MPRI 2004/05 – Cours 2-3 (Concurrency)

Exam

17 February 2005

Part I - CCS

Question 1 For each of the following pairs of processes, say which is the strongest relation which relates them, among \sim , \approx and \cong . Justify your answer, namely prove that the relation holds and that no stronger relation holds. Note: In some case, it may be that none of the relations holds

- 1. τP and $P + \tau P$
- 2. P and $P \mid P$
- 3. A and B, where A and B are defined recursively by $A = a \cdot A$ and $B = a \cdot B \mid a \cdot B$.
- 4. $(\nu b)(a.b.c.0 \mid d.\overline{b}.e.0)$ and $a.c.0 \mid d.e.0$
- 5. P + Q and $\tau . P + \tau . Q$
- 6. $(\nu a)(\overline{a} | (a.P + a.Q))$ and $\tau . P + \tau . Q$

Question 2 We say that *P* simulates *Q*, notation $Q \leq P$, if there exists a relation \mathcal{R} such that $(Q, P) \in \mathcal{R}$ and for every $(T, U) \in \mathcal{R}$ we have:

$$T \xrightarrow{\alpha} T'$$
 implies $\exists U'. U \xrightarrow{\alpha} U'$ and $(T', U') \in \mathcal{R}$

Say whether it is the case that $P \sim Q$ if and only if $P \preceq Q$ and $Q \preceq P$. Justify your answer, namely prove the above equivalence or find a counterexample

Part II - The Pi-calculus

1. The monadic synchronous π -calculus has the following grammar:

$$P \quad ::= \quad \overline{x}y.P \quad | \quad x(y).P \quad | \quad \boldsymbol{\nu}x.P \quad | \quad \mathbf{0} \quad | \quad P \mid P \quad | \quad !P$$

2. The following labelled transition rules give the behavior of replication:

$$\frac{P \xrightarrow{\alpha} P'}{!P \xrightarrow{\alpha} P' \mid !P} \text{if } bn(\alpha) \cap fn(P) = \emptyset$$
 (bang-spawn)

$$\frac{P \xrightarrow{xy} P' \qquad P \xrightarrow{xy} P''}{!P \xrightarrow{\tau} (P' \mid P'') \mid !P}$$
(bang-comm)

$$\frac{P \xrightarrow{\overline{x}(y)} P' \qquad P \xrightarrow{xy} P''}{!P \xrightarrow{\tau} \nu y.(P' \mid P'') \mid !P} \text{if } y \notin \mathsf{fn}(P)$$
 (bang-close)

Question 3 Define what it means for a relation to be a strong labelled bisimulation.

Question 4 In the monadic π -calculus, prove that strong labelled bisimilarity is preserved by replication, i.e. $P \sim_{\ell} Q$ implies $!P \sim_{\ell} !Q$. To do this, construct an explicit relation \mathcal{R} that contains the latter pairs (amongst others) and prove that it is a strong labelled bisimulation.

Note: You may use the fact that \sim_{ℓ} is preserved by parallel composition and by new binding, but if you do, cite the these results clearly.

You may use "up to" techniques; if so explain clearly how and where you use them.

Part III - The Asynchronous Pi-calculus

1. The monadic asynchronous π -calculus has the following grammar:

 $P \quad ::= \quad \overline{x}y \quad | \quad x(y).P \quad | \quad \boldsymbol{\nu}x.P \quad | \quad \mathbf{0} \quad | \quad P \mid P \quad | \quad !P$

2. The set of *evaluation contexts* \mathcal{E} is defined as

 $\mathcal{E} = \{ \boldsymbol{\nu} \vec{z} \cdot (- \mid T) \mid / T \text{ a process} \}$

where the *binding names* of $D = \nu \vec{z} \cdot (- | T) \in \mathcal{E}$ are $bind(D) = \{\vec{z}\}$.

- 3. *Reduction* and *strong barbs* are both characterisable in terms of evaluation contexts and structural congruence:
 - $P \longrightarrow P'$ iff there exists $D \in \mathcal{E}$, names x, v, and u, and a process P_0 such that $P \equiv D[\overline{x}v \mid x(u).P_0]$ and $P' \equiv D[\{v/u\}P_0]$.
 - $P \downarrow x$ iff there exists $D \in \mathcal{E}$ and names x and v such that $P \equiv D[\overline{x}v]$ and $x \notin \mathsf{bind}(D)$.
- 4. Weak barbed bisimulation \approx is the largest relation \mathcal{R} that is symmetric and for which for all $(P,Q) \in \mathcal{R}$
 - if $P \longrightarrow P'$, there exists Q' such that $Q \longrightarrow^* Q'$ and $(P', Q') \in \mathcal{R}$;
 - if $P \downarrow x$ then $Q \Downarrow x$.

Question 5

- 1. Define the weak barb relation $Q \Downarrow x$ used above in the definition of \approx .
- 2. Show why \approx is not preserved by parallel composition, i.e. find P, Q, R such that $P \approx Q$ but not $P \mid R \approx Q \mid R$.
- 3. Prove that $P \longrightarrow P'$ implies $\{x/y\}P \longrightarrow \{x/y\}P'$.
- 4. Consider an *equator* process

$$E_{x,y} = !x(u).\overline{y}u \mid !y(u).\overline{x}u$$

- 5. Prove that $E_{x,y} \mid D[\overline{x}v] \longrightarrow E_{x,y} \mid D[\overline{y}v]$ for $x, y \notin \mathsf{bind}(D)$.
- 6. Show that equators can act like substitutions, i.e. $\nu y.(E_{x,y} \mid P) \approx \{x/y\}P$. To do this, you need to demonstrate that there exists a weak barbed bisimulation containing the pair of processes in question.
- 7. Show that in the monadic synchronous π -calculus, i.e. the calculus where output prefixing $\overline{w}z.Q$ is allowed, that this is false. To do this exhibit a concrete P for which the barbed behaviour of $\nu y.(E_{x,y} \mid P)$ differs from that of $\{x/y\}P$.