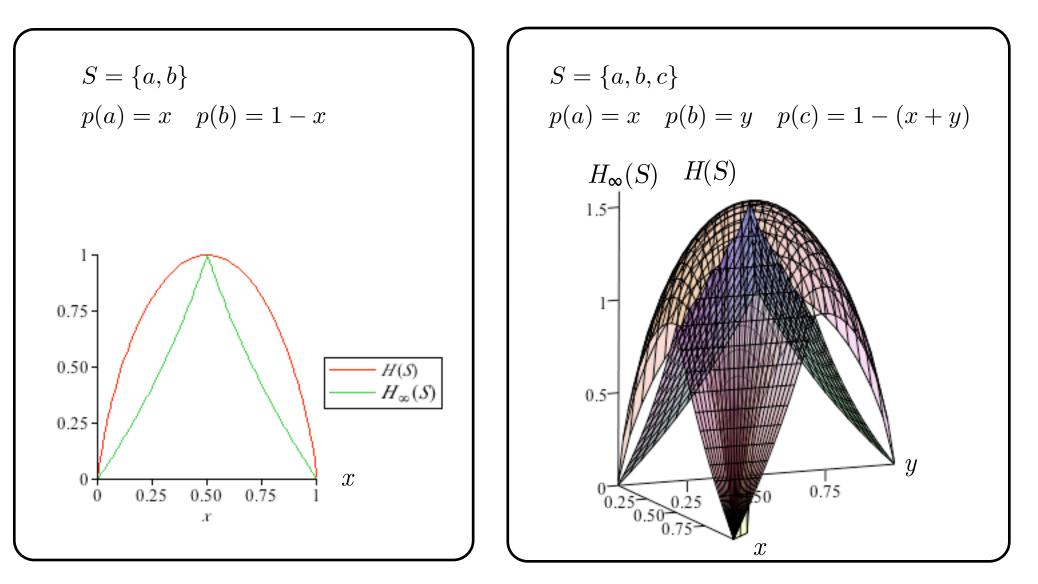
More properties of the leakage

- $H(S) = H_{\infty}(S) = 0$ iff S is a point probability distribution (aka delta of Dirac), i.e., all the probability mass is in one single value
- The maximum value of H(S) and $H_{\infty}(S)$ is log #S
- Shannon mutual information is symmetric: I(S;O) = I(O;S) Namely: H(S) - H(S|O) = H(O) - H(O|S). This does not hold for the min-entropy case
- If the channel is deterministic, then I(S;O) = H(O)
- If the channel is deterministic, then $C_{\infty} = C = \log \# O$

Exercises

- I. Prove that $I_{\infty}(S;O) \ge 0$
- 2. Prove that if all rows of the channel matrix are equal, then $I_{\infty}(S;O) = 0$
- 3. Prove that all rows of the channel matrix are equal if and only if $C_{\infty} = 0$
- 4. Compute Shannon leakage and Rényi min-leakage for the password checker (the version where the adversary can observe the execution time), assuming a uniform distribution on the passwords

Rényi min-entropy vs. Shannon entropy

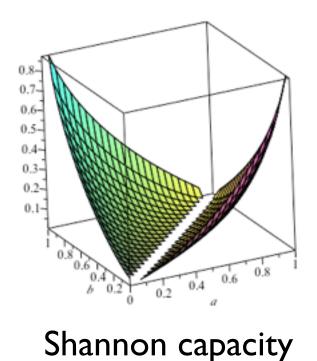


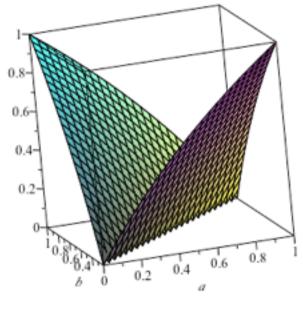
Rényi min entropy and conditional entropy are the log of piecewise linear functions

Shannon capacity vs. Rényi min-capacity

binary channel

а	1-a
b	1-b





Rényi min-capacity

In general, Rényi min capacity is an upper bound for Shannon capacity

Limitations of min-entropy leakage

- Min-entropy leakage implicitly assumes an operational scenario where adversary A benefits only by guessing secret S exactly, and in one try.
- But many other scenarios are possible:
 - Maybe \mathcal{A} can benefit by guessing S partially or approximately.
 - Maybe \mathcal{A} is allowed to make multiple guesses.
 - Maybe \mathcal{A} is penalized for making a wrong guess.
- How can any single leakage measure be appropriate in all scenarios?

Notation

- π prior probability
- $x, x_1, x_2 \dots X$ secrets
- $x, y_1, y_2 \dots Y$ observables
- w, w₁, w₂ ... W guesses
 (they may be different from the secrets)

Gain functions and g-leakage

- We generalize min-entropy leakage by introducing gain functions to model the operational scenario.
- In any scenario, there is a finite set $\mathcal W$ of guesses that $\mathcal A$ can make about the secret.
- For each guess w and secret value x, there is a gain g(w,x) that A gets by choosing w when the secret's actual value is x.
- **Definition**: gain function $g : \mathcal{W} \times \mathcal{X} \rightarrow [0, 1]$
- Example: Min-entropy leakage implicitly uses

$$g_{id}(w,x) = \begin{cases} 1, & \text{if } w = x \\ 0, & \text{otherwise} \end{cases}$$

g-vulnerability and g-leakage

• Definition: Prior g-vulnerability:

$$V_{g}[\pi] = \max_{w} \sum_{x} \pi[x]g(w,x)$$

"A's maximum expected gain, over all possible guesses."

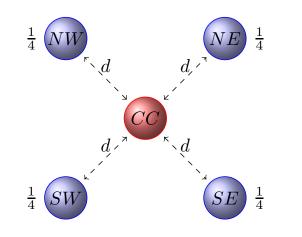
• Posterior g-vulnerability:

 $V_{g}[\pi,C] = \sum_{y \in P}(y) V_{g}[P \times |y]$

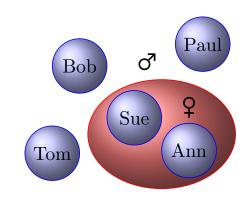
- g-leakage: $\mathcal{L}_g(\pi, C) = \log V_g[\pi, C] \log V_g[\pi]$
- g-capacity: $\mathcal{ML}_g(C) = \sup_{\pi} \mathcal{L}_g(\pi, C)$

The power of gain functions

Guessing a secret approximately. g(w,x) = 1 - dist(w,x)

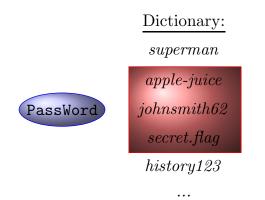


Guessing a property of a secret. g(w,x) = Is x of gender w?



Guessing a part of a secret. g(w, x) = Does w match the high-order bits of x?

Guessing a secret in 3 tries. $g_3(w, x) = Is x$ an element of set w of size 3?



Distinguishing channels with gain functions

• Two channels on a uniformly distributed, 64-bit x:

A. y = (x or 00000...0111);

B. if (x % 8 == 0) then y = x; else y = 1;

- A always leaks all but the last three bits of x.
- B leaks all of x one-eighth of the time, and almost nothing seven-eighths of the time.
- Both have min-entropy leakage of 61 bits out of 64.
- We can distinguish them with gain functions.
- g₈, which allows 8 tries, makes A worse than B.
- g_{tiger}, which gives a penalty for a wrong guess (allowing "⊥" to mean "don't guess") makes B worse.

Robustness worries

- Using g-leakage, we can express precisely a rich variety of operational scenarios.
- But we could worry about the **robustness** of our conclusions about leakage.
- The g-leakage $\mathcal{L}_g(\pi, C)$ depends on both π and g.
 - π models adversary A's prior knowledge about X
 - g models (among other things) what is valuable to \mathcal{A} .
- How confident can we be about these?
- Can we minimize sensitivity to questionable assumptions about π and g?

Capacity results

- **Capacity** (the maximum leakage over all priors) eliminates assumptions about the prior π.
- Capacity relationships between **different** leakage measures are particularly useful.
- **Theorem**: Min-capacity is an upper bound on Shannon capacity: $\mathcal{ML}(C) \ge SC(C)$.
- Theorem ("Miracle"): Min-capacity is an upper bound on gcapacity, for every g: $\mathcal{ML}(C) \geq \mathcal{ML}_g(C)$.
 - Hence if C has small min-capacity, then it has small g-leakage under every prior and every gain function.
 - (Note that the choice of g does affect both the prior and the posterior g-vulnerability.)