An introduction to the semantics of
concurrent languages and systems

Davide Sangiorgi

INRIA Sophia Antipolis
2004 route des Lucioles, BP 93
06902 Sophia Antipolis CEDEX

Email: davide.sangiorgi@sophia.inria.fr
http://www-sop.inria.fr/meije/personnel/Davide.Sangiorgi.html

August 30, 2002

References|

Theseslides: http://www-sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/DEA99.ps.gz

The course, based on these slides, is (I hope) self-contained. For further reading you might
consult:

1. Robin Milner, Communication and Concurrency, Prentice Hall, 1989.

The course covers pieces of chapters 1-8 of the book. Some important differences: we use a
simpler process calculus, which has no relabeling operators, and guarded summation in place of

arbitrary summation; due to the use of guarded summation, for us weak bisimulation is a process
congruence.

2. Robin Milner, Operational and Algebraic Semantics of Concurrent Processes, Chapter 19 of
Handbook of Theoretical Computer Science, Elsevier, 1990.

It collects the mains results from [1]; it has very few examples.

semantics of concurrency

D. Sangiorgi
August 30, 2002

page 1

3. Robin Milner, Communicating and Mobile Systems. the m-calculus, Cambridge University Press,

1999.
The first part of the book (which in fact it is half of the book) is an excellent introduction to CCS;

the course, by large, follows its structure (exception: part VII).

D. Sangiorgi

semantics of concurrency
page 2

August 30, 2002

Outlinel

— Part I: From functions to processes.

— Part II: From language equivalence to bisimilarity.

— Part llI: Induction and co-induction.

— Part IV: A process calculus: CCS.

— Part V: Algebraic and operational theory of processes.
— Part VI: Weak bisimilarity.

— Part VII: Value-passing, examples (including the semantics of a
concurrent imperative language as translation into CCS)

semantics of concurrency D. Sangiorgi
August 30, 2002 page 3

Part |I: From functions to processes

semantics of concurrency D. Sangiorgi
August 30, 2002 page 4

Denotation versus operational semantics, revisitedl

For the semantics of sequential programming languages, you have focused on denotational, rather
than operational, semantics, for two main reasons:

1. We can think of sequential programs as mathematical objects, namely functions.

2. The operational definition of program “equivalence” requires quantification over contexts, such as:

forall C, C[P] | iff C[Q] | (1)

semantics of concurrency D. Sangiorgi
August 30, 2002 page 5

For the semantics of concurrent programming languages, we focus on the operational approach,
because:

1. A concurrent program does not (normally) behave as a function.
Concurrent program are not functions, but processes. But what is a process?

There is no universally-accepted mathematical answer to this. Hence we do not find in mathematics

tools/concepts for the denotational semantics of concurrent languages, at least not as successful
as those for the sequential ones.

2. Definition 1 of operational equivalence is not quite satisfactory in concurrency; we shall replace it
with a different definition, that does not have quantification on contexts.

semantics of concurrency D. Sangiorgi

August 30, 2002 page 6

Processes are not functions

A sequential imperative language can be viewed as a function from states to states. Consider these
two programs:

X:=2 and X:=1; X:= X+1

They denote the same function from states to states.

But now take a context with parallelism, such as [-] | X := 2. The program
X:=2| X:=2
always terminates with X = 2. This is not true (why?) for
(X:=1; X:= X+1)| X:=2

Therefore: Viewing processes as functions gives us a notion of equivalence that is not a congruence.
In other words, such a semantics of processes as functions would not be compositional

semantics of concurrency D. Sangiorgi
August 30, 2002 page 7

Furthermore:

m A concurrent program may not terminate, and yet perform meaningful computations (examples:
an operating system, the controllers of a nuclear station or of a railway system).
In sequential languages programs that do not terminate are undesirable; they are “wrong”.

m The behaviour of a concurrent program can be non-determistic. Example:
(X:=1; X:= X+1)| X:=2

(In a functional approach, non-determinism can be dealt with using powersets and powerdomains;
but there are limitations to their applicability).

semantics of concurrency

D. Sangiorgi
August 30, 2002

page 8

What is a processes?
When are two processes behaviourally equivalent?

These are basic, fundamental questions; they have been at the core of the research in concurrency
theory for the past 30 years. (They are still so today, although remarkable progress has been made)

We shall approach these questions from a simple case, in which interactions among processes are just
synchronisations, without exchange of values.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 9

Part IlI: From language equivalence to bisimi-
larity

semantics of concurrency D. Sangiorgi
August 30, 2002 page 10

Consider a vending machine, capable of dispensing tea or coffee.

The behaviour of the machine is what we can observe, by interacting
with the machine. We can represent such a behaviour as a transition

diagram:
tea
collefﬁt—%r
___________ Ay %mﬁee
coffee j
(where . indicates the initial state)

This diagrams strongly reminds us of something very important in

computer science: automata.

The only difference is that there is no final state. For now, we may
think that all states are accepting. (We shall see however that this
difference has important consequences.)

semantics of concurrency D. Sangiorgi
August 30, 2002 page 11

Important features of automata:

1. Behavioural equivalence is language equivalence (also called trace equivalence).

2. The language of an automata can be described as a regular expression.

3. A non-deterministic automata can be rewritten into a deterministic one (this is a consequence of

the first point).

Example of equivalent automata:

___________ . {\] _ @#ﬁ/\@

T o I

where indicates an accepting state
[|

D. Sangiorgi

semantics of concurrency
page 12

August 30, 2002

More examples of equivalent automata:

@ﬁv
.
1
/

g
||
]
]
|

7
m

___________] ‘

A

L—1]

b

The description of automata as regular languages is very important:
regular languages have an algebra, which can be used for reasoning.

For instance, the reduction of non-deterministism to determinism in
the examples above can be proved using the law

(a. P) +(a.Q) = a. (P + Q) (2)

semantics of concurrency D. Sangiorgi
August 30, 2002 page 13

But algebra is not the only means for reasoning on automata! (Ex-
ample of another means: automata minimisation).

Similarly, in a process calculus algebra is very important; but it should
not be the only tool (other tools: logics, induction, co-induction,

etc.).

But first: is language equivalence acceptable as a notion of equivalence
on processes?

semantics of concurrency D. Sangiorgi
August 30, 2002 page 14

Automata have final states. Hence they can still be viewed as
functions (from strings to booleans).

For this reason equalities at page 13 are OK on automata.

But they are not acceptable on processes: in one case interacting
with the machine can lead to deadlock! For instance, you would not
consider these two vending machines equivalent:

tea

collect—tea

icfgw/—\j collect —tea :‘
tea /

........... > collect —coffee
coffee

lc jv

collect —coffee

|

coffee —

At the same time, diagram isomorphism is too strong; cf.: the equality
at page 12.

Note:

Later, when we will define a language for processes we shall see that
language equivalence is the same as the contextual equivalence (1)

Language equivalence is still important in concurrency; for instance it
is indeed satisfactory for confluent processes.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 15

These examples suggest that the notion of equivalence we seek:

— should imply a tighter correspondence between transitions than
language equivalence,

— should be based on the informations that the transitions convey,
and not on the shape of the diagrams.

Intuitively, what does it mean for an observer that two machines are
equivalent? if you do something on one machine, you must be able
to the same on the other, and on the two states which the machines
evolve to the same is again true. This is the idea of equivalence that
we are going to formalise; it is called bisimilarity.

First, we formally define what these transition diagrams are.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 16

Definition 1 A labeled transition system (LTS) is a triple
(P, Act, T") where

— ‘P is the set of states, or processes;

— Act is the infinite set of actions;
— T C (P, Act, P) is the transition relation.

We write P - P if (P, u, P') € T.

P’ is a derivative of P if there are Py, ..., Py, pt1, ..., fin S.t.
PP . Poand P, = P

We define bisimulation on a single LTS, because: the union of two
LTSs is an LTS: we will often want to compare derivatives of the
same process.

Definition 2 (strong bisimulation) A relation R on the
states of an LTS is a strong bisimulation if whenever P R Q:

1. of P LN P’, then there is Q' such that Q SLEEN Q' and
P R Q"

2. if Q L5 Q' then there is P’ such that P -5 P’ and
PR Q"

P and Q are strongly bisimilar, written P ~ @, if P R Q, for
some strong bisimulation R.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 17

Exercise 3 Viewing the automata at page 12 as LTSs, prove that
they are bisimilar. Are the automata at page 13 bisimilar?

Proposition 4 1. ~ is an equivalence relation, i.e. the following

hold:
1.1. p ~ p (reflexivity)
1.2. p ~ q implies q ~ p (symmetry)
1.3. p~qand q ~ r imply p ~ r (transitivity);

2. ~ atself is a strong bisimulation.

The second item of Proposition 4 suggests an alternative definition of

Proposition 5 ~ is the largest relation among the states of the
LTS such that P ~ @ implies:

1. «f P L5 P! then there is Q' such that Q -t Q' and
P~ Q.

2. if Q SLEEN Q'. then there is P’ such that P Ly P’ and
P~ Q.

Exercise 6 Prove Propositions 4-5 (for 4.2 you have to show that
U{R : R is a bisimulation } is a bisimulation).

semantics of concurrency D. Sangiorgi
August 30, 2002 page 18

Exercises|

We write P ~R~ Q if thereare P, Q" st. P ~ P’ P'" R Q’,
and Q" ~ Q (and alike for similar notations).

Definition 7 (strong bisimulation up-to ~) A relation R
on the states of an LTS is a strong bisimulation up-to ~ if P 'R @
implies:

1. of P L5 P! then there is Q' such that Q -t Q' and
P ~R~ Q.

2. if Q 5 Q' then there is P’ such that P 5 P’ and
P ~R~ Q.

Exercise 8 If R is a bisimulation up-to ~ then R Cr~. (Hint:
prove that ~ R ~ is a bisimulation.)

Definition 9 (simulation) A relation R on the states of an
LTS is a strong simulation if P R Q implies:

1. of P s P! then there is Q' such that Q -t Q' and
PR Q.

P is strongly simulated by @, written P < Q, if P R Q, for

some strong simulation K.

Exercise®* 10 Does P ~ Q imply P < Q and Q < P? What
about the converse? (Hint for the second point: think about the 2nd
equality at page 13.)

semantics of concurrency D. Sangiorgi
August 30, 2002 page 19

Bisimulation has been introduced by Park (1981) and made popular
by Milner.

Bisimulation is a robust notion: characterisations of bisimulation have
been given in terms of non-well-founded-sets (Aczel), modal logic
(Hennessy, Milner), final coalgebras (Rutten, Turi), open maps in
category theory (Joyal, Nielsen, Winskel).

Bisimulation has also been advocated outside concurrency theory; for
instance for reasoning about elements of recursively defined domains,
and data types (Fiore, Pitts) and for reasoning about equivalence in
functional programs (Abramsky).

But the most important feature of bisimulation is the associated
co-inductive proof technique.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 20

Part Ill: Induction and co-induction

semantics of concurrency D. Sangiorgi
August 30, 2002 page 21

Co-inductive definitions and co-inductive proofs

Consider this definition of ~ (Proposition 5):
~ is the largest relation among the states of the LTS such that P ~ @Q implies:

1. if P 25 P’ then there is Q' such that @ -2 Q' and P’ ~ Q'
2. if Q 25 Q' then there is P’ such that P -2 P’ and P’ ~ Q.

It is a circular definition: does it make sense?

We claimed that we can prove (P, Q) €~ by showing that (P, Q) € R and R is a bisimulation
relation, that is a relation that satisfies the same clauses as ~. Does such a proof technique make

sense”?

Contrast all this with the usual, familiar inductive definitions and inductive proofs.

The above definition of ~, and the above proof technique for ~ are examples of co-inductive definition

and of co-inductive proof technique.

semantics of concurrency D. Sangiorgi

August 30, 2002 page 22

Bisimulation and co-induction: what are we talking about?
Has co-induction anything to do with induction?

semantics of concurrency D. Sangiorgi
August 30, 2002 page 23

An example of an inductive definition:
reduction to a value in the)\-calculus

The set A of A-terms (this is also an inductive def!)
e =ux ’ Azx. e | e1(e2)

Consider the definition of {,, in A-calculus (the same can be done
for TFun, and extensions of it):

Ax.e , Ax.e

e1 In Ax. eg eo{e2/z} |, €
61(62) ‘U’n e’

U is the smallest relation on A-terms that is closed forwards under
these rules: i.e., the smallest subset C of A X A s.t.

— Ax.eCAzx. e for all abstractions,

— if ey C Ax.eg and eg{€2/z} C e’ then also e1(ez) C €

semantics of concurrency D. Sangiorgi
August 30, 2002 page 24

An example of a co-inductive definition:
divergence in the \-calculus

Consider the definition of " (divergence) in A-calculus (the same
can be done for TFun with recursive definitions):

€1 ’ﬂ“n
e1(e2) "

e1 In Ax. e eo{€2/xz} "
ei(e2) "

" is the largest predicate on A-terms that is closed backwards under
these rules; i.e., the largest subset D of A st. if e € D then

— eithere = ej(ez) and ey € D,
— ore = ey(ez), e1 In Ax.egand ep{e2/z} € D.

Hence: to prove e is divergent it suffices to find £ C A that is
closed backwards and with e € E (co-induction proof technique).

What is the smallest predicate closed backwards?

semantics of concurrency D. Sangiorgi
August 30, 2002 page 25

An example of an inductive definition:
finite lists over a set A

te Ll a € A
nil € L cons(a,l) € L

Finite lists: the set generated by these rules; i.e., the smallest set
closed forwards under these rules.

Inductive proof technique for lists: Let PP be a predicate (a property)
on lists. To prove that P holds on all lists, prove that

— nil € P;
— ¢ € P implies cons(a,) € P, foralla € A.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 26

An example of an co-inductive definition:
finite and infinite lists over a set A

telL acA
nil € L cons(a,?) € L

Finite and infinite lists: the largest set closed backwards under these

rules.

To explain finite and infinite lists as a set, we need non-well-founded
sets (Forti-Honsell, Aczel).

semantics of concurrency D. Sangiorgi
August 30, 2002 page 27

— % An inductive definition tells us what are the constructors for
generating all the elements (cf: closure forwards).
*x A co-inductive definition tells us what are the destructors for
decomposing the elements (cf: closure backwards).
The destructors show what we can observe of the elements
(think of the elements as black boxes; the destructors tell us
what we can do with them: this is clear in the case of infinite
lists).
— When a definition is give by means of some rules:
x if the definition is inductive, we look for the smallest universe
in which such rules live.
x if it is co-inductive, we look for the largest universe.

The duality

constructors destructors

inductive defs | co-inductive defs
induction technique | co-inductive technique
congruence | bisimulation

least fixed-points | greatest fixed-points

(The dual of a bisimulation is a congruence because intuitively: a
bisimulation is a relation that is “closed backwards”, a congruence is
a relation that is “closed forwards".)

semantics of concurrency D. Sangiorgi
August 30, 2002 page 28

m In what sense are {,,, ", ~ fixed-points?
m What is the co-induction proof technique?

m In what sense is co-induction dual to the familiar induction
technique?

What follows answers these questions. It is a simple application of
fixed-point theory. It is not needed for the remainder of the course.

To make things simpler, we work on powersets. (It is possible to be
more general, working with universal algebras or category theory.)

For a given set S, the powerset of S, written ©(S), is

o(8) E{T : T C S}

©(S) is a complete lattice.

Complete lattices are “dualisable” structures: reverse the arrows and
you get another complete lattice.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 29

From Tarsky's theorem for complete lattices, we know that if F :
©(S) — ©(S) is monotone, then F has a least fixed-point (Ifp),

namely:

Fip = ({A : F(A) C A}

As we are on a complete lattice, we can dualise the statement:

If F : o(S) — (S) is monotone, then F has a greatest fixed-
point (gfp), namely:

FEE| (A AC F(A)}

These results give us proof techniques for Fig, and Fetp.

if }"(A) C A then f]fp CA (3)
if A C F(A) then A C FelP (4)

— Inductive definitions give us Ifp’s (precisely: an inductive definition
tells us how to construct the Ifp). Co-inductive definitions give us
gfp's.

— On inductively-defined sets (3) is the same as the familiar induction
technique (cf: example of lists). (4) gives us the co-inductive
proof technique.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 30

I, and }" as fixed—pointsl

A set R of rules on a set S give us a function R: ©(S) — ©(S), so defined:

R(A)d:ef{a: there are a1, ...,a, € A andarulein R

so that using a1, . .., a, as premises in the rule we can derive a }

R is monotone, and therefore (by Tarsky) has Ifp and gfp.
In this way, the definitions of {},, and 1} can be formulated as Ifp and gfp of functions.
For instance, in the case of {}"*, take S = A. Then

R(A) = {ei(ez) : eg € A, orej {n Ax.eqand ep{€2/z} € A}.

The co-induction proof technique for /1™ mentioned at page 25 is just an instance of (4).

semantics of concurrency

D. Sangiorgi
August 30, 2002

page 31

Bisimulation as a fixed—pointl

Let (P, Act, T) be an LTS. Consider the function F : (P X P) — (P X P) so defined.

F(R) is the set of all pairs (P, Q) s.t.:

1. if P 55 P’ then there is Q' such that @ - Q' and (P’, Q') €R.
2. if Q &5 @', then there is P’ such that P -2 P’ and (P, Q") €R.

Proposition 11 1. F is monotone;
2. ~ = FEP;
3. R is a bisimulation iff R C F(R).

semantics of concurrency D. Sangiorgi
August 30, 2002 page 32

The induction technique as a fixed-point
technique: the example of finite lists

Let F be this function (from sets to sets):

F(S) & {nil} U {cons(a,s) : a € A,s € S}

F is monotone, and finLists = Fyg,. (i.e., finLists is the smallest
set solution to the equation £ = nil + cons(A, L)).

From (3), we infer: Suppose P C finLists. If F(P) C P then
P C finLists (hence P = finLists).

Proving F(P) C ‘P requires proving

— nil € P;
— ¢ € finLists N P implies cons(a, £) € P, foralla € A.

This is the same as the familiar induction technique for lists (page
26).

Note: F is defined the class of all sets, rather than on a powerset;
the class of all sets is not a complete lattice (because of paradoxes
such as Russel’s), but the constructions that we have seen for Ifp and
gfp of monotone functions apply.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 33

Continuityl

Another important theorem of fixed-point theory: if F : o(S) —
©(.S) is continuous, then

Fip = [F (L)

This has, of course, a dual, for gfp (also the definition of continuity
has to be dualised), but: the function JF of which bisimilarity is
the gfp may not be continuous! (This is usually the case for weak
bisimilarity, that we shall introduce later.)

It is continuous only if the LTS is finite-branching, meaning that for
all P theset {P’" : P -5 P’ for some p} is finite,

On a finite branching LTS, it is indeed the case that

~=(F"(P x P)

where P is the set of all processes.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 34

Exercise 12 Let u™ range over non-empty sequences of actions. Consider the following defini-
tion of strong bistmulation.:

A relation R on the states of an LTS is a strong bisimulation of P R Q) tmplies:
- -

1. of P £, P’, then there is Q' such that Q £, Q' and P' R Q';
+ +

2. if Q L5 Q') then there is P’ such that P £— P’ and P' R Q.

Prove that the definition above is the same as Definition 2.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 35

Part IV: A process calculus: CCS

semantics of concurrency D. Sangiorgi
August 30, 2002 page 36

A language of sequential processes (or:
finite-state LTSs)

P, QQ, R range over processes; a,b ... over names. a,b are co-
names. Names, co-names and 7T form the set Act of actions. ., A
range over Act. Actions a and @ are complementary actions (think of
a as an input, @ as an output). We assume @ = a, and 7 different
from any name or co-name.

Differences with the languages of automata (regular languages):

— iteration replaced by recursion;

— sequential composition between processes replaced by composition
between an action and a process, which is simpler. Later, we shall
see how to derive sequential composition between processes.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 37

Summation: . _; a;. P;, where I is a finite indexing set, and
a; € Act.

Sum —
ZiEIai'Pi —Z> Pz
There are actually 2 operators in this construct: choice and prefixing.
For technical reasons, it is convenient to combine them so (cf.: the
congruence of weak bisimilarity, page 50).

Prefixing gives us sequential composition; sum gives us choice.

v is a prefix; in pure CCS prefixes and actions (i.e.,ax and p) coincide;
later, when we add value-passing, they will be different.

We use M, N to range over summations (terms of the form
>icr i Pi).

Abbreviation: O if I is empty; M + N for binary summation.

Constants (recursive process definitions): K

We assume an infinite set of constants, ranged over by K. Each
constant that is used must have a defining equation of the form
K =P
p-Y5pP
Const ” it K =P
K — P’/

semantics of concurrency D. Sangiorgi
August 30, 2002 page 38

6¢ abed 200z ‘0g 1sNnbny
IS1013ueg " Adus4indu02 Jo So1ueWss

‘ejewolne ul Suissiw aJe siojesado yong
19410 yoes yum 1oes9qul ued Asyl 1eyi os ‘|9|jesed ul sassedoud Fuisodwod o) siolesado pasu SpA

019 24Im e ‘wesBoud e ‘Aowsw e ‘snq e '4a1siSas e 9q wed jusuodwod

“JUSWUOJIAUD
SUl YUM pue Jsylo yoes Ypm yiog 1oedslul eyl ‘spusuodwod jo pssodwiod sue swialshs xs|dwon)

[sesseo0ud Sunesiunwwo)

Parallel composition: P, | P

P, 5 P

P, | P, X5 P/ | P,

ParL

PP P, P
P | P, — P/| P}
plus their symmetric versions ParR and Com2.

Coml

7 indicates an internal activity of the system; the system Py | Ps is
doing “some work”.

Communication is handshaking.

|dea: everything is a process; including a memory, a
communication medium such as a bus, a wire, a buffer.
Several communication mechanisms (such as communi-
cation via shared variables, or buffered communications)
can be modeled.

Restriction: va P

P -t p |
Res " a not In p
va P — va P’

Restriction gives us encapsulation. We need it, for instance, for
modeling a printer that is private to a group of processes. In
va P, the head is a binder for a, with scope P. Abbreviation:
(vai,...,a,)P forva; ...va, P.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 40

The calculus CCS (Calculus of
Communicating Systems)

a,b,...,... Names
Processes
P = > . .;a;. P summation
P | P parallel composition
va P restriction
K constants (rec defs)
Actions
a = a input
’ a output
’ T silent action

We abbreviate ar. 0 as a. Par. comp. and summation have the least
syntactic precedence.

CCS is due to Robin Milner (end 70's). Similar motivations led to
Tony Hoare's CSP.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 41

Exercises|

Exercise 13 1. Which transitions can the process P “va ((a +0b) | a) do?

2. Find a process Q in which there is no parallel composition and restriction and with P ~ Q.

Exercise 14 Draw a transition diagram for these processes:

K, = a.(r.Ki+b)+71.a. K4
Ky = 71T.va(a|(@+0b))+c K3
Ks = d.Kjs

Exercise 15 Draw a transition diagram for the process ve (K | Ka), where

K, =
K, =

semantics of concurrency D. Sangiorgi
August 30, 2002 page 42

Part V: Algebraic and operational theory of
processes

semantics of concurrency D. Sangiorgi
August 30, 2002 page 43

Two important words for us: congruence, bisimilarity. We are inter-
ested in former because the process language is inductively defined:;
in the latter because behavioural equality is co-inductively defined.

The process contexts are defined by this grammar:

C:=[]| aC+M|vac | C|P | P|C

A relation R on CCS processes is a congruence relation if it is an

equivalence and P R Q implies C[P] R C[Q)] for all process

contexts C.

Theorem 16 ~ is a congruence relation, i.e., P ~ @ implies

C[P] ~ C[Q], for all process contexts C.

Proof: A useful exercise. |

semantics of concurrency D. Sangiorgi
August 30, 2002 page 44

2 icr @i B
N+ M+ M
PlQ

Pl (Q]|R)
PO

va (P | Q)
vavb P
va P

va (. P+ M)
va (Z’iGI OézPZ)

K

l

l

¢

¢ X l

l

Some laws]

ZjeJO‘j'Pj
N + M

QP
(PlQ) IR
P

(va P) | Q
vburva P

vb (P{%})
va M

2 icr@i-va P

P

if J is a permutation of I

if @ not free in @ (including the constants in Q)

if b is fresh (cf.: alpha conversion)
fa=aora=a
if @ not in oy, for all 2. (Hence va 0 ~ 0.)

if K =P

semantics of concurrency
August 30, 2002

D. Sangiorgi
page 45

The expansion Iawl

Proposition 17 Foralln > 0 and Py, ..., Py:

SAa (P | P+ | Pu) © Pi— P}
Pi|-| P, ~ —|—Z{’T.(P1|°°°|Pi/|°°°|P]{|°°°|Pn) s 1 <1< <n,
P, P!,P; = P! }

Proof: Using induction on n and the bisimulation proof technique. [
Proposition 18 For allm > 0 and Py, ..., Py,:

S{ava (P |-+ | P |- | Py) : P,— P/ and a # a,a}

va(Py |- | Py~ +2{rva(Pi]--- | P/ |- | Pj]---[Py) ¢ 1<i<j<n,
pP; = P/,P; = P!}

Proof: By Proposition 17 and the laws of restriction. H

semantics of concurrency D. Sangiorgi
August 30, 2002 page 46

Exercises|

Exercise 19 Prove some of the laws in page 45.
Exercise 20 Is law (2) (at page 13) valid?
Exercise 21 Prove, algebraically: vb (a. (b |c) +7.(b|b.c)) ~ T.7.c+ a.c.

Exercise 22 Let K = a. K. Prove that K | K ~ K.

Exercise 23 Use the laws of ~ and the technique of “strong bisimulation up-to” to prove that
ve (K | Ke) ~ H for Ky, Ko as defined in Exercise 15 and H = a.b.7.H +b.a. 7. H.

Exercise 24 (semaphores) Here are the specifications of unary and binary semaphores:

Ki=p.v. Ky K>
K,

p.Ké
p. V. Ké + v. K9

ol

Prove that Ky | K1 ~ Ko

semantics of concurrency D. Sangiorgi
August 30, 2002 page 47

Axiomatisation|

Let A be the expansion laws of Propositions 17 and 18 plus the laws that involve summation or
restriction at page 45. Write A F P ~ Q if P ~ (@ can be inferred from the laws of A
by equational reasoning (equational reasoning means: you can use the laws that say that ~ is a
congruence relation).

Call a process finite if it does not contain constants.
Theorem 25 Let P, QQ be finite process. Then P ~ Q iff A P ~ Q.

Proof: Implication from left to right: show that each law in A is sound for ~.

Opposite direction: first show that each finite processes can be proved equal to a process in normal
form, that is a process in which there is no constant, parallel composition and restriction. Then prove
that if two normal forms are strongly bisimilar, they can be equated using the laws in A. H

semantics of concurrency D. Sangiorgi
August 30, 2002 page 48

Part VI: Weak bisimilarity

semantics of concurrency D. Sangiorgi
August 30, 2002 page 49

Consider the processes

S|
-

7.a.0 and

They are not strongly bisimilar.

But we do want to regard them as behaviourally equivalent! -
transitions represent internal activities of processes, which are not
visible.

(Analogy in functional languages: (Ax.x)3 and 3 are semantically
the same.)

Internal work (7-transitions) should be ignored in the bisimulation
game. Define:

(i) == as the reflexive and transitive closure of —.
(i) == as =>—3== (relational composition).

~

(i) == is = if p = 7;itis == otherwise.

Definition 26 (weak bisimulation (or observation equivalence))
A process relation R is a weak bisimulation if P RQ) implies:

1. if P =% P’ then there is Q' s.t. Q :ﬁ> Q' and P' R Q';
2. the converse of (1) on the actions from Q.

P and QQ are weakly bisimilar, written P =~ @, if P R @ for

some weak bisimulation TR.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 50

Weak bisimulation will be for us the behavioural equivalence on

processes.

Why did we study strong bisimulation?

— ~ is simpler to work with, and ~C=2; (cf: exp. law)
— the theory of & is in many aspects similar to that of ~;

— the differences between ~ and & correspond to subtle points in

the theory of =~

If we want to ignore T-transitions, why should we apply the clauses
of Definition 26 also in the case u = 77

— processes can internally be non-deterministic. Without this re-
quirement we would equate 7.0 + 7.a. 0 and @. O.

— without this requirement we lose congruence for parallel composi-

tion.

D. Sangiorgi
page 51

semantics of concurrency
August 30, 2002

Examples of non-equivalence:

a+ba+1T.bFT.a+717.0%a+b

Examples of equivalence:

T.ORXa~a—+T1T.a
a.(b+T1.c)~a.(b+71.¢c)+a.c
These are instances of useful algebraic laws, called the 7 laws:

Lemma 27 1. P 1. P;
2. T.N + N = N;
S M4+a. (N+717.P)~xM+a. (N+71.P)+ . P.

Theorem 28 = is a process congruence.

That is, P = @ implies:

1. va P = va Q);
2. PIRQ|RandR|P=R|Q,
3. a. P+ M=~ao.QQ + M.

However, on summands, & is not a congruence: T.a = a, but
7.0 +b %2 a+ b. This is not very disturbing: we will always

compare processes.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 52

In the clauses of Definition 26, the use of == on the challenger
side can be heavy. For instance, take K = 7. (a | K); for all n,
we have K = (a |)" | K, and all these transitions have to be
taken into account in the bisimulation game.

The following definition is much simpler to use (the challenger makes
a single move):

Definition 29 A process relation R is a weak bisimulation if
PRQ) implies:

1. if P 55 P/, then there is Q' s.t. Q :ﬁ> Q' and P' R Q';
2. the converse of (1) on the actions from @Q (ie, the roles of P
and Q are inverted).

Proposition 30 The definitions 26 and 29 of weak bisimulation
coincide.

Proof: A useful exercise. |

semantics of concurrency D. Sangiorgi
August 30, 2002 page 53

Exercises|

Exercise 31 Prove these equivalences (all cases can be done purely algebraically or using the
bisimulation technique):

(r.P) | Q@ = 71.(P|Q) fordlP,Q
va (t.b|¢c) = b|c
va(b.a|a.c) = b.c

Exercise 32 FEzplain why 7. (1.a 4+ b) +17.b & 7.a + 7.0
Exercise 33 Is it true that K = a, where K = 7. K + a?

Exercise 34 Let Ki = a.(b.K; | ¢), K; = a.(b.c. K{ + ¢c.b.K]), K2 = a. Ky,
H, = a.b.Hy, Ho = a.c.Hy, H = a.b. H + b.a. H. Explain why va (Ky | K3) %
va (Hy | Hy). Prove that va (K | K2) % H =~ va (Hy | Hs). (Hint: for =, you may find
Exercises 23 useful; then either use algebraic laws and unique solutions of equations (page 56), or
define an appropriate weak bisimulation.)

semantics of concurrency D. Sangiorgi
August 30, 2002 page 54

Weak bisimulations “up-to”

Definition 35 (weak bisimulation up-to ~) A process rela-
tion R is a weak bisimulation up-to ~ if P R @Q wmplies:

1. if P £ P’ then there is Q' s.t. Q :ﬁ> Q' and P' ~R~
Q';
2. the converse of (1) on the actions from Q.

Exercise 36 If 'R is a weak bisimulation up-to ~ then R C=x.

Definition 37 (weak bisimulation up-to =) A process rela-
tion R is a weak bisimulation up-to = if P R @Q implies:

1. if P == P', then there is Q' s.t. Q :ﬁ> Q' and P' ~ R~
Q'
2. the converse of (1) on the actions from Q.

Exercise 38 If 'R is a weak bisimulation up-to = then R C=.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 55

Unique solutions of equationsl

Theorem 39 Let X1, Xo, ... be a (possibly infinite) sequence
of process variables. Consider the following system of equations:

X1
Xo

a11.- Xf(ll) + ...+ Xinq- Xf(lnl)
a921. Xf(gl) + ...+ 04277,2. Xf(2n2)

Q

where a5 # T for all 4,3, and f is a function from pairs of
integers to integers. There is, modulo =, a unique sequence of
processes Py, Py . .. that is solution to this system of equations.

Of course there is at least one solution! Take constants K1, Ko, . ..
and define them thus, for all :

K; = oau. Kpgy+ oo+ aing- Kping)

There can be more solutions if some of the prefixes a;; is 7. Example:
every process is a solution to X ~ 7. X.

There is an analogous theorem for strong bisimulation (replace all ~
with ~). In this case, the hypothesis a;; 7 7 is not needed.
Proof: [of Theorem 39| Suppose Py, Ps, ... and Q1, Qo, . ..
are solutions to that system. Then
def o
R = {(Pzan) 1= 1,2,...}
is a weak bisimulation up-to . |
semantics of concurrency D. Sangiorgi

August 30, 2002 page 56

Exercises|

Exercise 40 Let K1 = f.a.d. Ky, Ko = d.b.e. Ky, K3 =
f.e.c.Ks, H=a.b.c. H. Prove that (vd, e, f)(K; | K2 |
Kg) ~ H.

Exercise 41 Let Hy = a.c¢i.e1.d, Hy = b.¢3,
Sync = cj. co. €1. Prove that

(vey,ca,e1)(Hy | H2 | Sync) =< a.b.d + b.a.d.

Exercise* 42 [Let H1 = CL.C_l. 61.H1, H2 = bC_2 GQ.HQ,
Sync = cj. cs. €1. eéa. Sync. Prove that

(l/Cl, C2, €1, €2)(Hl | H2 | Sync) ~ H
for H=a.b.H +b.a. H.

Note: process Sync is used to synchronise 2 processes. Similarly
synchronisers for n > 2 processes can be defined.

Exercise* 43 In Ezxercise 12 we proved that strong bisimulation
can also be defined on sequences of actions. Prove something analo-
gous for weak bisimulation. (The crux is to find the right definition
of weak bisimulation on sequences of actions).

semantics of concurrency D. Sangiorgi
August 30, 2002 page 57

An example: the specification and an
implementation of a counter

The specification:

County = inc. County + zero. County
Count,+1 = inc. Countpao + dec. Count,

We implement Count,, it as a chain of simple communicating cells:
n cells C followed by a barrier cell B.

me me
2670 @ 2 2670 @
dec d dec
semantics of concurrency D. Sangiorgi

August 30, 2002 page 58

For the definition of the cell C' we use an auxiliary constant D.

B = inc.(C ™ B)+Zzero. B
C = inc.(C ™ C)+dec. D
D = d.C+2z2.B

VS

where is this abbreviation:

P Q d:ef (V’i,, Z,, d,)(P{ila 2 d,/i, z, d} | Q{i/a 2 d//z'nc, zero, dec})

P (Q@TR) ~

Lemma 44 ~ is associative, i.e.

(P~ Q) R

Lemma4s D ™ (C

Q

C ~D,and D ™ B=xB.

n times
_ A

Theorem 46 Count, ~C — --- ™ C ™ B.

n times
Proof: UselLemma 44 and 45to provethatC ™ ... ™ C ™ B
satisfies the defining equations of Count,, for all n. H

Similarly to counters, we can write structures like stacks, or queues
(however, for this the value-passing CCS, that will be introduced
soon, is more appropriate). A Turing Machine can be simulated by 2
stacks and a finite-state automata. Therefore: Turing Machine can
be simulated in CCS. Hence = is undecidable (in the same way one
can prove that also ~ is undecidable).

semantics of concurrency D. Sangiorgi
August 30, 2002 page 59

Part VII: Value-passing, examples,

semantics of concurrency D. Sangiorgi
August 30, 2002 page 60

The value-passing calculus: examples

A one-place buffer: Buf;, = in(x). out(z). Buf,
A two-place buffer:

Buf, = in(x). Bg(;U)_ L
By = (x).(in(y).out(x). B2(y) + out{x). Bufy)

Another two-place buffer:

ImpBufy = ve (Buf,{¢fout} | Buf, {¢/in})

We have: Bufy = ImpBufs,.

A memory register:

Reg = (x).read({x). Reg{x) + write(y). Reg{y)

semantics of concurrency D. Sangiorgi
August 30, 2002 page 61

Value-passing CCS: syntax and transition
rules

A data expressions e is build out of variables x, y. ., values v, w
(such as 0, 1, 2, true, false), using any operator we wish.

The syntax of prefixes and actions is now:

a == a(x) ’ ale) ’ T

poon= a(v) | al{v) ’ T

where a{v) and a(v) are the complementary actions. Add to the
process syntax:

P ::= K{e) | if e, then P; else P,

where e, is a boolean expressions; and K has a defining equation
(x). P. Expression (a). P is an abstraction; the head () is a
binder for x, with scope P.

Channel and constants have a type, that says what value the channel
may carry, and what parameters the constant may take. Typing here
is obvious; we shall not comment on it any further; we shall just
assume that all expressions are well-typed.

For e closed (i.e., no free variables), write Vaul(e) for the value which
e evaluates to.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 62

€9 abed 200z ‘0g 1sNnbny
IS1013ueg " Adus4indu02 Jo So1ueWss

(aTun s Juswingie syl 1BYL YUIY1) J911BW JOU SSOP JUSWNSIR SYL 3SED Ul ' 3 ‘] "D ‘J D 91LUM |[11S S\N\

.A@mmu ¥EaM 3yl ul J0u Su04ls Syl ul Jayllsu ‘S8ueyd
Aue aainbai j0u op Ajue|iwISIq pue UOI1RINWISI] JO SUOIIUIRP Yl ddUeISul Lob sn|nojes Suissed-an|ea
ay1 01 ‘Aem paoadxe syl ul pue ‘Ajyloows AisA spusixe g7 aind ay3 Joj usss aney am Alosyl syl ||V

Amco_mmmava 10} A3s1e43s UoIlen|eAs snjea-Ag-||ed> e Suildope sie Sp\ ”m_zv

(2) i+ (2) 3
d (Z)= MJ 3SUOOA
d = {Zh}ld a=(2)m
. 4 ¢q ©sT1® Ig usya 2 JtT ' 4 ¢J ©®sT1® Ig usya 2 JtT
©STeIJITIA ONILITA
d esTRI = (2)WA d <—'d onia = (2)A
IV —— WK d<—d '+
uns)\ neaqp
A
d 55 d ()2 {#a}d s d(2)P
— 1IN0\ dutyp
0 = T&ES 2dAy swes sy Jo x pue a

9s9yl Yiim §H5H aind JO SIUE]SUOD pue wns Joj ss|nJ ay3l wum_QwN_

9 abed 200z ‘0g 1sNnbny
IS1013ueg " Adus4indu02 Jo So1ueWss

%@QQ&N\ ~ A®v%@®©mm®{ Y3 20044

(ogdl | (x)q) “(z)v = bogg]
(A} — x)goads (f)q =" X + ({z} n x)goads (z)v) "(xX) = 0090ddS

: (59191400
4pboqur Rz pup ‘uobogur Jo jasiynus v s1 X snyy) suaboqur Jo bpg v Jo bog T uorniuaua)duL
un puv bvgHJS worvIL129ds v §1 0UIE NADAJLQLD ST PIOOULDL 24D Y] YIIYM UL LIPLO Y] PIOOUL
-04 puD Papp 29 uvd spupwale ‘adfiy wingieo v fo spuowaje spjoy 3eq (s8eq) gy osidiex]

'H =~ (%3 | '31)(p 2a) wyp 2004
H(x)q (z)p = f ‘e37'p(x)q (x)o = 3] ‘137 'p(x)2°(T)v = 3] 197 Ly 9s1019%]

g9 abed 200z ‘0g 1sNnbny
IS1013ueg " Adus4indu02 Jo So1ueWss

w fun dof (UNILS & (WYOAS WY1 20k

(| (=g | or)(oseaTal ‘9s0T ‘2707 ‘xeUW ‘YUeqn) (L) = N9
(7 "{fi —z)aze1 (fi)esesaTex Nv@vaW + (7 "{z)aze1 aso1) "(2)xew = (7
(R)g "(A)3ze1 (T +)xeuw Nueq () = g

(O] “(fi)utn-(fi)esesTo1 4 ()] "SSOT "380T) "YuRq "30TS = ()]

fivyd yova [o ynsai ayy sapLoap
WYy (] Juouodwod v puv ‘fouow ayy spjoy oy} g yuvq v suafinyd oy} ypm suoronsuvy fiduoul
oY1 sAIpuvy Yl O] Sjuduodutod & SIS I AUYIDW 10]s Y] Jo S U0UDIUIWI| AU UD St LI []

((2 — 2)ads (T + 2)urs "0 4 4 (T + 2))F G 0T L) 3018 *(T) = DAdS

:91QDLADO, 42DJUL UD S T IUNYIDUL
oYy Jo DHAS 1wornarf1oads D §1 QU] ADf 0§ PIPIA)J0D SDY JULYIDUL J0]S dYF JDYM PIIITI J0OU DU
uom fiouows ayy ‘9sna 4230) Y} Ul ‘U D 40 ‘$S0) v $pab uoypa uafivgd oyy fvyd D s U2 Yo
qndur ur swi0o aypy sulydew 105 7 (SullIlS-pleYpelg ‘Bulydew 10|S B) Gf 4OSIDI9X]

99 abed 200z ‘0g 1sNnbny
IS1013ueg " Adus4indu02 Jo So1ueWss

osensue| aAlledadwil 1UBIINDUOD B JO SOIJUBWDS

The source language

X o= X | Y

F = + | —
’ ...’0|1

C = X:=F

C ; C’

if E then C else ('
while FE do C

begin var X ; C

C par C'
skip
input X
output E
E = X
| F(Ey,...,E,)

Variables

Function symbols

Commands
assignhment

sequential composition
conditional

while

block

parallel composition
skip

input

output

Expressions
variable

function application

semantics of concurrency
August 30, 2002

D. Sangiorgi
page 67

m Challenging features of the language:

— communication by shared variables
— sequential composition of commands
— loops

— local variables

m Jo be noted about the translation:

— the granularity in parallel composition of commands

— the use of tranlation to prove properties of the language

m Limitations of the language and of the translation:

— limited form of function application
— no procedure declarations

— call-by-name

semantics of concurrency D. Sangiorgi
August 30, 2002 page 68

69 abed
IS1013ueg "

200z ‘o€ snbny
Adus.4inou0o O sonuewss

(x)X3ey () X103 + (fi)XZey *(fi)Xand ‘()

(x)X8ey *()Xand

[|Se|gelien JO uolle|sueld |

X 3oy

X207

SR

0/ abed
IS1013ueg "

200z ‘o€ snbny
Adus.4inou0o O sonuewss

Amw&@wnmr:@whw:&.”: _

((m

@mhw::m”: _ .. _ Hwnm_”_”ﬁm”: VA UG p ¢ v - ;w.H.mlv Mu
. X _
(w)s01-(w)¥308 =

u Aue sey pue [Joj spueis . 4
1z)f)sea (M) Sze - - (1) Bae =

me=A:m Co v :thu__

mwmﬁ_”vm”:

mwun:wmmr..;mum:h”:

[suoissaidxa jo uonejsues |

1, afed 200z ‘o€ snbny
IS1013ueg " Adus4indu02 Jo So1ueWss

"SJUSWUBISSE
JO UOIIND3X3 DIWOIe [SPOW 0} MOY SSNISIP [|BYS oM ‘4o3eT 'SoA SI Jomsue Sy} 1Byl SWNSSe |[eys SN

(T = X Yim eleulwisl 11 ue’)

(T4+x =X aed 14+x =YX)
ﬁOH”x

,Op wei3oid siyl pjnoys 1eypA

_ uoilisodwod |g|jesed jo Ajuejnuean)

On the sequential composition of
commands

In the language we are translating, sequential composition is on
commands; but in CCS sequential composition is on actions, not
on processes. We can derive a form of sequential composition on
processes, as follows.

A process P is well-terminating on d if d is only used to signal the
termination of the execution of P.

Definition 50 A process P is well-terminating on d if for all se-

quences (i1 . . . [y of actions, and process P, if P LN
P’, then

— either d does not appear in { 1. ..., tn},

— 07 Wy, is an output at d and P’ =~ 0.

A co-inductive definition of well-terminating:

The set of processes well-terminating on d is the largest set of

processes YWT 4 such that for all P € W7 4, whenever P £ p
then

— either d does not appear in v and P' € WTg,
— or pis an output at d and P’ =~ 0.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 72

We define sequential composition between well-terminating processes.

Py Beforey Ps v (P | d. P)

Lemma 51 Suppose that fori,5 = 1,2, 1 # 5, we have:

— P; is well-terminating on 4;;
— d; is fresh for P;j

Then Py BefO'redl Ps is terminatinig on ds.

Lemma 52 Suppose that fori,5 = 1,2,3, © % j, we have:

— P; 1s terminating on d;;
— d; s fresh for P;.
Then Py Beforeq, (P2 Beforey, Ps) ~ (P1 Beforey, P») Beforeg, Ps.

The translation [C4 of a command C' will be a well-terminating

process.

Lemma 53 For all commands C, and fresh name 4, it holds that
[Cla is well-terminating on d.

semantics of concurrency D. Sangiorgi
August 30, 2002 page 73

v, abed 200z ‘o€ snbny
IS1013ueg " Adus4indu02 Jo So1ueWss

(euop esTe (°™Ppq Pouofog P[H]) uweua x It “(x)u | “[AH]) 41 = Py

210UM 2u0p 44 = 2w op 77 oTTUM |
(euop (a0 (2)4 | “[g]) 41 = [z andavo |
ouop *(x)Xand - (x)dut = by qndut |
auop = sworl drys |
(ewop-p-p [P[O] [P[o]) P2 = ***[D 1ed D]
(*=P[H] | X207)(X208 ‘Xqndn) = Swp[,H ¢ x Tea utdeq |
(P[0 este *P[D] weusr x gt (2)s | ‘[7g]) w1 = [, esTe O ueur H 3T]
rl,0] fuofpg POl = Lo+ Ol
(euop (x) Xand () | [g]) wa = [= x]

1ysaJ) o4 ‘p ‘@uop swnssy

G/ abed 200z ‘o€ snbny

IS1013ueg " Adus4indu02 Jo So1ueWss
ouop ‘Xa *(x)Xqnd - (x)dut - Xd = suwop[- qndut |
(swop Xa () Xand “(2)u | “[g]) 4 ¥d = =P[g =: X]
(Lol | [xI)(Xa‘Xd X183 ¥anda) = =P[5 t x res urleq]
Xueg | ¥o01 = [X]

-SMO||0} Sk uollg|suel] syl mwcmr_u usy |

Xuweg *Xa ' Xd = Xwag

suaq (g 9s4exg Jo) seoydewss Suisn pioAe ued SN T = X YIM S1euiwis] 0}

I+X =¥ xed g 14¥x =X
f0o=:X

1UeM 10U Op am asoddng

_ panuiluod ‘Aluenuedn)

9,/ abed 200z ‘0g 1sNnbny
IS1013ueg " Adus4indu02 Jo So1ueWss

452101400 fiun §$2200 10U $20p pun ‘ndino ‘gndur fiun w.iofliad
pou soop O vyp bunwmsso puy 5 o xed (O D) = (,0 xed D) ¢ DS GG 9sIDI9X]

200D $91349d04d Y] 2004 G OSIDIDXT

digs esTe (D op &7 oTTUM ¢) WeUl 7 IT = [) Op / oTTtum (3

(,O " x xea utdeq) xed H = (,» a=d H) ! x Tea urdeq
D X D ¢ X Iea urdeq
:usy3 ‘) ur seadde jou ssop Y 9|qeuea ji (p
D~ dis) (0
Lo (o 0)=(0 .0 +0(O xed o o xed O (e

(ysedy euop Joy) °*P[H] & *"P[H] 404 , O & D Suim

'so|dwexs awos aJe a9 93en3ue| 924n0s ayl Jo saileudoud snoid 01 uollg|SUBI] BYI BSN UBD AN

_co_pm_m: el1 oyl Suis

1/ abed 200z ‘o€ snbny
IS1013ueg " Adus4indu02 Jo So1ueWss

'SNN2je-1L Sy SI SUOISUSIXS UINS JO UMOUY 1594 3y | SO 40 Aiosya
oleJgag|e pue [euollesado syj 03 SUOIIEDIHIPOW [BIALII-UOU SWIOS JSASMOY SPa3u UOISUsIxs ay | “(1jndjed
epquie| anjeA-Ag-||ed pue sweu-Ag-||ed jo uollejsuesl sjdwis AIS 01 |qissod saw0d3q 3 ddUBISUl JO))
SN[NJJeD 9yl 0} SSOUBAISSRIAXD D|eXJewsl B SPPe UOISUSIXd SIY| "S[puueyd g Aew SuOI1edIUNWWOD
Ul paSueydoXs SsnjeA Yolym ul ‘§H7) 01 UOISUSIXS Jsyluny e pssu am ‘saSen3due| sssyl Sulje|suedy Jo-

'Sjuswin3Je JO UOIIeN|BAS SWEU
-Aq-||ea pue ‘saunpadcoid jo suoijese|dsp [ed0| ‘uolledijdde uoiouny Jo swioj |esausd Se yons sauniesy
yum ‘saBen3ue| Jayol 9|puey 01 ‘9|qeSes4un SSWIIBWOS pue ‘patedljdwod sswodsq 1 ‘'SHD) YUAA

Buissed ssadoud pue swep

