1. a.(b + c) and a.b + a.c Answer: no for all 2.1. a | b- and a.b- + b-.a Answer: no for all 2.2. a | b- and a.b- + b-.a, with a =/= b Answer: yes for strong bisimulation and above 3.1. new a. (a- | a.P | a.tau.Q) and tau.P + tau.Q, with a,b notin fn P,Q Answer: no for strong, but yes for observational and above 3.2. Same but without side condition. Answer: none (take P=a) 3.3. new a. (a- | a.P | a.Q) and tau.P + Q, with a,b notin fn P,Q Answer: no for strong, no for observational, yes for weak RR = { (new a. (a- | a.P | a.Q), tau.P + Q) } U { (new a. (P' | a.Q), P') / a notin fn P' } U { (new a. (a.P | Q'), Q') / a notin fn Q' } 4. Alpha convert: x(x).new y.x-y.y(y).y-x Answer: x(x1).new y.x1-y.y(y1).y1-x1 5. Derive the two steps of reaction new y. x-y. y(w).P | x(u).new y. u-y Answer: new y. x-y. y(w).P | x(u).new y. u-y == new y. (x-y. y(w).P | x(u).new y. u-y) -> new y. (y(z).P | new z. y-z) == new y. new z. (y(w).P | y-z), z notin fn P -> new y. new z. {z/w}P 6. Derive the first tau transition Answer: new y. x-y. y(w).P -x-(y)-> y(w).P x(u).new y.u-y -xy-> new y.y-z ------------------------------------------------------------------------ new y. x-y. y(w).P | x(u).new z. u-z -> new y. (y(z).P | new z. y-z)