
Concurrency 6
Specification and Verification in CCS

Catuscia Palamidessi
catuscia@lix.polytechnique.fr



Example: A distributed scheduler
• 1,...,n are tasks identifiers. Tasks have to be executed repeatedly,in a cyclic 

order. There can be more than one task executed at the same time, but the 
next instance of Task i cannot start before previous instance has finished.

• Specification: We use:
– ak as the signal start to Taks k and 
– bk as the signal that Task k has terminated
Assume:
– X ⊆ {1,...,n } are the tasks in progress
– Task i is next

ScSpec(i,X)  ≡ ∑ { bk. ScSpec(i,X-{k}) | k ∈ X}   if  i ∈ X

ScSpec(i,X)  ≡ ai.ScSpec(i+1,XU{i})
+
∑ { bk. ScSpec(i,X-{k}) | k ∈ X}   if  i ∉ X

6 Novembre 2003 Concurrency 6 2



Example: A distributed scheduler
• Implementation: We build the scheduler, Sched, as a ring of n 

cells each linked to one task
• Cell: 

A ≡ a.C         C ≡ c.E E ≡ b.D + d.B
B ≡ b.A D ≡ d.A

Note: A stands for A(a,b,c,d), B stands for B(a,b,c,d), etc.
We will also use Ak for A(ak,bk,ck,ck-1), Bk for B(ak,bk,ck,ck-1), etc.

• Definition Sched ≡ (ν c1)...(ν cn) ( A1 | ∏ { Dk | k ≠ 1})

• Theorem 1 (Correctness of the implementation wrt the specification):  
Sched = ScSpec(1,∅) 
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Scheduler: Proof of correctness 
• The meaning of the various cells:

– Ai : Task i is next, and it is ready to initiate
– Bi : Task i is next, but it is not ready to initiate
– Di : Task i is not next, but it is ready to initiate
– Ei : Task i is not next, and it is not ready to initiate

• Definition: 
Sched(i,X) ≡ (ν c) (Bi | ∏ {Dk | k ∉ X} | ∏ {Em | m ∈ X-{i} } )         if  i ∈ X
Sched(i,X) ≡ (ν c) (Ai | ∏ {Dk | k ∉ X U {i} } | ∏ { Em | m ∈ X } )    if  i ∉ X

• Proposition 2:    Sched(i,X) = ScSpec(i,X)

• Theorem 1 is a particular case of Proposition 2
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Implementation of the scheduler: how it works
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Implementation of the scheduler: how it works
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Implementation of the scheduler: how it works
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Implementation of the scheduler: a  possible future configuration
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Scheduler: Proof of Correctness
Proposition 2:    Sched(i,X) = ScSpec(i,X)
Proof

• Lemma 3
– (1)  (ν ci) ( Ci | Di+1 ) = τ.(ν ci) ( Ei | Ai+1 )
– (2)  (ν ci) ( Ci | Ei+1 ) = τ.(ν ci) ( Ei | Bi+1 )

Proof: By exapansion law

• Lemma 4
– Sched(i,X) = ∑ { bk. Sched(i,X-{k}) | k ∈ X }   if  i ∈ X

– Sched(i,X) = ai.Sched(i+1,XU{i})
+
∑ { bk. Sched(i,X-{k}) | k ∈ X }   if  i ∉ X

Proof: By Expansion law and Lemma 3

From Lemma 4 and the Definition law we obtain that Sched(i,X) = ScSpec(i,X) □
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Example: Counter
• It is possible in CCS to create structures which grow and shrink dynamically. 

Examples include unbounded queues and stacks, and counters.

• Specification of a Counter
A counter is an object that can be 
– tested for zero   zero
– incremented   inc
– decremented  dec

Count0 ≡ inc.Count1 + zero. Count0

Countn ≡ inc.Countn+1 + dec. Countn-1 n > 0
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Example: Counter
• Implementation: A structure obtained by linking together a process B 

and n copies of a process C specified as follows:

B ≡ inc.(B^C) + zero.B

C ≡ inc.(C^C) + dec.D
D ≡ d
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.C + z.B 

P^Q  ≡ (ν i’)(ν z’)(ν d’) (P(z,d,i’,z’,d’) | Q(z’,d’, inc,zero,dec))

Note: B, C and D stand for B(z,d,inc,zero,dec), C(z,d,inc,zero,dec), and D(z,d,inc,zero,dec) respectively.

(P^Q) stands for (P^Q)(z,d,inc,zero,dec).

Proposition:   ^ is associative, i.e.   P^(Q^R)  =   (P^Q)^R
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Example: Counter
• Implementation:

Definition:   C(n) ≡ B^C^C^...^C    (n times)   

• Theorem (Correctness): C(n) = Countn
Proof 
Lemma:   (1)    C^D ≈ D^C        

(2)    B^D ≈ B^B
(3)   B^B = B            

We can now prove that

– C(0) =  inc. C(1) + zero. C(0)    and

– C(n) =  C(n-1) ^C                    for n > 0               by definition
=  inc. (C(n-1) ^C^C) + dec. (C(n-1) ^D) by expansion law
=  inc. C(n+1) + dec. C(n-1) by the lemma above

Hence C(n) satisfies the same equations as Countn. By the unique solution law we can conclude C(n) = Countn   □
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