Introduction Syntax and Operational Semantics of CCS Introduction Syntax and Operational Semantics of CCS
00000000 0000000 00000000 0000000

QOutline

Concurrency 3
CCS - Syntax and transitions, Equivalences

@ Introduction
@ Motivations

Catuscia Palamidessi @ Principles in CCS design

INRIA Futurs and LIX - Ecole Polytechnique

The other lecturers for this course: @ Syntax and Operational Semantics of CCS
@ Syntax

@ Labeled transition System

@ What equivalence for CCS?

Jean-Jacques Lévy (INRIA Rocquencourt)
James Leifer (INRIA Rocquencourt)
Eric Goubault (CEA)

http://pauillac.inria.fr/"leifer/teaching/mpri-concurrency-2005/

Introduction Syntax and Operational Semantics of CCS Introduction Syntax and Operational Semantics of CCS
Motivations Motivations
Why a Calculus for Concurrency? Inadequacy of standard models of computations

@ The Calculus for Communicating Systems (CCS) was
developed by R. Milner around the 80’s.

@ Other Process Calculi were proposed at about the same
time: the Theory of Communicating Sequential Processes
by T. Hoare and the Algebra of Communicating Processes

The A calculus, the Turing machines, etc. are computationally
complete, yet do not capture the features of concurrent
computations like

by J. Bergstra and J.W. Klop. @ Interaction and communication
@ Researchers were looking for a calculus with few, @ Inadequacy of functional denotation
orthogonal mechanisms, able to represent all the relevant @ Nondeterminism
concepts of concurrent computations. More complex Note: nondeterminism in concurrency is different from the
mechanisms should be built by using the basic ones. nondeterminism used in Formal Languages, like for instance
o To help understanding / reasoning about / developing the Nondeterministic Turing Machines.

formal tools for concurrency.
e To play a role, for concurrency, like that of the A-calculus for
sequential computation.

Introduction Syntax and Operational Semantics of CCS
00800000 0000000
Motivations

A few words about nondeterminism

In standard computation
theory, if we want to compute
the partial function f s.t.

f(0) = 1, a Turing Machine
like this one is considered ok

fail

success
Introduction Syntax and Operational Semantics of CCS
00080000 0000000

Motivations

Nondeterminism in sequential models

@ Convenient tool for solving certain problems in an easy
way or for characterizing complexity classes (examples:
search for a path in a graph, search for a proof etc.)

@ Examples of nondeterministic formalisms:

e The nondeterminismistic Turing machines
e Logic languages like Prolog and X Prolog

@ The characteristics of nondeterminism in this setting:
e It can be eliminated without loss of computational power by
using backtracking.
e Failures don't matter: all what we are interested on is the
existence of succesful computations. A failure is reported
only if all possible alternatives fail.

Introduction
0000000

Motivations

Syntax and Operational Semantics of CCS
0000000

A few words about nondeterminism

In standard computation
theory, if we want to compute
the partial function f s.t.

f(0) = 1, a Turing Machine
like this one is considered ok

However, we would not be
happy with a coffee machine
that behaves in the same
way

Introduction
00008000

Motivations

fail

®

success

coin coin

fail coffee

success

Syntax and Operational Semantics of CCS
0000000

Nondeterminism in concurrent models

@ Nondeterminism may arise because of interaction between

processes.

@ The characteristics of nondeterminism in this setting:

e It cannot be avoided. At least, not without loosing essential
parts of expressive power. All interesting models of
concurrency cope with nondeterminism.

e Failures do matter. Chosing the wrong branch might bring
to an "undesirable situation". Backiracking is usually not
applicable (or very costly), because the control is
distributed: we should restart not one but several

processes.

@ Hence controlling nondeterminism is very important. In
sequential programming is just a matter of efficiency, here is a
matter of avoiding getting stuck in a wrong situation.

Introduction Syntax and Operational Semantics of CCS
00000800 0000000

Principles in CCS design

The basic kind of interaction (1/2)

@ A calculus should contain only the primary constructs. For
instance, the primary form of interaction. But what is the primary
form of interaction?

@ In general, concurrent languages can offer various kinds of
communication. For instance:

e Communications via shared memory.
e Communication via channels.
e Communication via broadcasting.

@ and we could make even more distinctions

@ one-to-one / one-to-many
e Ordered / unordered (i.e. queues / bags)
e Bounded/unbounded.

@ So what is the basic kind of communication?
@ For CCS the answer was: none of the above!

Introduction Syntax and Operational Semantics of CCS
00000000 0000000

Principles in CCS design

Example: P and Q communicating via a buffer B

ports (or channels)

,

let B=a(x).b(x).B , P=a(d).P', Q=b(y).Qly]
® ~ %

H - S \
in P|B|Q 7 , -
;
.
A " /
y

co-actions

parallel operator sequential operator

Introduction Syntax and Operational Semantics of CCS
00000080 0000000

Principles in CCS design

The basic kind of interaction (2/2)

@ In CCS, the fundamental model of interaction is synchronous and
symmetric, i.e. the partners act at the same time performing
complementary actions.

@ This kind of interaction is called handshaking: the partners agree
simoultaneously on performing the two (complementary) actions.

@ In Java there is a separation between active objects (threads) and
passive objects (resources). CCS avoids this separation: Every
(non-elementary) entity is a process.

@ For instance, consider two proceesses P and Q communicating via a
buffer B. in CCS also B is a process and the communication is between
P and B, and between Q and B.

Introduction Syntax and Operational Semantics of CCS
00000000 000000
Syntax

Syntax of CCS

@ (channel, port) names: a, b,c,...
@ co-names: a,b,¢,... Note: a2=a

@ silent action: 7

@ actions, prefixes: p=a | a | 7

@ processes: P,Q u= 0 inaction
w.P prefix
P | Q parallel
(external) choice

(va)P restriction
reck P process P with definition K = P
K (defined) process name

)
+
Q

Introduction Syntax and Operational Semantics of CCS
00000000 0800000

Labeled transition System

Labeled transition system

@ The semantics of CCS is defined by in terms of a /abeled
fransition system, which is a set of triples of the form

P L Q
Meaning: P evolves into Q by making the action .

@ The presence of the label i allows us to keep track of the
interaction capabilities with the environment.

Introduction Syntax and Operational Semantics of CCS
00000000 0008000

Labeled transition System

Some examples

a0 | a0 (va) (@0 | a0)
The restriction can be
used to enforce
a0lo t synchronization

The parallel operator
(va) (0 | 0) may cause infinitely
many different states

The fragment of the
calculus without parallel

operator generates only

finite automata / regular

trees

Introduction
00000000

Labeled transition System

Syntax and Operational Semantics of CCS
0080000

Structural operational semantics

The transitions of CCS are defined by a set of inductive rules.
The system is also called structural semantics because the
evolution of a process is defined in terms of the evolution of its

components.

[Aed wP P

PE P
[Sum1] PiQ b P
P P

[Part] Pl 5 PlQ

[Com -
PlQS PV

Introduction
00000000

What equivalence for CCS?

Motivation

PLpP 0bq

H 7
[Res] P P . p#a.a
(va)P = (va)P’
QL @
[sm] & o o
e E=ye]
[Par2] PlQ % Pl

[Rec] PlreckP/K] & P’
reckP £ P’

Syntax and Operational Semantics of CCS
0000000

@ It is important to define formally when two system can be

considered equivalent

@ There may be various "interesting" notion of equivalence, it
depends on what we want (which observables we want to

preserve)

@ A good notion of equivalence should be a congruence, so

to allow modular verification

Introduction
00000000

Syntax and Operational Semantics of CCS
0000080

What equivalence for CCS?

Examples: possible definitions of a coffee machine

recicoin.(coffee.ccup.K + tea.tcup.K)
coin.rec(coffee.ccup.coin. K + tea.tcup.coin.K)
reck(coin.coffee.ccup.K + coin.tea.teup.K)

Question: which of these machines can we safely consider
equivalent?

Note that these machines have all the same traces.

Introduction Syntax and Operational Semantics of CCS
00000000 000000®

What equivalence for CCS?

Exercises

@ Define in CCS a semaphore with initial value n

@ Show that the trace equivalence is not a congruence in
CCS. By traces here we mean the complete (finite or
infinite) traces of all possible runs.

