More properties of the leakage

H(S) = Hw(S) = 0 iff Sis a point probability distribution (aka
delta of Dirac), i.e., all the probability mass is in one single value

The maximum value of H(S) and Hw(S) is log #S

Shannon mutual information is symmetric: 1(S;0) = [(O;S)
Namely: H(S) - H(S|O) = H(O) - H(O|S).
This does not hold for the min-entropy case

If the channel is deterministic, then [(§;0) = H(O)

If the channel is deterministic, then Ce= C = log #0O
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How N

Exercises

. Prove that 1o(S;0) = 0

Prove that if all rows of the channel matrix are equal, then [»(5;0) = 0
Prove that all rows of the channel matrix are equal if and only if Coo =0

Compute Shannon leakage and Rényi min-leakage for the password
checker (the version where the adversary can observe the execution
time), assuming a uniform distribution on the passwords
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S ={a,b}
pla) =z pb)=1-z
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Reényi min-entropy vs. Shannon entropy

J
Rényi min entropy and conditional entropy are the log of piecewise linear functions

J
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S ={a,b,c}
p(a) =z p(b) =y




Shannon capacity vs. Rényi min-capacity

binary channel a |1-a
1-b

Shannon capacity Rényi min-capacity

In general, Renyi min capacity is an upper bound for Shannon capacity
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Limitations of min-entropy leakage

® Min-entropy leakage implicitly assumes an
operational scenario where adversary ‘A benefits

only by guessing secret S exactly, and in one try.

® But many other scenarios are possible:
® Maybe A can benefit by guessing S partially or approximately.
® Maybe A is allowed to make multiple guesses.

® Maybe A is penalized for making a wrong guess.

® How can any single leakage measure be
appropriate in all scenarios!?
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Notation

TT prior probability
X, X1, X2 ... X secrets
X,¥1,Y2 ... Y observables

W, Wi, W2 ... W guesses
(they may be different from the secrets)
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Gain functions and g-leakage

We generalize min-entropy leakage by introducing gain functions to
model the operational scenario.

In any scenario, there is a finite set W of guesses that A can make
about the secret.

For each guess w and secret value X, there is a gain g(w,x) that ‘A
gets by choosing w when the secret’s actual value is x.

Definition: gain function g : W x X — [0, |]
Example: Min-entropy leakage implicitly uses
1,if w=x
gia(wix) = 0, otherwise
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g-vulnerability and g-leakage

® Definition: Prior g-vulnerability:

[Vg[Tr] = maxw X x TT[x]g(w,x) ]

“A’s maximum expected gain, over all possible guesses.”

® Posterior g-vulnerability:

| VaIT.Cl = 5 p(y) Valpy] |

® g-leakage: L4(TT,C) = logV,[TT,C] - log V[ TT]

® g-capacity: MLg(C) = supn Lg(11,C)
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The power of gain functions

Guessing a secret approximately. Guessing a property of a secret.
g(w,x) = 1 - dist(w,x) g(w,x) = Is x of gender w?

| | >

4 4

) ﬁ’"

1 1

4 4
Guessing a part of a secret. Guessing a secret in 3 tries.
g(w, x) = Does w match the high-order bits of x? g3(w, x) = Is x an element of set w of size 3?

Dictionary:

superman

history123
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Distinguishing channels with gain functions

® Two channels on a uniformly distributed, 64-bit x:

A. y = (x or 00000... Olll);
B. if(x7% 8==0) theny =x; else y=1;

® A always leaks all but the last three bits of x.

® B |eaks all of x one-eighth of the time, and almost nothing seven-eighths of the
time.

® Both have min-entropy leakage of 61 bits out of 64.

® VWe can distinguish them with gain functions.
® g3 which allows 8 tries, makes A worse than B.

® giiser, Which gives a penalty for a wrong guess (allowing
“1” to mean “don’t guess”) makes B worse.
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Robustness worries

Using g-leakage, we can express precisely a rich variety
of operational scenarios.

But we could worry about the robustness of our
conclusions about leakage.

The g-leakage L4(TT,C) depends on both 1T and g.

® TT models adversary A’s prior knowledge about X

® g models (among other things) what is valuable to A.

How confident can we be about these?

Can we minimize sensitivity to questionable
assumptions about TT and g?
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Capacity results

Capacity (the maximum leakage over all priors) eliminates
assumptions about the prior TT.

Capacity relationships between different leakage measures
are particularly useful.

Theorem: Min-capacity is an upper bound on Shannon
capacity: ML(C) = SC(C).

Theorem (“Miracle”): Min-capacity is an upper bound on g-
capacity, for every g: ML(C) = MLy (C).

® Hence if C has small min-capacity, then it has small g-leakage under every prior and every
gain function.

® (Note that the choice of g does affect both the prior and the posterior g-vulnerability.)
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