
Concurrency 6
Specification and Verification in CCS

Catuscia Palamidessi
catuscia@lix.polytechnique.fr

Example: A distributed scheduler
• 1,...,n are tasks identifiers. Tasks have to be executed repeatedly,in a cyclic

order. There can be more than one task executed at the same time, but the
next instance of Task i cannot start before previous instance has finished.

• Specification: We use:
– ak as the signal start to Taks k and
– bk as the signal that Task k has terminated
Assume:
– X ⊆ {1,...,n } are the tasks in progress
– Task i is next

ScSpec(i,X) ≡ ∑ { bk. ScSpec(i,X-{k}) | k ∈ X} if i ∈ X

ScSpec(i,X) ≡ ai.ScSpec(i+1,XU{i})
+
∑ { bk. ScSpec(i,X-{k}) | k ∈ X} if i ∉ X

6 Novembre 2003 Concurrency 6 2

Example: A distributed scheduler
• Implementation: We build the scheduler, Sched, as a ring of n

cells each linked to one task
• Cell:

A ≡ a.C C ≡ c.E E ≡ b.D + d.B
B ≡ b.A D ≡ d.A

Note: A stands for A(a,b,c,d), B stands for B(a,b,c,d), etc.
We will also use Ak for A(ak,bk,ck,ck-1), Bk for B(ak,bk,ck,ck-1), etc.

• Definition Sched ≡ (ν c1)...(ν cn) (A1 | ∏ { Dk | k ≠ 1})

• Theorem 1 (Correctness of the implementation wrt the specification):
Sched = ScSpec(1,∅)

6 Novembre 2003 Concurrency 6 3

Scheduler: Proof of correctness
• The meaning of the various cells:

– Ai : Task i is next, and it is ready to initiate
– Bi : Task i is next, but it is not ready to initiate
– Di : Task i is not next, but it is ready to initiate
– Ei : Task i is not next, and it is not ready to initiate

• Definition:
Sched(i,X) ≡ (ν c) (Bi | ∏ {Dk | k ∉ X} | ∏ {Em | m ∈ X-{i} }) if i ∈ X
Sched(i,X) ≡ (ν c) (Ai | ∏ {Dk | k ∉ X U {i} } | ∏ { Em | m ∈ X }) if i ∉ X

• Proposition 2: Sched(i,X) = ScSpec(i,X)

• Theorem 1 is a particular case of Proposition 2

6 Novembre 2003 Concurrency 6 4

Implementation of the scheduler: how it works

D

A

D

a1

b2

cn

c1

b1

a2

b3

a3

c2

D

next

6 Novembre 2003 Concurrency 6 5

Implementation of the scheduler: how it works

D

C

D

a1

b2

cn

c1

b1

a2

b3

a3

c2

D

T1

6 Novembre 2003 Concurrency 6 6

Implementation of the scheduler: how it works

D

E

A

a1

b2

cn

c1

b1

a2

b3

a3

c2

D

T1

next

6 Novembre 2003 Concurrency 6 7

Implementation of the scheduler: a possible future configuration

E

B

D

a1

b2

cn

c1

b1

a2

b3

a3

c2

E
T3

T1

Tn next

6 Novembre 2003 Concurrency 6 8

Scheduler: Proof of Correctness
Proposition 2: Sched(i,X) = ScSpec(i,X)
Proof

• Lemma 3
– (1) (ν ci) (Ci | Di+1) = τ.(ν ci) (Ei | Ai+1)
– (2) (ν ci) (Ci | Ei+1) = τ.(ν ci) (Ei | Bi+1)

Proof: By exapansion law

• Lemma 4
– Sched(i,X) = ∑ { bk. Sched(i,X-{k}) | k ∈ X } if i ∈ X

– Sched(i,X) = ai.Sched(i+1,XU{i})
+
∑ { bk. Sched(i,X-{k}) | k ∈ X } if i ∉ X

Proof: By Expansion law and Lemma 3

From Lemma 4 and the Definition law we obtain that Sched(i,X) = ScSpec(i,X) □

6 Novembre 2003 Concurrency 6 9

Example: Counter
• It is possible in CCS to create structures which grow and shrink dynamically.

Examples include unbounded queues and stacks, and counters.

• Specification of a Counter
A counter is an object that can be
– tested for zero zero
– incremented inc
– decremented dec

Count0 ≡ inc.Count1 + zero. Count0

Countn ≡ inc.Countn+1 + dec. Countn-1 n > 0

6 Novembre 2003 Concurrency 6 10

Example: Counter
• Implementation: A structure obtained by linking together a process B

and n copies of a process C specified as follows:

B ≡ inc.(B^C) + zero.B

C ≡ inc.(C^C) + dec.D
D ≡ d

6 Novembre 2003 Concurrency 6 11

.C + z.B

P^Q ≡ (ν i’)(ν z’)(ν d’) (P(z,d,i’,z’,d’) | Q(z’,d’, inc,zero,dec))

Note: B, C and D stand for B(z,d,inc,zero,dec), C(z,d,inc,zero,dec), and D(z,d,inc,zero,dec) respectively.

(P^Q) stands for (P^Q)(z,d,inc,zero,dec).

Proposition: ^ is associative, i.e. P^(Q^R) = (P^Q)^R

CB
inc

zero

decd

z

dec

zero

inc

Example: Counter
• Implementation:

Definition: C(n) ≡ B^C^C^...^C (n times)

• Theorem (Correctness): C(n) = Countn
Proof
Lemma: (1) C^D ≈ D^C

(2) B^D ≈ B^B
(3) B^B = B

We can now prove that

– C(0) = inc. C(1) + zero. C(0) and

– C(n) = C(n-1) ^C for n > 0 by definition
= inc. (C(n-1) ^C^C) + dec. (C(n-1) ^D) by expansion law
= inc. C(n+1) + dec. C(n-1) by the lemma above

Hence C(n) satisfies the same equations as Countn. By the unique solution law we can conclude C(n) = Countn □

6 Novembre 2003 Concurrency 6 12

	Concurrency 6
	Example: A distributed scheduler
	Example: A distributed scheduler
	Scheduler: Proof of correctness
	Implementation of the scheduler: how it works
	Implementation of the scheduler: how it works
	Implementation of the scheduler: how it works
	Implementation of the scheduler: a possible future configuration
	Scheduler: Proof of Correctness
	Example: Counter
	Example: Counter
	Example: Counter

