MPRI Concurrency (course number 2-3) 2004-2005: π -calculus

9 December 2004

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/

James J. Leifer INRIA Rocquencourt

James.Leifer@inria.fr

Today's plan

exercises from last week

review: barbed bisimilarity

• two natural congruences

• a family portrait

weak barbed congruence and weak labelled bisimilarity correspond

Weak barbed bisimulation

Recall that a process P has a strong barb x, written $P \downarrow x$ iff there exists P_0 , P_1 , and \vec{y} such that $P \equiv \nu \vec{y}.(\overline{x}u.P_0 \mid P_1)$ and $x \notin \vec{y}$.

A relation \mathcal{R} is a weak barbed bisimulation if it is symmetric and for all $(P,Q)\in\mathcal{R}$

- if $P \longrightarrow P'$, there exists Q' such that $Q \longrightarrow^* Q'$ and $(P', Q') \in \mathcal{R}$;
- if $P \downarrow x$ then $Q \Downarrow x$.

Weak barbed bisimilarity, written \approx , is the largest such relation.

Two possible equivalences (non-input congruences)

We write "equivalence" for "non input-prefixing congruence".

Clearly $\stackrel{.}{\approx}$ isn't an equivalence: $\overline{x}y \stackrel{.}{\approx} \overline{x}z$ but $-\mid x(u).\overline{u}w$ can distinguish them. There are two ways of building an equivalence:

- Close up at the end: weak barbed equivalence, \approx° , is the largest equivalence included in \approx . Concretely, $P \approx^{\circ} Q$ iff for all contexts $C \in \mathcal{E}$ we have $C[P] \approx C[Q]$. Check!
- Close up at every step: weak barbed reduction equivalence, \approx , is the largest relation $\mathcal R$ such that $\mathcal R$ is a weak barbed bisimulation and an equivalence. Concretely, \approx is the largest symmetric relation $\mathcal R$ such that for all $(P,Q)\in\mathcal R$,
 - if $P \longrightarrow P'$, there exists Q' such that $Q \longrightarrow^* Q'$ and $(P', Q') \in \mathcal{R}$;
 - if $P \downarrow x$ then $Q \Downarrow x$;
 - for all $C \in \mathcal{E}$, we have $(C[P], C[Q]) \in \mathcal{R}$.

Check!

An extended family portrait

	strong	
	labelled	barbed
not an equivalence		"bisimilarity" $\dot{\sim}$
equivalence	"bisimilarity" \sim_ℓ	"equivalence" $\dot{\sim}^\circ$
		"reduction equivalence" \sim
congruence	"full bisimilarity" \simeq_ℓ	"congruence" $\dot{\simeq}^\circ$
		"reduction congruence" \simeq
	weak	
	labelled	barbed
not an equivalence		"bisimilarity" \dot{pprox}
equivalence	"bisimilarity" $pprox_\ell$	"equivalence" \dot{pprox}°
		"reduction equivalence" $pprox$
congruence	"full bisimilarity" \cong_ℓ	"congruence" $\stackrel{.}{\cong}$ °
		"reduction congruence" \cong

A detailed family portrait

	labelled	barbed		
not an equivalence		$P \longrightarrow P'$		
		$\begin{array}{c c} \mathcal{R} & & \mathcal{R} \\ Q & \xrightarrow{*} & Q' \end{array}$		
		$Q \dashrightarrow Q'$		
		$P \downarrow x$ implies $Q \Downarrow x$		
		\approx : largest \mathcal{R} st		
	\approx_{ℓ} : largest \mathcal{R} st	$P \longrightarrow P'$		
equivalence	$P \xrightarrow{\alpha} P'$ $\mathcal{R} \mid \qquad \qquad \mid \mathcal{R}$ $Q \xrightarrow{\tau^* \hat{\alpha} \tau^*} Q'$			
	$Q \xrightarrow{\tau} \xrightarrow{\alpha \tau} Q'$	$P \downarrow x \text{ implies } Q \Downarrow x \\ \forall D \in \mathcal{E}.(D[P],D[Q]) \in \mathcal{R}$		

What's the difference between \approx and $\stackrel{.}{\approx}$ °?

- $\approx \subseteq \dot{\approx}^{\circ}$: Yes, trivially.
- $\bullet \approx \supseteq \dot{\approx}^{\circ}$: Not necessarily.

Two difficult results due to Cédric Fournet and Georges Gonthier. "A hierarchy of equivalences for asynchronous cacluli". ICALP 1998. Journal version:

http://research.microsoft.com/~fournet/papers/a-hierarchy-of-equivalences-for-asynchronous-calculi.pdf

– In general they're not the same. \approx° is not even guaranteed to be a weak barbed bisimulation:

$$\begin{array}{ccc}
P & C[P] \longrightarrow P' \\
\dot{\approx}^{\circ} \middle| & \dot{\approx} \middle| & & \dot{|} \dot{\approx} \\
Q & C[Q] \xrightarrow{*} \longrightarrow Q'
\end{array}$$

– But for π -calculus, they coincide.

Comparing labels and barbs

- ullet $pprox pprox \le pprox$: Yes, easy.
- $\approx_{\ell} \supseteq \approx$: Yes, provided we have name matching. The result is subtle.

Name matching

Motivation: Which context can detect that $P \xrightarrow{\overline{x}y} P'$? It's easy to tell P can output on x; we just check $P \downarrow x$. If we want to test that this transition leads to P', we can take the context $C = - |x(u).k| \overline{k}$ for k fresh. Now

$$C[P] \longrightarrow \longrightarrow P'$$

where $P' \not \downarrow k$.

But how do we detect that the message is y? We could try

$$C = - \mid x(u).(\overline{u} \mid y.k) \mid \overline{k}$$

but this risks having the \overline{u} and the y interact with the process in the hole.

Thus, we introduce a simple new construct called name matching:

$$P ::= \dots \\ [x = y].P$$

Reductions: $[x = x].P \longrightarrow P$

Labelled transitions: $[x = x].P \xrightarrow{\tau} P$

Barbed equivalence is a weak labelled bisimulation

Theorem: $\approx_{\ell} \supseteq \approx$.

Proof: Consider $P \approx Q$ and suppose $P \xrightarrow{\alpha} P'$. (For simplicity, ignore structural congruence.)

case $\alpha = \tau$: Then $P \longrightarrow P'$. By definition, there exists Q' such that $Q \longrightarrow^* Q'$ and $P' \approx Q'$. Thus $Q \stackrel{\tau}{\longrightarrow}^* Q'$ as desired.

case $\alpha = \overline{x}(y)$ and $y \notin \operatorname{fn}(Q)$: Let

$$C = - |x(u).(\overline{z}u | k | \prod_{w \in \mathsf{fn}(P)} [u = w].\overline{k}) | \overline{k}$$

where k and z are fresh. Then $C[P] \longrightarrow H_{z,y}[P']$ where

$$H_{z,y} = \boldsymbol{\nu} y.(\overline{z}y \mid -)$$

Exercises for next lecture

2. The last case of the proof relies on the following lemma: $H_{z,y}[P] \approx H_{z,y}[Q]$ implies $P \approx Q$, where $z \notin \operatorname{fn}(P) \cup \operatorname{fn}(Q)$. In the updated version of the proof you will find the definition $H_{z,y} = \nu y.(\overline{z}y \mid -)$. Hints...

In order to prove this, consider

$$\mathcal{R} = \{(P,Q) \mid z \notin \mathsf{fn}(P) \cup \mathsf{fn}(Q) \text{ and } H_{z,y}[P] \approx H_{z,y}[Q]\}.$$

Our goal (as usual) is to prove that \mathcal{R} satisfies the same properties as \approx , and thus deduce that $\mathcal{R} \subseteq \approx$. Assume $(P,Q) \in \mathcal{R}$.

- \mathcal{R} is a bisimulation: Show that $P \longrightarrow P'$ implies that there exists Q' such that $Q \longrightarrow^* Q'$ and $(P', Q') \in \mathcal{R}$.
- \mathcal{R} preserves barbs: Show that $P \downarrow w$ implies $Q \Downarrow w$.
- \mathcal{R} is an equivalence: It is sufficient to show that $(C[P], C[Q]) \in \mathcal{R}$ where $C = \nu \vec{w}.(-|S)$. Hint: try to find a context C' such that $H_{z,y}[C[P]] \approx C'[H_{z,y}[P]]$ and the same for Q (perhaps using a labelled bisimilarity since we know $\approx_{\ell} \subseteq \approx$). You may have to distinguish between the cases $y \in \vec{w}$ and $y \notin \vec{w}$.