P . Q and Q . P

Prove that
P + 0 ∼ P and P|0 ∼ P
P + P ∼ P but (in general) P|P 6∼ P
P + Q ∼ Q + P and P|Q ∼ Q|P
(P + Q) + R ∼ P + (Q + R) and (P|Q)|R ∼ P|(Q|R)
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