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Abstract

In process algebras� bisimulation equivalence is typically de�
�ned directly in terms of the operational rules of action� it also
has an alternative characterization in terms of a simple modal logic
�sometimes called Hennessy�Milner logic�� This paper �rst de�nes
two forms of bisimulation equivalence for the ��calculus� a process
algebra which allows dynamic recon�guration among processes� it
then explores a family of possible logics� with di�erent modal op�
erators� It is proven that two of these logics characterize the two
bisimulation equivalences� Also� the relative expressive power of
all the logics is exhibited as a lattice� The results are applicable
to most value�passing process algebras�

� Introduction

This paper presents a logical characterization of process equivalences in
the ��calculus ���� a process algebra in which processes may change their
con�guration dynamically� In this introduction we place the results in
context� First we review the corresponding results for process calculi
which do not allow this dynamic re�con�guration� Then we give plausible
reasons for introducing modalities and an equality predicate into the logic�
in order to extend these results to the ��calculus� In the later sections� we
prove that these new connectives do indeed provide the characterization�

For a typical process algebra without mobility� the equivalence relation
of strong bisimilarity ��� can be characterized by a modal process logic�

�University of Edinburgh� Scotland� Supported by a Senior Research Fellowship
awarded by the British Science and Engineering Research Council�

ySwedish Institute of Computer Science� Sweden� Supported by the Swedish Board
of Technical Development under project ��������PCONCUR and by Swedish Telecom
under project PROCOM�

zUniversity of Technology� Sydney� Australia�

�



sometimes called Hennessy�Milner logic �	�� To be speci�c� let P consist
simply of the processes P given by

P 

� ��P j � j P � P j C

where � ranges over actions� and C over process constants� We assume

that for each C there is a de�ning equation C
def
� PC � Usually there will

also be parallel composition and other operators� but we do not need them
for this discussion�� We also assume that a labelled transition relation

���
is de�ned over P in the usual way� Then strong bisimilarity is the largest
symmetric relation � over P for which� whenever P � Q and P

�
�� P ��

there exists Q� such that Q
�
�� Q� and P � � Q��

The process logic PL has formulae A given by

A 

� h�iA j
�
i�I

Ai j �A

where I stands for any denumerable set� The smallest formula is the
empty conjunction� written true�� PL is given meaning by de�ning the
satisfaction relation j� between processes and formulae� in particular� one
de�nes

P j� h�iA if� for some P �� P
�
�� P � and P � j� A

It may be shown that two processes are strongly bisimilar i� they satisfy
the same formulae of PL� this is the sense in which PL characterizes ��
Under mild restrictions� such as when every PC in a de�ning equation is
guarded i�e� contains no process constant except within a term of the
form ��P �� only �nite conjunctions in PL are needed�

Before considering what should be included in a logic to characterize
equivalences over the ��calculus� we must discuss an issue about equiva�
lence which arises in any value�passing calculus� of which the ��calculus is
a rather special case� In general� in any value�passing calculus� an action
� may �carry a value�� By this� we mean that there are input actions

ax�� where a is a link�name and x a value variable� and x is bound in
ax��P � there are also output actions ae� where e is an expression denot�
ing a value� Such calculi have been studied in depth ��� ��� and many
di�erent equivalences have been de�ned over them� The choice of equiva�
lence is complicated by the passing of values� Consider the following two
processes


R � ax��if x � � then P else Q� � ax��� ��

S � ax��if x � � then P � � ax��if x �� � then Q�

	



We understand the one�armed conditional process �if b then P� to be
equivalent to � if b is false� The full conditional �if b then P else Q� can
be expressed as the sum of two one�armed conditionals with conditions b
and �b�� Now� is R equivalent to S� Both answers are possible�

They are strongly bisimilar in Milner ���� where the calculus with
value�passing is reduced by translation to a value�free calculus � but with
in�nite sums� In fact R reduces to

X
n��

an�Rn �
X
n��

an�� 	�

where R� � P � and Rn � Q for n �� �� We assume for simplicity that
P and Q do not involve value�passing� so do not contain the variable x��
Correspondingly� S reduces to

X
n��

an�Pn �
X
n��

an�Qn ��

where P� � P and Q� � �� while Pn � � and Qn � Q for n �� �� this sum
is equivalent to 	��

But there is a di�erent view� according to which R and S are not
equivalent� � In this view we do not consider R capable of an in�nity of
actions an� one for each natural number� but essentially only two actions�
one of which is

R
a�x�
�� if x � � then P else Q ��

yielding a family of processes indexed by the variable x� For another

process to be equivalent to R� it must yield under
a�x�
�� an indexed family

which is element�wise equivalent to the above family � i�e� equivalent for
each value of x� But S does not have this property� it yields two indexed
families� both di�erent� namely


S
a�x�
�� if x � � then P ��

S
a�x�
�� if x �� � then Q

These two equivalences can both be expressed as forms of bisimilarity�
For the ��calculus we concentrated on the second � �ner � equivalence
in our original paper ���� but also commented on the coarser equivalence�
Both seem reasonable� In this paper we shall show that both bisimilarities
can be elegantly characterized by appropriate process logics� Actually� we

�This view amounts to equating processes i� they denote identical communication

trees� as de	ned in Milner
��� Chapter � The view was not pursued thoroughly there�
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shall examine a family of 	� logics� de�ned by including any combination
of �ve logical connectives � mostly modalities � over and above a �xed set
of connectives� It turns out that these yield eleven equivalences several
logics being equipotent�� including our two bisimilarities� We are not yet
interested in most of these equivalences per se� but the lattice which they
form gives insight into the power of the various logical connectives�

Now� what logical connectives should we expect in a logic for the
��calculus� Here� value expressions and value variables are themselves
nothing but link�names� All computation is done with names x� y� � � ��
thus� input and output actions take the form xy� and xy� It is natural
to include some modality for each form of action� in particular� a modal
formula

hxy�iA

for input actions where y is bound� In fact� to characterize the �ner of
our two bisimilarities� we shall de�ne a modality hxy�iL such that

P j� hxy�iLA i� for some P �� P
x�y�
�� P � and for all z� P �fz�yg j� Afz�yg

The superscript L here stands for �late�� It refers to the lateness of
instantiation of the variable y� P � is chosen �rst� and then for all instances
of y it must satisfy the corresponding instantiation of A� The coarser
equivalence will be re�ected by a modality with superscript E for �early��
this refers to the fact that the instance z of y is chosen �rst� and then a
di�erent P � may be chosen for each z�

It may be expected that� once we have included in our logic a suitable
modality for each form of action� our characterization will be achieved�
But this is not so� due to the special r�ole of names in the ��calculus�

At �rst sight the ��calculus may appear to be just a degenerate form
of value�passing calculus� which can then be translated as above� to a
value�free calculus� and hence characterized essentially by the logic PL�
for suitable actions �� But this neglects a crucial ingredient of ��calculus�
namely the process form x�P � known as restriction� This combinator
gives scope to names � in other words� it allows the creation of private

names� it is responsible for much of the power of the ��calculus� and
prevents us from treating names as values in the normal way�

Thus the algebra of names cannot be �translated away� from the
��calculus� in the same way that the algebra of say� integers can be
translated away from CCS� But what is this algebra of names� It is al�
most empty� There are no constant names� and no operators over names�
this explains why the only value expressions are names themselves as
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variables�� But what of boolean expressions� and the conditional form
�if b then P�� Well� names have no properties except identity� thus the
only predicate over names is equality � and indeed the ��calculus contains
the match expression�

�x�y�P

which is another way of writing �if x� y then P�� It is therefore rea�
sonable to expect that� by including an equality predicate in the form of
a match formula

�x�y�A

in our logics� we succeed in characterizing the bisimilarities� This indeed
turns out to be the case� Moreover� the match formula is strictly neces�
sary� furthermore � which is not obvious � it is needed in the logic even
if the match expression is omitted from the calculus�

In the next section we present the ��calculus and its operational se�
mantics� the reader therefore need not refer to previous papers� although
familiarity with the ��calculus will certainly help� we also de�ne the two
bisimilarities� In the third section we de�ne all the logical connectives we
wish to consider� and derive a complete picture for the relative power of
their di�erent combinations�

� Mobile Processes

In this section we will recapitulate the syntax of agents from ��� and give
agents two kinds of transitional semantics� corresponding to late and early
instantiation of input parameters� Based on these we will de�ne late and
early bisimulation equivalences�

��� Syntax

Assume an in�nite setN of names and let x� y� z� w� v� u range over names�
We also assume a set of agent identi�ers ranged over by C� where each
agent identi�er C has a nonnegative arity rC��

De�nition � The set of agents is de�ned as follows we use P�Q�R to
range over agents�


�Hitherto we have not given much consideration to the negative form 
x �� y�P � it
requires further investigation�
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P 

� � inaction�
j xy� P output pre�x�
j xy�� P input pre�x�
j �� P silent pre�x�
j y�P restriction�
j �x�y�P match�
j P j Q composition�
j P � Q summation�
j Cy�� � � � � yr�C�� de�ned agent�

In each of xy�� P and y�P the occurrence of y in parentheses is a bind�

ing occurrence whose scope is P � We write fnP � for the set of names
occurring free in P � If �x � x�� � � � � xn are distinct and �y � y�� � � � � yn then
Pf�y��xg is the result of simultaneously substituting yi for all free occur�
rences of xi i � �� � � � � n� with change of bound names if necessary� Each
agent constant C has a unique de�ning equation of the form

Cx�� � � � � xr�C��
def
� P

where the xi are distinct and fnP � � fx�� � � � � xr�C�g� �

The order of precedence among the operators is the order listed in Def�
inition �� For a description of the intended interpretation of agents see ����
In examples we will frequently omit a trailing ��� for example ���� xy��
will be abbreviated � �xy� Also we sometimes write fnP�Q� � � � � x� y� � � ��
as an abbreviation for fnP � � fnQ� � � � � � fx� y� � � �g�

��� Transitions

A transition is of the form
P

�
�� Q

Intuitively� this transition means that P can evolve into Q� and in doing
so perform the action �� In our calculus there will be �ve kinds of action
� as follows� The silent action � corresponds to an internal computation�
and the free output action xy and free input action xy correspond to
the transmission and reception of the free name y along x� The bound

input action xy� means that any name can be received along x� and y�
designates the places where the received name will go� The bound output

xy� means that a local name designated by y is exported along x� A
summary of the actions� their free names fn�� and bound names bn��
can be found in Table �� We write n�� for fn�� � bn���
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� Kind fn�� bn��
� Silent � �
xy Free Output fx� yg �
xy� Bound Output fxg fyg
xy Free Input fx� yg �
xy� Bound Input fxg fyg

Table �
 The actions�

The silent and free actions are familiar from CCS� In particular a free
input action corresponds to an early instantiation of an input parameter�
since it carries both the port name and received value� In contrast a
bound input action carries only a port name� implying that the bound
parameter will be instantiated at a later stage� The bound output actions
are used to infer so�called scope extrusions� their parameters will never be
instantiated to free names so the issue of �late vs� early� does not arise�

In order to de�ne the transitions between agents we �rst introduce the
notions of structural congruence and variant


De�nition � The structural congruence � on agents is the least congru�
ence satisfying the following clauses


�� If P and Q di�er only in the choice of bound names� i�e� they are
alpha�equivalent in the standard sense� then P � Q�

	� P jQ � QjP �

�� P � Q � Q � P �

�� �x�x�P � P �

�� If Cex�
def
� P then Cey� � Pfey�exg�

A variant of the transition P
��� Q is a transition which only di�ers in

that P and Q have been replaced by structurally congruent agents� and
� has been alpha�converted� where a name bound in � includes Q in its
scope� �
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As an example the following transitions are variants of each other


xy�� yz
x�y�
�� yz

xy�� yz
x�u�
�� uz

�x�x�xy�� yz
x�y�
�� yz

�x�x�xy�� yz
x�u�
�� uz

The second transition di�ers from the �rst in that the name y has been
alpha�converted to u in the action and in the agent after the arrow� The
third transition di�ers from the �rst in that xy�� yz has been replaced by
a structurally congruent agent� and the fourth transition combines these
changes�

Below we will give two sets of rules for inferring transitions� one set
corresponding to early and one corresponding to late instantiation� In
each rule� the transition in the conclusion stands for all variants of the
transition� We begin with the set of rules in ��� which can now be rendered
as follows


De�nition � The set of rules late consists of the following


act 
 �
��P

��� P
sum 
 P

�
�� P �

P � Q
��� P �

par 
 P
��� P �

P jQ
�
�� P �jQ

bn�� 	 fnQ� � �

l�com�
P

xy
�� P � Q

x�z�
�� Q�

P jQ
�
�� P �jQ�fy�zg

close 
 P
x�y�
�� P � Q

x�y�
�� Q�

P jQ
�
�� y�P �jQ��

res 
 P
��� P �

y�P
��� y�P �

y �
 n�� open 
 P
xy
�� P �

y�P
x�y�
�� P �

y �� x

We write P
�
��LQ to mean that the transition P

�
�� Q can be inferred

from late� �

A reader familiar with the rules in ��� will note that late is more concise�
yet it generates the same transitions� The use of variants and struc�
tural congruence makes it possible to formulate the rules without explicit
alpha�conversions in rules generating bound actions� and special rules for
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identi�ers and matching are unnecessary because of clauses � and � in
De�nition 	� For example� we can infer

�x�x�xy�� yz
x�u�
�� uz

since this transition is a variant of xy�� yz
x�y�
�� yz which is an instance of

act� This e�ect of �factoring� all issues related to structural congruence
from the rules of action can also be obtained by a special structural rule

P � � P P
�
�� Q Q � Q�

P � �
�� Q�

For example� the transition above can be inferred with this rule since

xu�� uz
x�u�
�� uz is an instance of act and �x�x�xy�� yz � xu�� uz�

In late the name bound by an input pre�x form xy�� P becomes
instantiated in l�com when a communication between two agents is in�
ferred� Note that no rule in late generates a free input action� In con�
trast� with an early instantiation scheme the bound name y is instantiated
when inferring an input transition from xy�� P 


De�nition � The set of rules early is obtained from late by replacing
the rule l�com with the following two rules


e�input�
�

xy�� P
xw
�� Pfw�yg

e�com�
P

xy
�� P � Q

xy
�� Q�

P jQ
�
�� P �jQ�

We write P
�
��EQ to mean that the transition P

�
�� Q can be inferred

from early� �

The new rule e�input admits an instantiation to any name w� so
there will always be a suitable free input action available as a premise
in e�com� Note that the rule act remains in early� so an input pre�x
may still generate bound input actions � these are needed with the rules
open and close to achieve scope extrusions such as

xy�� P j y�xy�Q
���E y�P jQ�

The following example highlights the di�erent operations of late and
early� Assume that we want to infer a communication in the agent

xy�� P y� jQy� u� jxu�R

�



We write �P y�� to signify that P depends on y� and similarly for Q��
Using late we need a new name z in the par rule to avoid con�icts with
the free names in Qy� u�


�

xy�� P y�
x�z�
��LP z�

xy�� P y� jQy� u�
x�z�
��LP z� jQy� u�

�
xu �R

xu��LR

xy�� P y� jQy� u� jxu�R ���L P u� jQy� u� jR

Using early the same communication can be inferred


�
xy�� P y�

xu
��EP u�

xy�� P y� jQy� u�
xu
��EP u� jQy� u�

�
xu �R

xu
��ER

xy�� P y� jQy� u� jxu�R
�
��E P u� jQy� u� jR

The following lemma shows how
���E and

���L are related�

Lemma �

�� P
xy
��EP

� i� P
xy
��LP

�

	� P
x�y�
��EP

� i� P
x�y�
��LP

�

�� P
x�y�
��EP

� i� P
x�y�
��LP

�

�� P
xy
��EP

� i� �P ��� w 
 P
x�w�
��LP

�� with P � � P ��fy�wg

�� P
�
��EP

� i� P
�
��LP

�

Proof 
 A standard induction over late and early� The proof of 	 uses
�� and the proof of � uses all of ���� �

In view of this lemma it will not be necessary to distinguish between
��E and ��L � and we will simply write �� for ��E from now on�

��� Late and Early Bisimulations

We �rst recall the de�nition of bisimulation in ���


De�nition � A binary relation S on agents is a late simulation if PSQ
implies that

��



�� If P
�
�� P � and � is � � xz or xy� with y �
 fnP�Q��

then for some Q�� Q
�
�� Q� and P �SQ�

	� If P
x�y�
�� P � and y �
 fnP�Q��

then for some Q�� Q
x�y�
�� Q� and for all w� P �fw�ygSQ�fw�yg

The relation S is a late bisimulation if both S and S�� are late simulations�
We de�ne late bisimilarity P  � LQ to mean that PSQ for some late
bisimulation S� �

Note that late simulations do not require anything of free input ac�
tions� Instead� there is a strong requirement on bound input actions
 the
resulting agents P � and Q� must continue to simulate for all instances
w of the bound name� The term �late� refers to the fact that these w
are introduced after the simulating derivative Q� has been chosen� The
algebraic theory of  �L is explored in ����

The natural bisimulation equivalence for early instantiation will use
free input actions rather than the extra requirement clause 	� on bound
input actions


De�nition � A binary relation S on agents is an early simulation if PSQ
implies that

If P
��� P � and � is any action with bn�� 	 fnP�Q� � ��

then for some Q�� Q
��� Q� and P �SQ�

The relation S is an early bisimulation if both S and S�� are early simu�
lations� We de�ne early bisimilarity P  �EQ to mean that PSQ for some
early bisimulation S� �

So� in an early simulation di�erent instances of an input transition i�e�
di�erent free inputs� may be simulated by di�erent Q�� Late and early
bisimilarity represent the two di�erent views of equivalence presented in
the introduction� To see that these two equivalences are di�erent consider
the following example


P � xu��� � xu�

Q � P � xu���u�z��

Then P  �EQ� but P  ��LQ� The reason is the transition

Q
x�u�
�� �u�z�� ��

��



P has no transition which simulates �� for all instantiations of u� How�
ever� for all free input actions there is a simulating transition
 for z it
is

P
xz
�� �

since �u�z�� �fz�ug � � � and for all other names it is

P
xu
�� �

since �u�z�� �  �E � for all u �� z��
We will now support our claim from ��� that  �E can be obtained by

commuting the quanti�ers in clause 	 of De�nition �


De�nition � A binary relation S on agents is an alternative simulation

if PSQ implies that

�� If P
�
�� P � and � is � � xz or xy� with y �
 fnP�Q��

then for some Q�� Q
�
�� Q� and P �SQ�

	� If P
x�y�
�� P � and y �
 fnP�Q��

then for allw� there is Q� such that Q
x�y�
�� Q� and P �fw�ygSQ�fw�yg

The relation S is an alternative bisimulation if both S and S�� are al�
ternative simulations� We de�ne P  �� Q to mean that PSQ for some
alternative bisimulation S� �

It is obvious that every late simulation is also an alternative simulation�
so  �L �  �� � Furthermore we have


Lemma �  �� �  �E

Proof 
 From Lemma ��� it follows that the following two requirements
on any relation S are equivalent


�P�Q� x� y� P � 
 If P
xy
�� P � then �Q� 
 Q

xy
�� Q� and P �SQ�

�P�Q� x�w� P �� 
 If P
x�w�
�� P �� then �y�Q�� 
 Q

x�w�
�� Q�� and P ��fy�wgSQ��fy�wg

Hence� S is an alternative simulation i� it is an early simulation� �

Thus  �E is strictly weaker than  �L � We will not explore the theory
of  �E here� Just like  �L it is an equivalence relation and is preserved
by all operators except input pre�x� and if Pfw�yg  �EQfw�yg for all w
then xy�� P  �E xy�� Q�

�	



� Modal Logics

In this section we establish characterizations of late and early bisimilarity
in terms of properties expressible in various modal logics� In addition we
compare in detail the distinguishing power of a number of logics� We begin
by introducing a logic encompassing all those we consider and establishing
some properties of its satisfaction relation�

��� Connectives

De�nition 	 The logic A is a subset� speci�ed below� of the set of
formulae given by


A 

�
V
i�I Ai I a denumerable set�

j �A
j �x�y�A
j h�iA � � �� xy� xy� xy�� xy��
j hxy�iLA
j hxy�iEA

In each of hxy�iA� hxy�iA� hxy�iLA and hxy�iEA� the occurrence of
y in parentheses is a binding occurrence whose scope is A� The set of
names occurring free in A is written fnA�� The logic A consists of those
formulae A with fnA� �nite� �

In De�nition � below we shall introduce a satisfaction relation j� be�
tween agents and formulae of A� Although the de�nition will be a little
more complex� the relation will have the following simple characterization


Proposition � For all agents P �

P j�
V
i�I Ai i� for all i 
 I� P j� Ai

P j� �A i� not P j� A
P j� �x�y�A i� if x � y then P j� A

P j� h�iA i� for some P �� P
�
�� P � and P � j� A� for � � �� xy� xy

and assuming that the name y is not free in P

P j� hxy�iA i� for some P �� P
x�y�
�� P � and P � j� A

P j� hxy�iA i� for some P �� P
x�y�
�� P � and for some z� P �fz�yg j� Afz�yg

P j� hxy�iLA i� for some P �� P
x�y�
�� P � and for all z� P �fz�yg j� Afz�yg

P j� hxy�iEA i� for all z there is P � such that P
x�y�
�� P � and P �fz�yg j� Afz�yg

��



�

The assumption on y is no constraint since Lemma �a� below asserts
that alpha�convertible formulae are logically equivalent�

Before embarking on the formal de�nitions we will explain the in�
tuition behind the connectives� Conjunction� negation� and the silent�
output and free input modalities work as in the logic PL described in the
introduction� We will write true for the empty conjunction and false for
�true� Note that an atomic equality predicate on names can be de�ned
in terms of the matching connective �x�y�� the formula

��x�y�false

holds of P precisely when x � y� regardless of P � Conversely� if an atomic
equality predicate x�y� on names were taken as primitive� �x�y�A could
be derived as �x�y�  �A��

There are three kinds of bound input modality� They all require an

agent to have a bound input transition of type P
x�y�
�� P � but they di�er in

the requirements on P �� The basic bound input modality hxy�iA merely
requires that P � satis�es A for some instantiation of the parameter y� The
late modality hxy�iL is stronger� it requires P � to satisfy A for all such
instantiations� Finally the early modality hxy�iE is weaker than the late
modality� it allows di�erent derivatives P � to satisfy A for the di�erent
instantiations of y� As an example let

A � hxy�i�h� itrue
AL � hxy�iL�h� itrue
AE � hxy�iE�h� itrue

First put
P� � xy�� �y�u��

It then holds that
P� j� A

The derivative P � is here �y�u�� and there are instantiations of y� namely
all but u� where P � has no � �transition and thus satis�es �h� itrue� But
for y � u there is such a transition� hence P� satis�es neither AE nor AL�
Next assume u �� v and consider

P� � xy�� �y�u�� � xy�� �y�v��

Here there are two possible derivatives under the bound input action xy��
The derivative corresponding to the left branch lacks a � transition for

��



y �� u� while the right branch lacks a � transition for y �� v� It follows
that for any instantiation of y we can choose a derivative lacking a � � thus

P� j� AE

Of course P� also satis�es A� but it does not satisfy AL since no single
derivative lacks a � for all instantiations of y� Finally consider

P� � xy�

Then P� satis�es all of A�AE and AL�
The dual operators ���� �xy��L and �xy��E of h�i� hxy�iL and hxy�iE

are de�ned in the standard way
 ���A � �h�i�A etc� We note in partic�
ular the following properties


P j� �xy��A i� for all P �� if P
x�y�
�� P � then for all z� P �fz�yg j� Afz�yg

P j� �xy��LA i� for all P �� if P
x�y�
�� P � then for some z� P �fz�yg j� Afz�yg

P j� �xy��EA i� there is z such that for all P �� if P
x�y�
�� P � then P �fz�yg j� Afz�yg

So ��� signi�es universal quanti�cation over derivatives� whereas h�i im�
plies existential quanti�cation� Note that with the three bound input
modalities and their duals all combinations of existential!universal quan�
ti�cations of derivatives and parameter instantiation are covered�

We now return to the formal de�nition of the satisfaction relation


De�nition 
 The satisfaction relation between agents and formulae of
A is given by


P j�
V
i�I Ai if for all i 
 I� P j� Ai

P j� �A if not P j� A
P j� �x�y�A if if x � y then P j� A

P j� h�iA if for some P �� P
�
�� P � and P � j� A�

for � � �� xy� xy
P j� hxy�iA if for some P � and w �
 fnA�� fyg�

P
x�w�
�� P � and P � j� Afw�yg

P j� hxy�iA if for some P � and w� P
x�w�
�� P �

and for some z� P �fz�wg j� Afz�yg

P j� hxy�iLA if for some P � and w� P
x�w�
�� P �

and for all z� P �fz�wg j� Afz�yg
P j� hxy�iEA if for all z there are P � and w such that

P
x�w�
�� P � and P �fz�wg j� Afz�yg

��
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Recall that by Lemma � we may combine the late and early schemes
in giving and working with this de�nition� Before commenting on it in
detail we note the following facts� We write � for alpha�equivalence of
formulae�

Lemma � a� If P j� A and A � B then P j� B�
b� If P j� A and u �
 fnP�A� then Pfu�vg j� Afu�vg�

Proof� The two assertions are proved together by showing by induction
on A that if P j� A� A � B and u �
 fnP�A� then Pfu�vg j� Bfu�vg� The
proof� though not unduly di"cult� contains some points of technical in�
terest and requires careful attention to detail� It is given in the appendix�

�

The �nal four clauses in the de�nition of satisfaction are complicated
by the inclusion of the name w� This is required to de�ne P j� A in
the case that a name occurs bound in A and free in P � For suppose
the clause for the bound output modality were simpli�ed to that given
in Proposition � above� If P � w�xw� yz� and A � hxy�itrue then
according to De�nition �� P j� A� but under the simpli�ed de�nition�
P �j� A� A similar di"culty arises with the other three clauses�

However by Lemma �a�� when considering an assertion P j� A� given
any name x bound in A� we may always assume that x is not free in
P � This assumption� which we make from now on� leads to a simple
proof of the more elegant characterization given above in Proposition ��
This characterization helps to make clear the signi�cant points in the
de�nition� Note in particular that the clause for hxy�i may be subsumed
under that for h�i for � � �� xy� xy� The need for the condition on
w in the clause for hxy�i can be seen by considering P � y�xy and
A � hxy�i��y�w�false� Under De�nition �� P �j� A� If the condition on
w were removed we would have P j� A but the bound output clause of
Proposition � would no longer hold�

The following useful lemma describes some relationships among the
modalities�

Lemma � a� Suppose w �
 fnA� y�� Then

P j� hxyiA i� P j� hxw�iL�w�y�A
i� P j� hxw�iE�w�y�A
i� P j� hxw�i��w�y��A

��



b� P j� hxy�iEA i� for all z� P j� hxziAfz�yg
c� P j� hxy�iA i� for some z� P j� hxziAfz�yg

Proof� Straightforward from the de�nitions� See the appendix� �

��� Characterizations of Equivalences

Suppose K is a sublogic of A� Then KP � � fA 
 K j P j� Ag� We write
�K for the equivalence relation determined by K
 P �K Q i� KP � �
KQ�� We say K characterizes a relation R if �K � R�

A number of sublogics of A will be considered� They share a common
basis A� consisting of the formulae of A built from conjunction� negation
and the modalities h� i� hxyi and hxy�i� The sublogics of A extending A�

are named by indicating which of hxy�i� hxy�iE� hxyi� hxy�iL and �x�y�
are added to A�� using the letters B� E�F �L and M respectively� For
instance� LM is the extension of A� obtained by adding the late bound
input modality hxy�iL and matching �x � y�� while F is obtained by
adding the free input modality hxyi alone�

We now give the main characterizations of  �L and  �E �

Theorem � LM characterizes  �L �

Proof� The proof follows a standard pattern but contains some novelty�
First we show that  �L ��LM by proving by induction on A in LM
that if P  �LQ then P j� A i� Q j� A� The argument for the converse
amounts to a proof that if P  ��LQ then there is A 
 LMP � � LMQ�
with fnA� � fnP�Q�� The principal point of interest is the use of a
combination of the late bound input modality hxy�iL and matching� The
proof is given in the appendix� �

We need in�nite conjunction only if the transition system is not image�
�nite up to ��� In particular� if all recursive de�nitions are guarded then
�nite conjunction su"ces� Recalling the quanti�er switch in the semantic
clauses for hxy�iL and hxy�iE� in view of the preceding theorem it may
be expected that EM characterizes  �E � In fact we have


Theorem � Each of EM� F and BM characterizes  �E �
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Proof� By utilizing the characterization of  �E in the early scheme�
Lemma 	� a proof that F characterizes  �E is easily obtained� That EM
and BM also characterize  �E then follows using Lemma �� For details
see the appendix� �

We have seen that F characterizes  �E and that the free input modality
corresponds to combinations of the bound input modalities and matching�
A natural question concerns the power of the bound input modalities in
the absence of matching� We give a sequence of examples which establish
the relationships among the various logics� These are summarized in a
picture below�

Lemma � P �EL Q but P ��B Q where

P � xy�
Q � xy� � xy�� �y�z��

Proof� Note that if A � �xy���h� itrue then P j� A but Q �j� A� To see
that P �EL Q we prove by induction on A in EL that P j� A i� Q j� A�
See the appendix� �

Lemma � P  �EQ but P ��L Q where

P � xy� � xy�� �y�z�� � �y�w�� �
Q � xy�� �y�z�� � xy�� �y�w��

Proof� Clearly P  �EQ� To see that P ��L Q simply note that if A �
hxy�iL�h� itrue then P j� A but Q �j� A� �

Lemma � P �BL Q but P ��E Q where

P � xy�� �y�z�� � xy�� �y�z�� � �y�w�� �
Q � xy�� �y�z�� � xy�� �y�w��

Proof� To see that P ��E Q note that if A � hxy�iE�h� itrue then Q j� A
but P �j� A� To see that P �BL Q we prove by induction on A in BL that
P j� A i� Q j� A� See the appendix� �
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Lemma 	 P �BEL Q but P  ��EQ where

P � xy�� �y�z��
Q � xy�� �y�w��

Proof� Clearly P  ��EQ� To see that P �BEL Q we prove by induction
on A in BEL that P j� A i� Q j� A� The proof is similar to that of
Lemma �� We omit the details� �

Lemma 
 P �FL Q but P  ��LQ where

P � xy� � xy�� �
Q � xy� � xy�� � � xy�� �y�z��

Proof� Clearly P  ��LQ� To see that P �FL Q we prove by induction on
A in FL that P j� A i� Q j� A� The proof is similar to that of Lemma ��
We omit the details� �

To complete the picture we note the following� Let us say that two
logics J and K are equipotent if �J � �K�

Lemma �� Let Z be any combination of B� E�F �L�M� Then in an
obvious notation

a� F � Z� BF � Z and EF � Z are equipotent�
b� BM� Z� EM � Z and FM� Z are equipotent�
c� LM� Z and FLM� Z are equipotent�
d� Finally� M and A� are equipotent�

Proof� See the appendix� �

We summarize the relationships among the logics established by the
preceding results in the following theorem�

Theorem � In the picture below� each point represents a distinct rela�
tion� A line between two relations signi�es inclusion� while the absence of
a line signi�es that they are incomparable� By #etc�$ we mean any other
combination equipotent by Lemma ���
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The examples in Lemmas ��� all involve the match expression of
the calculus� However� its use is in each case inessential� For exam�
ple� Lemma � asserts that P �EL Q but P ��B Q where P � xy� and
Q � xy� � xy�� �y�z�� � Alternatively we can take


P � xy�� y� z � z� y�
Q � xy�� y� z � z� y� � xy�� y j z�

Similar modi�cations can be made to the other examples�

� Future work

The logic we have introduced no doubt has interesting intrinsic properties�
which we have not begun to study� Here� we only wish to mention two
questions about its relationship with the ��calculus which appear to be
of immediate interest�

First� what happens when we introduce the mismatch form CHANGE
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�x ��y�P

into the calculus� Note that the corresponding mismatch connective

�x ��y�A

does not add power to our logic since it already has matching and nega�
tion�

Second� considering the input modalities� can we factor out their quan�
ti�cational content� It is attractive to factor hxy�iL thus


hxy�iLA
def
� hxi�yA�

Now� to express the satisfaction relation� we appear to need also to factor
the input pre�x xy� of the calculus thus


xy��P
def
� x��yP

� in other words� we need to give proper status to ���abstractions� which
abstract names from processes� This step has considerable interest� since
there are other independent advantages to be gained from it�
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Appendix

This section contains the proofs omitted from the main text� Some results
from section � of ��� concerning the transition system are used�

Proof of Lemma �� We prove the two assertions by showing by
induction on A that


if P j� A� A � B and u �
 fnP�A�� then Pfu�vg j� Bfu�vg

Let � � fu�vg�

The conjunction case is trivial�

Suppose A � �A� so B � �B� with A� � B�� Since P �j� A�� by induction
hypothesis P �j� B � and so P j� B� Hence if u � v the claim holds�
Suppose u �� v so v �
 fnP��B��� If P� �j� B� then P� j� B�� so
by induction hypothesis P���� j� B������ so P j� B�� Then again by
induction hypothesis P j� A�� Contradiction� Hence P� j� B��

Suppose A � �x� y�A� so B � �x � y�B� with A� � B�� If x �� y then
certainly P� j� B� since B� � �x��y��B�� and x� �� y�� If x � y then
P j� A� and by induction hypothesis P� j� B�� so again P� j� B��

Suppose A � h�iA� where � � �� xy� xy� so B � h�iB� with A� � B ��
Since P j� A there is P � such that P

�
�� P � and P � j� A�� Then

P�
���� P �� and by induction hypothesis P �� j� B��� Hence P� j� B�

since B� � h��iB���

		



Suppose A � hxy�iA� so B� � hx�y��iB�� where A�fy
�
�yg � B � and y� is

fresh� Since P j� A there are P � and w �
 fnA��fyg such that P
x�w�
�� P �

and P � j� A�fw�yg� Choose w� �
 fnP�A� u�� Then P
x�w��
�� P �� � P �fw

�
�wg

and by induction hypothesis P �� j� B�fw
�
�y�g� Also P�

x��w��
�� P ��� and

again by induction hypothesis P ��� j� B �fw
�
�y�g�� Hence P� j� B� since

B�fw
�
�y�g� � B��fw

�
�y�g�

Suppose A � hxy�iLA� so B� � hx�y��iLB �� where A�fy
�
�yg � B� and

y� is fresh� Since P j� A there are P � and w such that P
x�w�
�� P � and for all

z� P �fz�wg j� A�fz�yg� Choose w� �
 fnP�A�� Then P
x�w��
�� P �� � P �fw

�
�wg

and by induction hypothesis for all z�

P ��fz�w�g j� B�fz�y�g ��

Now P�
x��w��
�� P ����

Claim For all z� P ���fz�w�g j� B��fz�y�g�

Proof of Claim� If u � v the claim is immediate from ��� so suppose
u �� v�

Case �� z �� u� v� Then P ���fz�w�g � P ��fz�w�g� and B��fz�y�g �
B�fz�y�g�� By induction hypothesis and ��� P ��fz�w�g� j� B�fz�y�g�
since u �
 fnP ��fz�w�g� B �fz�y�g�� Hence again by induction hypothesis�
P ��fz�w�g� j� B��fz�y�g�

Case �� z � u� Now P ���fu�w�g � P ��fv�w�g� and B��fu�y�g � B�fv�y�g��
By ��� P ��fv�w�g j� B�fv�y�g so by induction hypothesis� P ��fv�w�g� j�
B�fv�y�g� since u �
 fnP ��fv�w�g� B�fv�y�g�� Hence by induction hypothe�
sis� P ��fv�w�g� j� B��fu�y�g�

Case �� z � v� Then P ��� j� B�� by induction hypothesis since u �

fnP ��� B ��� So again by induction hypothesis� P ���fv�w�g j� B��fv�y�g
since v �
 fnP ����B ����

This completes the proof of the Claim and hence of the case hxy�iL�

The cases A � hxy�iEA� and A � hxy�iA� involve similar arguments� �

Proof of Lemma �� First note that if w �� y then

P j� hxw�iL�w�y�A
i� P j� hxw�iE�w�y�A
i� P j� hxw�i��w�y��A

i� for some P �� P
x�w�
�� P � and P �fy�wg j� Afy�wg
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Now suppose w �
 fnA� y�� If P j� hxyiA then for some P �� P
xy
�� P � and

P � j� A� Then P
x�w�
�� P �� with P ��fy�wg � P �� Since P ��fy�wg j� Afy�wg �

A it follows by the above that P j� hxw�iL�w � y�A etc� Conversely� if

P
x�w�
�� P �� and P ��fy�wg j� Afy�wg then P

xy
�� P � � P ��fy�wg and P � j� A�

so P j� hxyiA� �

Proof of Theorem �� We �rst show by induction on structure that
for all A in LM� if P  �LQ then P j� A i� Q j� A� Suppose P j� A� The
conjunction and negation cases are trivial�

Suppose A � �x�y�A�� If x �� y then certainly Q j� A� Otherwise P j� A�

and by induction hypothesis Q j� A� and so Q j� A�

Suppose A � h�iA� where � � �� xy or xz� where z �
 fnP�Q�� Then
there is P � such that P

��� P � and P � j� A�� Since P  �LQ there is Q�

such that Q
�
�� Q� and P �  �LQ

�� By induction hypothesis Q� j� A�� so
Q j� A�

Suppose A � hxy�iLA� where y �
 nP�Q�� Then there is P � such that

P
x�y�
�� P � and for all z� P �fz�yg j� A�fz�yg� Since P  �LQ there is Q� such

that Q
x�y�
�� Q� and for all z� P �fz�yg  �LQ

�fz�yg� By induction hypothesis
for all z� Q�fz�yg j� A�fz�yg� so Q j� A�

Hence  �L ��LM�

For the converse it su"ces to show that S is a late bisimulation where
PSQ i� for all A in LM with fnA� � fnP�Q�� P j� A i� Q j� A�
Suppose PSQ�

Suppose P
�
�� P � where � � �� xy or xz� with z �
 nP�Q�� let hQiii�I be

an enumeration of fQ� j Q ��� Q�g� and suppose that for all i� not PSQi�
Choose hAii with for each i� Ai 
 LMP �� � LMQi� and fnAi� �
fnP �� Qi�� Set A � h�i

V
i�I Ai� Then A 
 LMP � � LMQ� and

fnA� � fnP�Q�� so not PSQ� Contradiction�

Suppose P
x�y�
�� P � where y �
 nP�Q�� let hQii be an enumeration of

fQ� j Q
x�y�
�� Q�g� and suppose that for each i there is z such that not

P �fz�ygSQifz�yg� Set N � fnP�Q� y� so that fnP �� � N and fnQi� � N
for each i�

Claim If P �SQi then for all z �
 N � P �fz�ygSQifz�yg�

Proof of Claim� Suppose z �
 N and fnA� � fnP �fz�yg� Qifz�yg�� If
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P �fz�yg j� A then since y �
 fnP �fz�yg� A�� by Lemma �b�� P � j� Afy�zg�
Hence since fnAfy�zg� � fnP �� Qi� and P �SQi� Qi j� Afy�zg� So again by
Lemma �b�� Qifz�yg j� A� Similarly� Qifz�yg j� A implies P �fz�yg j� A�
This completes the proof of the Claim�

%From the Claim and the fact that for each i there is z such that not
P �fz�ygSQifz�yg it follows that for each i there is zi 
 N such that not
P �fzi�ygSQifzi�yg� For each i take Bi with fnBi� � fnP �fzi�yg� Qifzi�yg��
P �fzi�yg j� Bi and Qifzi�yg �j� Bi� Set Ai � Bify�zig for each i� and
A � hxy�iL

V
i�y� zi�Ai� Note that fnA� � fnP�Q�� Moreover P j� A

since for all z� P �fz�yg j�
V
i�z� zi�Aifz�yg� But Q �j� A since for each i�

Qifzi�yg �j� �zi�zi�Aifzi�yg� Hence not PSQ� Contradiction�

Hence S is a late bisimulation so �LM� S �  �L � �

Proof of Theorem �� Recall the characterization of  �E in the early
scheme� Lemma 	� Using this characterization� the proof is similar in
structure and in much detail to that of Theorem �� but is more straight�
forward due to the simpler clause for free input actions� These are treated
exactly as bound output actions�

To show that  �E � EM�BM we show by an induction similar to that
in the proof of Theorem � that for all A in BEM� if P  �EQ then P j� A
i� Q j� A� For the converse we use the fact that F characterizes  �E and
the relationships between the modalities and matching in Lemma �� �

Proof of Lemma �� To see that P �EL Q we �rst note by induction
on A in BEL that for all substitutions �� � j� A i� � j� A�� Then we
show� again by induction� that for A in EL� P j� A i� Q j� A� We
consider only the case A � hxy�iLA�� Clearly if P j� A then Q j� A� If
Q j� A but P �j� A then� amongst other things� it must be the case that
�y�z�� j� A�� so � j� A�� but for some w� � �j� A�fw�yg� contradicting the
above observation� The case A � hxy�iEA� uses a similar argument� �

Proof of Lemma �� The argument is somewhat similar to that in the
proof of Lemma �� Recall that for all A in BEL and all substitutions ��
� j� A i� � j� A�� Similarly we show by induction on A in BEL that
� j� A i� � j� A�� Then we prove by induction on A in BL that P j� A
i� Q j� A� Suppose A � hxy�iLA�� Let P � � �y � z�� � �y � w�� and
Q� � �y � z�� � Using the properties of � and � stated above� it su"ces
to show by case analyses that for all v� P �fv�yg j� A�fv�yg i� for all v�
Q�fv�yg j� A�fv�yg� The reader may care to check the details� The case
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A � hxy�iA� is similar� �

Proof of Lemma ��� a� follows from Lemma �b��c�� b� and c�
then follow from a� and Lemma �a�� Finally� d� is proved by a trivial
induction� �
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