MPRI Concurrency (course number 2-3) 2004-2005: π-calculus Exercises 16 November 2004 http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/ James J. Leifer INRIA Rocquencourt James.Leifer@inria.fr

- 1. Consider the term $!(x(w).\overline{z}w) | \overline{x}x | x(y).\nu v.\overline{y}v$. You may assume that all bound names are distinct from each other and from all free names.
 - (a) Show all possible labelled transitions of this process.
 - (b) Show the derivation trees for these.
- 2. Demonstrate the necessity of the side condition $bn(()\alpha) \cap fn(()Q) = \emptyset$ in the rule (lab-par-l). To do so, suppose this side condition were deleted. Now find a process P such that $P \xrightarrow{\tau} \xrightarrow{\tau}$ and for which after alpha converting it to P', it is not the case that $P' \xrightarrow{\tau} \xrightarrow{\tau}$.
- 3. The coding I gave in the slides of synchronous π -calculus in terms of asynchronous π -calculus is unsatisfactory (despite my claim otherwise). The problem is that the translation uses asynchronous *polyadic* π -calculus (e.g. $\overline{x}\langle y, z \rangle$), not asynchronous monadic π -calculus, which was the original goal.
 - (a) Show that the original goal can be achieved by defining a translation [-] from synchronous monadic π -calculus directly to asynchronous monadic π -calculus.
 - (b) Show the reduction steps of $[\![\overline{x}y.P \mid x(u).Q]\!]$.
- 4. Consider the definition of strong bisimilarity given in the slides:

A relation \mathcal{R} is a strong bisimulation if for all $(P,Q) \in \mathcal{R}$ and $P \xrightarrow{\alpha} P'$, where $\mathsf{bn}(()\alpha) \cap \mathsf{fn}(()Q) = \emptyset$, there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $(P',Q') \in \mathcal{R}$, and symmetrically.

Strong bisimilarity \sim_ℓ is the largest strong bisimulation.

Let \sim_{ℓ}' be exactly the same except we omit the side condition $\mathsf{bn}(()\alpha) \cap \mathsf{fn}(()Q) = \emptyset$.

- (a) Is one included in the other, i.e. $(\sim_{\ell}) \subseteq (\sim_{\ell}')$ or $(\sim_{\ell}') \subseteq (\sim_{\ell})$?
- (b) Are they equal? If not, find a pair of processes (P,Q) that distinguish the relations, i.e. $P \sim_{\ell} Q$ but not $P \sim_{\ell'} Q$ or vice versa.