MPRI Concurrency (course number 2-3) 2004-2005: π -calculus 16 November 2004

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/

James J. Leifer INRIA Rocquencourt

James.Leifer@inria.fr

About the lectures

- The MPRI represents a transition from *student* to *researcher*. So...
- Interrupting me with questions is good.
- Working through a problem without already knowing the answer is good.
- I'll make mistakes. 8-)

About me

- 1995–2001: Ph.D. student of Robin Milner's in Cambridge, UK
- 2001–2002: Postdoc in INRIA Rocquencourt, France
- 2002–: Research scientist in INRIA Rocquencourt, France
- November 2004: voted against W (who, despite this, was elected for the first time)

Books

- Robin Milner. Communicating and mobile systems: the π -calculus. (Cambridge University Press, 1999).
- Robin Milner. Communication and concurrency. (Prentice Hall, 1989).
- Davide Sangiorgi and David Walker. The π -calculus: a theory of mobile processes. (Cambridge University Press, 2001).

Tutorials available online

- Robin Milner. "The polyadic pi-calculus: a tutorial". Technical Report ECS-LFCS-91-180, University of Edinburgh. http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/ECS-LFCS-91-180.ps
- Joachim Parrow. "An introduction to the pi-calculus". http://user.it.uu.se/~joachim/intro.ps
- Peter Sewell. "Applied pi a brief tutorial". Technical Report 498, University of Cambridge. http://www.cl.cam.ac.uk/users/pes20/apppi.ps

• syntax

• reduction semantics and structural congruence

• labelled transitions

• bisimulation

Syntax

$P ::= \overline{x}y.P$	output
x(y).P	input (y binds in P)
$\boldsymbol{\nu} x.P$	restriction (new) (x binds in P)
$P \mid P$	parallel (par)
0	empty
!P	replication (bang)

Significant difference from CCS: channels carry names.

Free names

The free names of P are written fn(P). *Example:* $fn(\mathbf{0}) = \emptyset$; $fn(\overline{x}y.z(y).\mathbf{0}) = \{x, y, z\}$. *Exercise:* Calculate $fn(z(y).\overline{x}y.\mathbf{0})$; $fn(\nu z.(z(y).\overline{x}y) | \overline{y}z)$. Formally:

$$\begin{aligned} & \operatorname{fn}(\overline{x}y.P) &= \{x,y\} \cup \operatorname{fn}(P) \\ & \operatorname{fn}(x(y).P) &= \{x\} \cup (\operatorname{fn}(P) \setminus \{y\}) \\ & \operatorname{fn}(\boldsymbol{\nu}x.P) &= \operatorname{fn}(P) \setminus \{x\} \\ & \operatorname{fn}(P \mid P') &= \operatorname{fn}(P) \cup \operatorname{fn}(P') \\ & \operatorname{fn}(\mathbf{0}) &= \varnothing \\ & \operatorname{fn}(!P) &= \operatorname{fn}(P) \end{aligned}$$

Alpha-conversion

We consider processes up to alpha-conversion: provided $y' \notin \mathrm{fn}(P),$ we have

$$x(y).P = x(y').\{y'/y\}P$$
$$\boldsymbol{\nu} y.P = \boldsymbol{\nu} y'.\{y'/y\}P$$

Exercise: Freshen all bound names: $\nu x.(x(x).\overline{x}x) \mid x(x)$

Reduction (\rightarrow)

We say that P reduces to P', written $P \longrightarrow P'$, if this can be derived from the following rules:

$$\overline{x}y.P \mid x(u).Q \longrightarrow P \mid \{y/u\}Q \qquad (\text{red-comm})$$

$$\frac{P \longrightarrow P'}{P \mid Q \longrightarrow P' \mid Q} \qquad (\text{red-par})$$

$$\frac{P \longrightarrow P'}{\nu x.P \longrightarrow \nu x.P'} \qquad (\text{red-new})$$

Example: $\boldsymbol{\nu} x.(\overline{x}y \mid x(u).\overline{u}z) \longrightarrow \boldsymbol{\nu} x.(\mathbf{0} \mid \overline{y}z)$

As currently defined, reduction is too limited:

 $\begin{array}{c|c} (\overline{x}y \mid \mathbf{0}) \mid x(u) \not\longrightarrow \\ \boldsymbol{\nu}w.\overline{x}y \mid x(u) \not\longrightarrow \end{array}$

Structural congruence (\equiv)

 $P \mid (Q \mid S) \equiv (P \mid Q) \mid S \qquad \text{(str-assoc)}$ $P \mid Q \equiv Q \mid P \qquad \text{(str-commut)}$

 $P \mid Q \equiv Q \mid P \qquad (str-commut)$ $P \mid \mathbf{0} \equiv P \qquad (str-id)$

 $\boldsymbol{\nu} x. \boldsymbol{\nu} y. P \equiv \boldsymbol{\nu} y. \boldsymbol{\nu} x. P$ (str-swap)

$$\boldsymbol{\nu} x. \mathbf{0} \equiv \mathbf{0}$$
 (str-zero)

$$\begin{split} \boldsymbol{\nu} x.P \mid Q \equiv \boldsymbol{\nu} x.(P \mid Q) & \text{ if } x \notin \mathsf{fn}(Q) & \text{ (str-ex)} \\ & !P \equiv P \mid !P & \text{ (str-repl)} \end{split}$$

We close reduction by structural congruence:

$$\frac{P \equiv \longrightarrow \equiv P'}{P \longrightarrow P'}$$
 (red-str)

Exercise: Calculate the reductions of $\nu y.(\overline{x}y \mid y(u).\overline{u}z) \mid x(w).\overline{w}v$ and $\overline{x}y \mid \nu y.(x(u).\overline{u}w \mid y(v))$

Application of new binding: from polyadic to monadic channels

Let us extend our notion of *monadic* channels, which carry exactly one name, to *polyadic* channels, which carry a vector of names, i.e.

$$P ::= \overline{x} \langle y_1, ..., y_n \rangle . P \qquad \text{output} \\ x(y_1, ..., y_n) . P \qquad \text{input } (y_1, ..., y_n \text{ bind in } P)$$

Is there an encoding from polyadic to monadic channels? We might try:

$$\llbracket \overline{x} \langle y_1, \dots, y_n \rangle . P \rrbracket = \overline{x} y_1 \dots \overline{x} y_n . \llbracket P \rrbracket$$
$$\llbracket x(y_1, \dots, y_n) . P \rrbracket = x(y_1) \dots x(y_n) . \llbracket P \rrbracket$$

but this is broken! Can you see why? The right approach is use new binding:

$$\llbracket \overline{x} \langle y_1, \dots, y_n \rangle . P \rrbracket = \boldsymbol{\nu} z . (\overline{x} z . \overline{z} y_1 \dots \overline{z} y_n . \llbracket P \rrbracket)$$
$$\llbracket x(y_1, \dots, y_n) . P \rrbracket = x(z) . z(y_1) \dots z(y_n) . \llbracket P \rrbracket$$

where $z \notin fn(P)$ in both cases. (We also need some well-sorted assumptions.)

Application of new binding: from synchronous to asynchronous ouput

In distributed computing, sending and receiving messages may be asymmetric: we clearly know when we have received a message but not necessarily when a message we sent has been delivered. (Think of email.)

$$P ::= \overline{x}y$$
 output
 $x(y).P$ input (y binds in P)

Nonetheless, one can always achieve synchronous sends by using an *acknowledgement* protocol:

$$\llbracket \overline{x}y.P \rrbracket = \mathbf{\nu}z.(\overline{x}\langle y, z \rangle \mid z().\llbracket P \rrbracket)$$
$$\llbracket x(y).P \rrbracket = x(y,z).(\overline{z}\langle \rangle \mid \llbracket P \rrbracket)$$

provided $z \notin fn(P)$ in both cases.

Labels

The labels α are of the form:

$$\begin{array}{ll} \alpha ::= \overline{x}y & \quad \text{output} \\ \overline{x}(y) & \quad \text{bound output} \\ xy & \quad \text{input} \\ \tau & \quad \text{silent} \end{array}$$

The names $n(\alpha)$ and bound names $bn(\alpha)$ are defined as follows:

Labelled transitions ($P \xrightarrow{\alpha} P'$ **)**

Labelled transitions are of the form $P \xrightarrow{\alpha} P'$ and are generated by:

 $\overline{xy}.P \xrightarrow{xy} P$ (lab-out) $x(y).P \xrightarrow{xz} \{z/y\}P$ (lab-in) $\frac{P \xrightarrow{\alpha} P'}{P \mid Q \xrightarrow{\alpha} P' \mid Q} \text{if } \operatorname{bn}(\alpha) \cap \operatorname{fn}(Q) = \varnothing \quad \text{(lab-par-l)}$ $\frac{P \xrightarrow{\alpha} P'}{\boldsymbol{\nu} u.P \xrightarrow{\alpha} \boldsymbol{\nu} u.P'} \text{if } y \notin n(\alpha) \quad \text{(lab-new)} \qquad \qquad \frac{P \xrightarrow{xy} P'}{\boldsymbol{\nu} u.P \xrightarrow{\overline{x}(y)} P'} \text{if } y \neq x \quad \text{(lab-open)}$ $\frac{P \xrightarrow{xy} P' \qquad Q \xrightarrow{xy} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'} \quad \text{(lab-comm-l)} \qquad \frac{P \xrightarrow{x(y)} P' \qquad Q \xrightarrow{xy} Q'}{P \mid Q \xrightarrow{\tau} \nu u (P' \mid Q')} \text{if } y \notin \text{fn}(Q) \quad \text{(lab-close-l)}$ $\frac{P \mid !P \xrightarrow{\alpha} P'}{P \mid P \xrightarrow{\alpha} P'} \quad \text{(lab-bang)}$

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).

Labelled transitions and structural congruence

Theorem:

- 1. $P \longrightarrow P'$ iff $P \xrightarrow{\tau} \equiv P'$.
- **2.** $P \equiv \xrightarrow{\alpha} P'$ implies $P \xrightarrow{\alpha} \equiv P'$

Exercise: Why does the converse of the second not hold?

Exercise: Show that the following pair of processes are both in (\longrightarrow) and $(\xrightarrow{\tau} \equiv)$:

 $\boldsymbol{\nu} z. \overline{x} z \mid x(u). \overline{y} u \qquad \boldsymbol{\nu} z. \overline{y} z$

Fun with side conditions

Exercise: Show that the side condition on (lab-par-I) is necessary by considering the process $\nu y.(\overline{x}y.y(u)) \mid \overline{z}v$ and an alpha variant.

Strong bisimulation

A relation \mathcal{R} is a strong bisimulation if for all $(P, Q) \in \mathcal{R}$ and $P \xrightarrow{\alpha} P'$, where $bn(\alpha) \cap fn(Q) = \emptyset$, there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$, and symmetrically.

Strong bisimilarity \sim is the largest strong bisimulation.

Bisimulation proofs

Theorem: $P \equiv Q$ implies $P \sim Q$.

Can you think of a counterexample to the converse?

Some easy results:

1. $P \mid \mathbf{0} \sim P$ 2. $\overline{x}y.\boldsymbol{\nu}z.P \sim \boldsymbol{\nu}z.\overline{x}y.P$, if $z \notin \{x, y\}$ 3. $x(y).\boldsymbol{\nu}z.P \sim \boldsymbol{\nu}z.x(y).P$, if $z \notin \{x, y\}$ 4. $|\boldsymbol{\nu}z.P \not\sim \boldsymbol{\nu}z.!P$ for some P

More difficult:

1. $\nu x.P \mid Q \sim \nu x.(P \mid Q)$ **2.** $!P \mid !P \sim !P$ **3.** $P \sim Q$ implies $P \mid S \sim Q \mid S$

Adding sum

$$\begin{array}{lll} P ::= M & \text{sum} \\ P \mid P & \text{parallel (par)} \\ !P & \text{replication (bang)} \end{array}$$

$$M ::= \overline{x}y.P & \text{output} \\ x(y).P & \text{input (}y \text{ binds in } P) \\ M + M & \text{sum} \\ 0 \end{array}$$

Change structural congruence to treat + as associative and commutive with identity 0.

Change reduction: $(\overline{x}y.P + M) \mid (x(u).Q + N) \longrightarrow P \mid \{y/u\}Q.$

Change labelled transition: $M + \overline{x}y.P + N \xrightarrow{\overline{x}y} P$ $\underline{M + x(y).P + N \xrightarrow{xz} \{z/y\}P}$