
.

Concurrency 5 = CCS (3/4)

Examples, and axiomatization

Pierre-Louis Curien (CNRS – Université Paris 7)

MPRI concurrency course 2004/2005 with :

Jean-Jacques Lévy (INRIA-Rocquencourt)
Eric Goubault (CEA)

James Leifer (INRIA - Rocq)
Catuscia Palamidessi (INRIA - Futurs)

—————
(http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004)

1

.

Specification and weak bisimulation

HAMMER JOBBER STRONG JOBBER

H = g · H′ H′ = p · H J = in · S S = g · U K = in · D D = out · K
U = p · F F = out · J

We have : (νg, h)(J | J | H) ≈ K | K. Their first actions are the same :

(νg, h)(J | J | H) R K | K (νg, h)(S | J | H) R D | K

(νg, h)(J | S | H) R K | D (νg, h)(S | S | H) R D | D

The only possible sequence of actions out of, say, (νg, h)(S | S | H) is :

(νg, h)(S | S | H)
τ→ (νg, h)(S | U | H′) τ→ (νg, h)(S | U | H′) out−→ (S | J | H)

Hence we complete R with :

(νg, h)(S | U | H′) R D | D (νg, h)(S | F | H) R D | D

(νg, h)(J | U | H′) R K | D (νg, h)(J | F | H) R K | D

(νg, h)(U | J | H′) R D | K (νg, h)(F | J | H) R D | K

2

.

CCS encodings (1/4)

(Thanks to Catuscia Palamidessi for the encodings of this lecture).

Here is a specification P of (up to) n readers in parallel and (at most)
one writer :

R = pR · read · vR

W = pW · write · vW

S0 = pR · S1 + pW · vW · S0

Sk = pR · Sk+1 + vR · Sk−1 (0 < k < n)

Sn = vR · Sn−1

in

(νpR, vR, pW , vW)(S0|R| · · · |R|W | · · · |W) (arbitrarily many readers and writers)

If P
s→ (νpR, vR, pW , vW)P ′, then there are two cases :

- P ′ = Si|Q : then up to i threads of Q can perform read and no thread
can perform write.

- P ′ = (vW · S0)|Q : then no thread of Q can perform read and at most
one thread can perform write.

3

.

CCS encodings (2/4)
The dining philosophers can be encoded by a closed linking (cf. previous
lecture) of n copies of the following process Philn,p,a (each philosopher
holds its left fork at the beginning)

Philn,p,a = τ · Philh,p,a + τ · Philn,p,a + cL · Philn,a,a

Philn,a,p = symmetric

Philn,a,a = τ · Philn,a,a + τ · Philh,a,a

Philh,a,a = cL · Philh,p,a + cR · Philh,a,p

Philh,p,a = cLPhilh,a,a + cR · Philh,p,p

Philh,a,p = symmetric

Philh,p,p = eat · Philn,p,p

Philn,p,p = cL · Philn,a,p + cR · Philn,p,a

- n/h stand for “not hungry” / “hungry”, a/p for absent / present
(second and third index for first and second fork, respectively)

- under the linking, cR (resp. cL) is (privately) identified with the cL

(resp. cR) of the right (resp. left) neighbour

4

.

CCS encodings (3/4)

We show, at any stage : Fairness ⇒ Progress

Fairness A hungry philosopher, or a philosopher who has just eaten, is
not ignored forever.

Progress If at least one philosopher is hungry, then eventually one of the
hungry philosophers will eat.

By contradiction : Suppose P is the state of the system in which one
philosopher at least is hungry, and suppose that there is an infinite fair
evolution P

τ→" · · · that makes no progress. Then :

Step 1 : Eventually, all philosophers hold at most one fork. No
philosopher at any stage can be in state (h, p, p), since by fairness
eventually this philosopher will eat. If at some stage a philosopher is in
state (n, p, p), then by fairness this philosopher will eventually give one
of his forks. No philosopher at any styage can be in state (n, p, p) unless
it was already in this state in P , since the only way to enter this state is
after eating. Hence all the (n, p, p) states will eventually disappear.

5

.

CCS encodings (4/4)

Step 2 : Eventually, all philosophers hold exactly one fork. This is
because if one philosopher had no fork, then another one would hold
two (n forks for n − 1 philosophers).

Step 3 : When this happens, our philosopher is still hungry (he cannot
revert to non-hungry unless he eats), say it is in state (h, p, a), and
eventually by Fairness it is his turn. The transition (h, p, p) is forbidden.
Hence he gives his fork to the left neighbour. Only a hungry philosopher
receives forks, hence the neighbour is in state (h, p, a), but then makes
the transition (h, p, p) which is also forbidden.

Exercice 1 Show that the system can never deadlock.

6

.

Strong axiomatization (1/4)

For finitary CCS (no recursion, finite guarded sums), P ∼ Q iff
A1 & P = Q, where A1 is :

(1) Σi∈Iµi · Pi = Σi∈Iµf(i) · Pf(i) (permutation)

(2) Σi∈Iµi · Pi + µj · Pj = Σi∈Iµi · Pi (j ∈ I) (idempotency)

(3) P | Q = Σ{µ · (P ′ | Q) | P
µ→ P ′} + Σ{µ · (P | Q′) | Q

µ→ Q′}
+Σ{τ · (P ′ | Q′) | P

α→ P ′ and Q
α→ Q′} (expansion)

(4) (νa) (Σi∈Iµi · Pi) = Σ{j∈I|µj $=a,a} µj · (νa)Pj

Exercice 2 Show that A1 & (νb)(a · (b|c) + τ · (b|b · c)) = τ · τ · c · 0 + a · c · 0.

7

.

Strong axiomatization (2/4)

First step : each process is provably equal to a synchronization tree
(guarded sums only), using only

(3) P | Q = Σ{µ · (P ′ | Q) | P
µ→ P ′} + Σ{µ · (P | Q′) | Q

µ→ Q′}
+Σ{τ · (P ′ | Q′) | P

α→ P ′ and Q
α→ Q′}

(4) (νa) (Σi∈Iµi · Pi) = Σ{j∈I|µj $=a,a} µj · (νa)Pj

We associate with a process P the multi-set of the sizes of all its
subterms (νa)Q and Q1 | Q2. This multi-set decreases at each
application of rules (3)-(4).

8

.

Strong axiomatization (3/4)
Second step : If P = Σi=1...mαi · Pi and Q = Σj=m+1...nαj · Pj , and if
P ∼ Q, then P and Q are provably equal, using only

(1) Σi∈Iµi · Pi = Σi∈Iµf(i) · Pf(i) (f permutation)

(2) Σi∈Iµi · Pi + µj · Pj = Σi∈Iµi · Pi (j ∈ I)

Induction on size(P)+size(Q) : Let ! be the equivalence relation on
{1, . . . n} defined by i ! j iff αi = αj and Pi ∼ Pj .

By strong bisimilarity, each ! equivalence class contains at least one
element of [1, m] and at least one element of [m + 1, n]. Now for each of
the equivalence classes we pick one representative in [1, m] and one in
[m + 1, n]. Call them p1, . . . , pk and q1, . . . , qk, respectively. Then we
have :

& Σi=1...mαi.P = Σl=1...kαpl ·Ppl and & Σj=m+1...nαj ·Pj = Σl=1...kαql ·Pql

with Ppl ∼ Pql for all l, so we can apply induction.

(Note that the finiteness of sums is crucial.)

9

.

Weak axiomatization (1/6)

For finitary CCS, P ≈ Q iff A1 + A2 & P = Q, where A2 is :

(τ0) P = τ · P
(τ1) τ · P + R = P + τ · P + R

(τ2) α · (τ · P + Q) + R = α · (τ · P + Q) + α · P + R

(In general, we do not have & P + Q = τ · P + Q.)

10

.

Weak axiomatization (2/6)

We can limit ourselves to synchronization trees (ST).

There is a notion of ST in fully standard form such that :

- each ST P is provably equal (by A2) to a ST in fully standard form

- if P, Q are in fully standard form and P ≈ Q, then P and Q are
provably equal

11

.

Weak axiomatization (3/6)

Definition : P = Σi∈Iµi · Pi is in fully standard form if and only if

each Pi is in fully standard form and

∀µ, P ′ (P
µ⇒ P ′ and P ′)= P) ⇒ P

µ→ P ′

12

.

Weak axiomatization (4/6)

Lemma : For any ST P , if P
µ⇒ P ′ and P)= P ′, then & P = P + µ.P ′.

Then, given P = Σi∈Iµi ·Pi, first convert each Pi to a fully standard form

P ′
i . Next, consider all (νj , P ′′

j) such that P ′ = Σi∈Iµi · P ′
i

νj⇒ P ′′
j . Then

& P = Σi∈Iµi · P ′
i = Σi∈Iµi · P ′

i + Σjνj · P ′′
j = Q′

and Q′ is in fully standard form :

- Each P ′′
j , being a subterm of some P ′

i , is in fully standard form.

- Suppose Q′ ν⇒ Q′′, passing through P ′′
j0

:

1. ν = νj0 = α and P ′′
j0

τ⇒ Q′′. Then

(P ′ νj0⇒ P ′′
j0

and P ′′
j0

τ⇒ Q′′) ⇒ P ′ ν⇒ Q′′

2. νj0 = τ and P ′
j0

ν⇒ P ′′. Then we get also P ′ ν⇒ Q′′.

Then by definition of Q′ we have ν = νj1 and Q′′ = P ′′
j1

for some j1.

13

.

Weak axiomatization (5/6)

Proof of the lemma (by induction on size(P)) :

(1) P
µ→ P ′. Then P = P1 + µ · P ′ and & P = P + µ · P ′ by idempotency.

(2) P
τ→ P ′′ µ⇒ P ′ and P ′)= P ′′. Then P = P1 + τ · P ′′, and hence

& P = P + P ′′ by (τ1). By induction we have & P ′′ = P ′′ + µ · P ′, so we
conclude :

& P = P + P ′′ = P + (P ′′ + µ · P ′) = (P + P ′′) + µ · P ′ = P + µ · P ′

(3) µ = α, P
α→ P ′′ τ⇒ P ′, and P ′)= P ′′. Then P = P1 + α · P ′′, and by

induction & P ′′ = P ′′ + τ · P ′. Hence, by (τ2) :

& P = P1 + α · P ′′ = P1 + α · (P ′′ + τ · P ′)
= P1 + α · (P ′′ + τ · P ′) + α · P ′ = P + α · P ′

14

.

Weak axiomatization (6/6)
If P = Σi∈Iµi · Pi and Q = Σj∈Jνj · Qj are in fully standard form and
P ≈ Q, then we have “almost” P ∼ Q.

Indeed, for every P
µi→ Pi there exists Q′ such that Q′ ≈ Pi and Q

µi⇒ Q′,
and hence Q

µi→ Q′, the only possible exception being when µi = τ and
Q′ = Q.

We prove & P = Q by induction on size(P)+size(Q). If the exceptional
case does not apply, we proceed as for strong bisimulation and apply
induction. Otherwise :

∃ i0 (µi0 = τ and Pi0 ≈ Q and) ∃ j (µj = τ and Qj ≈ Pi0))

Now, we have :

(Q ≈ Σi∈Iµi · Pi and) ∃ j (µj = τ and Qj ≈ Pi0)) ⇒ Q ≈ Σi∈I\{i0}µi · Pi

Hence by induction & Pi0 = Q and & Q = Σi∈I\{i0}µi · Pi, and we

conclude with (τ1) and (τ0) :

& Q = τ · Q = Q + τ.Q = Σi∈I\{i0}µi · Pi + τ.Pi0 = P

15

.

16

