Concurrency — Lecture 10

Exercises relative to Lectures 59

December 4, 2003

Exercise 1: Equational reasoning in CCS

Consider the following three CCS processes, where the channel names a, b, ¢, d, e, f
are supposed to be all different:

P Y (ve)(ab.cO|db.e0)

Q ¥ wfla.f.cO|d.f.e0)
R ¥ (ve)(a.c.0 | d.e.0)

Show that
Azt P = while Azl/ P=R

where Az are the standard axioms of the theory of CCS (for observational
equivalence).

Exercise 2: Specifications in CCS

Consider the following (infinite) specification of an unbounded queue in value-
passing CCS, where “” stands for the concatenation operation of an element
to a sequence, and “e” stands for the empty sequence. In this specification, in,

out and empty represent channel names.

Queue® de in(x).Queue® + empty. Queue’

Queue®” def in(z).Queue® T + out(v). Queue?

The exercise consists in defining a finite “implementation” for the queue,
still in value-passing CCS, that corresponds (i.e. is weakly bisimilar to) the
above specification. You don’t need to prove weakly bisimilarity.

Hint: The basic idea is similar to the implementation of the Counter illus-
trated in Lectures 6-7.



Exercise 3: Early and late bisimulation in the 7m-calculus

Consider an extension of the m-calculus with the so-called match operator [z =
y]P, whose semantics (early and late) is defined by

P-5Q
[z=2]P £ Q
(note that there are no transitions from [z = y|P when z # y).
Consider the processes
p ¥ z(y).zw.0 + z(y).0
Q def z(y).2w.0 + z(y).0 + z(y).[y = z]Zw.0
1. Show that P and @ are early bisimilar but not late bisimilar.

2. Define a @) with similar properties without using the match operator

Exercise 4: Recursion vs iteration in the w-calculus

Consider a variant of the m-calculus, R, where the iteration operator is replaced
by recursion, i.e. there is no “!” and processes can contain process names (with
parameters which represent channel names) A(x), defined by equations like

A) ¥ P

where P is a process in Rx.
The semantics of recursion is defined in the usual way, namely:

Ply/a] = Q
Aly) 5 Q
in both early and late semantics

1. Define an encoding [-] : Rm — 7 which is fully abstract wrt late bisim-
ulation. Hint: Use ! to expand a copy of P whenever needed. In order
to avoid that P is activated also when not needed, use an input prefix
on a fresh restricted channel. The call of P, namely A(y), can then be
simulated by an output action on the same channel, with y as parameter.

2. Prove the full-abstraction of the encoding wrt late bisimulation.



