
Robust channel ordering

• Given channels A and B on secret input X, the 
question of which leaks more will usually depend on 
the prior and the particular gain function used.

• Is there a robust ordering?
• This could allow a stepwise refinement methodology.

• This is arguably indispensable for security.

• For deterministic channels, a robust ordering has 
long been understood: the Lattice of Information 
[Landauer & Redmond ’93].
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The Lattice of Information
• A deterministic channel from X to Y induces a partition on X:  

secrets are in the same block iff they map to the same output.
• Example: Ccountry maps a person x to the country of birth. 

• Partition refinement ⊑: Subdivide zero or more of the blocks.
• Example: Cstate also includes the state of birth for Americans. 

• Ccountry ⊑ Cstate
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USAFrance Spain

BrazilUK China

France Spain

BrazilUK China

ORCA FL

OHNY DC

Ccountry’s partition:

Cstate’s partition:



Partition refinement and leakage

• If A ⊑ B, then B leaks at least as much as A under any of the standard 
leakage measures (Shannon-, min-, and guessing entropy.  The latter is 
the expected number of questions of the form “is S=s?” to figure out 
the secret entirely).

• Interestingly, the converse also holds:                                       
Theorem [Yasuoka &Terauchi ’10,  Malacaria ’11] 
A ⊑ B 
    iff 
A never leaks more than B on any prior, under any of the standard 
leakage measures 

• Hence ⊑ is an ordering on deterministic channels with both a 
structural and a leakage-testing characterization.

• Can we generalize it to probabilistic channels?
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Composition refinement

• Note that Ccountry is the composition of Cstate and 
Cmerge, where Cmerge post-processes by mapping all 
American states to USA.

Ccountry    =  Cstate  Cmerge

• Def:   A ⊑o B (“A is composition refined by B”) if there 
exists a (post-processing) C such that A = BC.

• On deterministic channels, composition refinement ⊑o coincides with 
partition refinement ⊑.

• So ⊑o generalizes ⊑ to probabilistic channels.
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Strong leakage ordering
• Def: A ≤G B (“A never out-leaks B”) if the g-leakage of A never 

exceeds that of B, for any prior π and any gain function g. 

• Def: A ≤min B if the min-entropy leakage of A never 
exceeds that of B, for any prior π.

• It turns out that A ≤min B, even though A ≤G B 
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z1 z2
x1 2/3 1/3
x2 2/3 1/3

x3 1/4 3/4

y1 y2 y3

x1 1/2 1/2 0
x2 1/2 0 1/2

x3 0 1/2 1/2

A = B =

/



Relationship between ⊑o and ≤G

• Theorem: [Generalized data-processing inequality] 
If A ⊑o B then A ≤G B.

• Intuitively, the adversary should never prefer BC to B.

• Theorem: [“Coriaceous”] 
If A ≤G B then A ⊑o B.

• Conjectured for a long time. Proved by  McIver et al. in 2014 using 
geometrical techniques (the Separating Hyperplane Lemma). 

• So we have an ordering of probabilistic channels, with both 
structural and leakage-testing significance.
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Exercises

Consider again the two programs A and B on a uniformly 
distributed, 64-bit x: 

A.   y  =  (x  or  00000… 0111); 
B.   if (x % 8 == 0)  then y = x;  else  y = 0;

8. Show that they both have min-entropy leakage 61 bits.

9. Define g8, which allows 8 tries, and show that it makes A 
worse than B.

10.  Define gtiger, which gives a penalty for a wrong guess 

(allowing guess “⊥” to mean “don’t guess”) and show that it 
makes B worse.  For simplicity, allow gtiger to range in [-1,1]
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Differential Privacy

• Differential privacy [Dwork et al.,2006] is a notion of 

privacy originated from the area of Statistical Databases

• The problem: we want to use databases to get statistical 

information (aka aggregated information), but without 

violating the privacy of the people in the database
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The problem

• Statistical queries should not reveal private information, but it is not 

so easy to prevent such privacy breach. 

• Example: in a medical database, we may want to ask queries that help to figure the 

correlation between a disease and the age, but we want to keep private the info 

whether a certain person has the disease.

name age disease

Alice 30 no

Bob 30 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Query:                                 
What is the youngest age of a 
person with the disease?

Answer:                        
40

Problem:                        
The adversary may know that 
Don is the only person in the 
database with age 40
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The problem

name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Alice Bob

Carl Don

Ellie Frank

k-anonymity: the answer always partitions 
the space in groups of at least k elements
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• Statistical queries should not reveal private information, but it is not 

so easy to prevent such privacy breach. 

• Example: in a medical database, we may want to ask queries that help to figure the 

correlation between a disease and the age, but we want to keep private the info 

whether a certain person has the disease.



Correlation: Many-to-one

• Principle: Ensure that there are many secret values that 
correspond to one observable 

• This is the general principle of most deterministic approaches 
to protection of confidential information (group anonymity, k-
anonymity, !-anonymity, cloacking, etc.)

Secrets
Observables



The problem

Unfortunately,  the many-to-one 

approach is not robust under 

composition:

name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Alice Bob

Carl Don

Ellie Frank
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The problem of composition

Consider the query:                                   

What is the minimal weight of a 

person with the disease?

Answer:  100

Alice Bob

Carl Don

Ellie Frank

name weight disease

Alice 60 no

Bob 90 no

Carl 90 no

Don 100 yes

Ellie 60 no

Frank 100 yes
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The problem of composition

name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Combine with the two queries:                                  

minimal weight and the minimal 

age of a person with the disease

Answers:  40, 100

Alice Bob

Carl Don

Ellie Frank

name weight disease

Alice 60 no

Bob 90 no

Carl 90 no

Don 100 yes

Ellie 60 no

Frank 100 yes
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This is a general problem of the deterministic 
approaches (based on the principle of many-to-one): the 
combination of observations determines smaller and 
smaller intersections on the domain of the secrets, and 
eventually result in singletones

Secrets
Observables



This is a general problem of the deterministic 
approaches (based on the principle of many-to-one): the 
combination of observations determines smaller and 
smaller intersections on the domain of the secrets, and 
eventually result in singletones

Secrets
Observables



Composition attacks

Composition attacks are real!                                       
For instance, in a recent paper,  Narayanan et Smatikov 
showed that by combining the information of two popular 
social network (Twitter and Flickr) they were able to de-
anonymize a large percentage of the users (about 80%) 
and retrieve their private information with only a small 
probability of error (12%).

De-anonymizing Social Networks,  Arvind Narayanan and Vitaly Shmatikov. 
Security & Privacy '09.



name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Alice Bob

Carl Don

Ellie Frank

name weight disease

Alice 60 no

Bob 90 no

Carl 90 no

Don 100 yes

Ellie 60 no

Frank 100 yes

Solution

Introduce some probabilistic noise 
on the answer, so that the answers 
of minimal age and minimal weight 
can be given also by other people 
with different age and weight
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name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Alice Bob

Carl Don

Ellie Frank

Noisy answers

minimal age: 
40 with probability 1/2
30 with probability 1/4
50 with probability 1/4
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Alice Bob

Carl Don

Ellie Frank

name weight disease

Alice 60 no

Bob 90 no

Carl 90 no

Don 100 yes

Ellie 60 no

Frank 100 yes

Noisy answers

minimal weight:
100 with prob. 4/7
90  with prob. 2/7
60  with prob. 1/7
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name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Alice Bob

Carl Don

Ellie Frank

name weight disease

Alice 60 no

Bob 90 no

Carl 90 no

Don 100 yes

Ellie 60 no

Frank 100 yes

Noisy answers

Combination of the answers
The adversary cannot tell for 
sure whether a certain 
person has the disease  
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Noisy mechanisms

• The mechanisms reports an approximate answer, 
typically generated randomly on the basis of the true 
answer and of some probability distribution

• The probability distribution must be chosen carefully, 
in order to not destroy the utility of the answer

• A good mechanism should provide a good trade-off 
between privacy and utility.  Note that, for the same 
level of privacy, different mechanism may provide 
different levels of utility.

• First of all, we need to formalize the notions of privacy 
and utility



• There have been various attempts to formalize the notion of privacy, but the 
most successful one is the notion of Differential Privacy, recently introduced by 
Dwork

• Differential Privacy [Dwork 2006]:   a randomized function K provides  ε-
differential privacy if for all databases x, x′ which are adjacent (i.e., differ for 
only one record),  and for all z ∈Z, we have 

• The idea is that the likelihoods of x and x′ are not too far apart, for every S 

• Differential privacy is robust with respect to composition of queries

• The definition of differential privacy is independent from the prior (but this 
does not mean that the prior doesn’t help in breaching privacy!)

Differential Privacy

p(K = z|X = x)

p(K = z|X = x

0)
 e

✏
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...

...
x1

xm

z1 zn

p(zn|x1)p(z1|x1)

p(z1|xm) p(zn|xm)

...

...
...

...

K can be seen as a noisy channel, in the information-theoretic sense
from the domain X of databases  to the domain Z of reported answers
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Differential privacy on the channel matrix

...

...
x1

xm

z1 zn

p(zn|x1)p(z1|x1)

p(z1|xm) p(zn|xm)

...

...
...

...

adjacent

ratio bound by eε 

ratio bound by eε 
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Differential Privacy: alternative definition

• Perhaps the notion of differential privacy is easier to understand under the 
following equivalent characterization. 

• In the following, Xi is the random variable representing the value of the 
individual i, and X≠i is the random variable representing the value of all the 
other individuals in the database

• Differential Privacy, alternative characterization:   a randomized function 
K provides  ε-differential privacy if:

for all x 2 X , z 2 Z, pi(·)

1

e

✏
 p(Xi = xi|X 6=i = x 6=i)

p(Xi = xi|X 6=i = x 6=i ^K = z)

 e

✏



Question

• What is the basic difference between the 
protection guarantees offered by differential 
privacy, and those of Information flow? 



Answer
• Information flow is an average measure (in 

the domain of privacy, it measures the 
“common good”). Differencial privacy is a 
worst-case measure, it protects every 
individual. 

• Differencial privacy induces a bound on the 
information flow. The vice versa is not true

• In a sense, information flow represents the 
point of view of a company (e.g., ensurance 
company). Differential privacy represents the 
point of view of the individual. 



Utility in Oblivious Mechanisms
• Given  f : X → Y  and   K : X → Z,  we say that K is oblivious if it depends 

only on Y  (not on X)

• If K is oblivious, it can be seen as the composition of f and a randomized 
mechanism H  (noise) defined on the exact answers    K = f x H

• Privacy concerns the information flow between the databases and the reported answers, 
while utility concerns the information flow between the correct answer and the 
reported answer



The reported answer, i.e. the answer given by the randomized function, should allow 
to approximate the true (i.e. the exact) answer to some extent 

Z = reported answer;   Y = exact answer

Utility:   

In this formula, the remap is chosen so to maximize the result. The remapping 
allows the user to use side information (i.e. a the priori pb) to maximize utility. 

For instance, if the reported answer is 20, but I know that the minimum possible 
answer is 21, then I will remap the answer to 21 

 

   Example: binary gain function:   

   In the binary case  the utility is the expected value of the probability of success to obtain the 
true answer (note the correspondence with the min-vulnerability)

In general, the gain function is anti-monotonic with the distance between the real 
value and the reported (and remapped) value. 

Utility

U(Y, Z) =
X

y,z

p(y, z) gain(y, remap(z))

gain(y1, y2) =

(
1 y1 = y2

0 y1 6= y2



Optimal mechanisms

• Given a prior p, and a privacy level e, an e-
differentially private mechanism K is called 
optimal if it provides the best utility among all 
those which provide e-differential privacy

• A mechanism is universally optimal if it is 
optimal for all priors p 

• Note that the level of privacy does not 
depend on the prior, but the utility (in 
general) does.

• The optimal mechansim can be computed 
with linear optimization techniques



A typical e-differentially-private mechanism: 
Laplacian noise

• Randomized mechanism for a query  f : X → Y.                            

• A typical randomized method: add Laplacian noise. If the exact answer is y, 
the reported answer is z, with a probability density function defined as:
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dPy(z) = c e�
|z�y|
�f "

where �f is the sensitivity of f :

�f = max

x⇠x

02X
|f(x)� f(x

0
)|

(x ⇠ x

0
means x and x

0
are adjacent,

i.e., they di↵er only for one record)

and c is a normalization factor:

c =
"

2�f



The geometric mechanism

• The geometric mechanism is a sort of discrete Laplacian. 

• Assume that Y and Z are sets of integers.   In the geometric 
mechanism, the probability distribution of the noise is: 

• where c is a normalization factor,  defined so to obtain a 
probability distribution, and D f is the sensitivity of query f

• Note that it does not make much sense to report answers 
outside Y.  If  Y is an interval  [a,b], we can  truncate  the 
mechanism, i.e., set Z = Y,  and  transfer on the extremes a 
and b all the probability that (according to the formula 
above) would fall outside the interval, to the left or to the 

p(z|y) = c e�
|z�y|
� f "



Counting Queries

• A counting query is a query of the form:  
How many individuals (tuples) in the database 
satisfy the property P ? 

• The sensitivity of a counting query is 1



Exercise

• Define the noise probability distribution for 
the geometric mechanism for a counting 
query 

• Truncate the above mechanism to the left of 
0 (because for a counting query it does not 
make sense to report negative answers) 



1. [Ghosh et al., STOC 2009]                                                                                     
The geometric mechanism and the 
truncated geometric mechanism are 
universally optimal for counting queries and 
any (anti-monotonic) gain utility function
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two fundamental results



2. [Brenner and Nissim, STOC 2010]    The counting queries are the 
only kind of queries for which a universally optimal mechanism exists

• This means that for other kind of queries one the optimal 
mechanism is relative to a specific user. 

• The precise characterization is given in terms of the graph             
induced by 

Privacy vs utility: 
two fundamental results

not ok
ok

not ok
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Thank you !


