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Abstract

The concept of anonymity comes into play in a wide
range of situations, varying from voting and anonymous do-
nations to postings on bulletin boards and sending mails.
One of the formal definitions of this concept given in liter-
ature is based on nondeterminism. In this paper, we inves-
tigate a notion of anonymity based on probability theory,
and we show that it can be regarded as a generalization of
the nondeterministic one. We then formulate this definition
in terms of observables for processes in the probabilistic 7-
calculus, and propose a framework to verify the anonymity
property. We illustrate the method by using the example of
the dining cryptographers.

1 Introduction

The concept of anonymity comes into play in those cases
in which we want to keep secret the identity of the agent
participating to a certain event. There is a wide range of
situations in which this property may be needed or desir-
able; for instance: delation, voting, anonymous donations,
and posting on bulletin boards.

Anonymity is often formulated in a more general way
as an information-hiding property, namely the property that
a part of information relative to a certain event is main-
tained secret. One should be careful, though, to not confuse
anonymity with other properties that fit the same descrip-
tion, notably confidentiality (aka secrecy). Let us empha-
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size the difference between the two concepts with respect
to sending messages: confidentiality refers to situations in
which the content of the message is to be kept secret; in
the case of anonymity, on the contrary, it is the identity
of the originator, or of the recipient, that has to be kept
secret. Analogously, in voting, anonymity means that the
identity of the voter associated with each vote must be hid-
den, and not the vote itself or the candidate voted for. A dis-
cussion about the difference between anonymity and other
information-hiding properties can be found in [6].

An important characteristic of anonymity is that it is usu-
ally relative to a particular point of view. In general an
event can be observed from various viewpoints - differing
in the information they give access to, and therefore, the
anonymity property depends on the view from which the
event is being looked at (that is the exact information avail-
able to the observer). For example, in the situation of elec-
tronic bulletin boards, a posting by one member of the group
is kept anonymous to the other members; however, it may
be possible that the administrator of the board has access to
some privileged information and can determine the member
who posted the message(s), either directly or indirectly.

In general anonymity may be required for a subset of the
agents only. In order to completely define anonymity for a
system it is therefore necessary to specify which set(s) of
members has to be kept anonymous. A further generaliza-
tion is the concept of group anonymity: the members are
divided into a number of sets, and it is revealed which of
the groups is responsible for an event, but the information
as to which particular member has performed the event must
be hidden. In this paper, however, we do not consider the
notion of group anonymity, we leave it for further work.

Various formal definitions and frameworks for analyz-
ing anonymity have been developed in literature. They
can be classified into approaches based on process-calculi
([17, 20]), epistemic logic ([19, 6]), and “function views”



([8D). In this paper, we focus on the approach based on
process-calculi.

The framework and techniques of process calculi have
been used extensively in the area of security, to formally
define security properties, and to verify cryptographic pro-
tocols. See, for instance, [1, 9, 14, 16, 2]. The common de-
nominator is that the various entities involved in the system
to verify are specified as concurrent processes and present
typically a nondeterministic behavior. In [17, 20], the non-
deterministism plays a crucial role to define the concept of
anonymity. More precisely, this approach to anonymity is
based on the so-called “principle of confusion”: a system
is anonymous if the set of the possible outcomes is satu-
rated with respect to the intended anonymous users, i.e. if
one such user can cause a certain observable trace in one
possible computation, then there must be alternative com-
putations in which each other anonymous user can give rise
to the same observable trace (modulo the identity of the
anonymous users).

The principle of anonymity described above is very ele-
gant and general, however it has a limitation: if the observer
has the means to repeat the experiment and perform statis-
tical analysis, he may be able to deduce certain quantitative
information on the system. In particular, he may be able
to compute the probability of certain observables and from
that infer the probability of the relation between users and
observables. Now, the situation of perfect anonymity can be
only achieved when, for each observable, all the users have
the same probability of having produced it, one cannot infer
any information on the agent from the observable. However
this condition cannot be expressed in the nondeterministic
approach, since the latter is based on set-theoretic notions,
and it is therefore only able to detect the difference between
possible and impossible (which in the finite case correspond
to positive and zero probability respectively). Even the case
in which one user has probability close to 1 will be con-
sidered acceptable by the definition of anonymity based on
nondeterminism, provided that all the other users have pos-
itive probability.

Probabilistic information allows to classify various no-
tions of anonymity according to their strength. Reiter and
Robin propose the following hierarchy ([13]):

Beyond suspicion The actual user (i.e. the user that per-
formed the action) is not more likely (to have per-
formed the action) than every other user

Probable innocence The actual user has probability less
than 1/2

Possible innocence There is a non trivial probability that
another used could have performed the action.

For the reasons explained above, in the nondeterministic ap-
proach this hierarchy would collapse into the same notion.

Figure 1. Classification of the actions in an
anonymous system

In this paper we explore a notion of anonymity which
corresponds to the strongest one above; we leave the others
for future investigation.

1.1 Contributions

The contributions of this paper are as follows:

e \We propose a new notion of anonymity based on prob-
ability theory, and we show that it can be regarded as
a generalization of the nondeterministic one given in
[17, 20].

o \We formulate this definition in terms of observables for
processes in the probabilistic w-calculus, and propose
a framework to verify anonymity.

e \We illustrate the method by using the example of the
dining cryptographers.

2 The nondeterministic
anonymity

approach to

In this section we briefly recall the approach in [17, 20].
In these works, the actions of a system S are classified into
three sets (see Figure 1):

e A: the actions that are intended to be known anony-
mously by the observer,

e B: the actions that are intended to be known com-
pletely by the observer,

e (' the actions that are intended to be abstracted (hid-
den) to the observer.



Typically the set A consists of actions of the form a.7, where
a is a fixed “abstract” action (the same for all the elements
of A), and ¢ represents the identity of an anonymous user.
Hence:

A={ailielI}.

Where I is the set of all the identities of the anonymous
users. The partition of the remaining actions in B and C
determines the “point of view”.

Consider a dummy action d (different from all actions in
S)and let f be the function on the actions of A | J B defined
by f(a) =difa € A, and f(a) = a otherwise. Then S is
said to be (strongly) anonymous on the actions in A if

FTHF\0)) ~r S\ C,

where, following the CSP notation ([4]), S\ C is the system
resulting from hiding C in S, f(S’) is the system obtained
from S’ by applying the relabeling f to each (visible) ac-
tion, f~! is the relation inverse of f, and ~7 represents
trace equivalence?.

Intuitively, the above definition means that for any action
sequence & € A, if an observable trace ¢ containing & is a
possible outcome of S\ C, then, any trace ¢’ obtained from
t by replacing & with an arbitrary @' € A must also be a
possible outcome of S\ C.

We now illustrate the above definition on the example of
the dining Cryptographers.

3 Standard Dining Cryptographers Prob-
lem

This problem was described by Chaum ([5]). The stan-
dard dining cryptographers’ problem involves a situation in
which three cryptographers are dining together, at the end
of which, each of them is secretly informed by a central
agency (master) whether or not she is paying. Thus, either
the master itself is paying, or one of the cryptographers is
paying. The cryptographers would like to find out whether
it is one of them who is paying, or is it the master who is
paying; however, if the payer is one among them, they also
wish to maintain anonymity over the identity of the payer.
Of course, we assume that the master herself will not re-
veal this information, and also we want the solution to be
distributed, i.e. communication can be achieved only via
message passing, and there is no central memory or central
‘coordinator’ which can be used to find out this information.

A possible solution to this problem, as described in [5],
is that each cryptographer tosses a coin, which is visible
to herself and her neighbor to the right. Each cryptogra-
pher observes the two coins that she can see and announces

1The definition given here corresponds to that in [17]. In [20] the au-

thors use a different, but equivalent definition: they require p(S\C) ~r
S\ C for every permutation p in A.

Figure 2. Abstraction of the Standard Dining
Cryptographers’ Problem

agree or disagree. If a cryptographer is not paying, she will
announce agree if the two sides are same and disagree if
they are not. However, the paying cryptographer will say
the opposite. It can be proved that if the number of dis-
agrees is even, then the master is paying; otherwise, one
of the cryptographers is paying. Furthermore, if one of the
cryptographers is paying, the other two cannot identify who
exactly has paid from the information available to them.

3.1 Nondeterministic Dining Cryptographers

In this approach to the solution protocol of the Dining
Cryptographers’ Problem mentioned above, the outcome of
the coin tossing and the decision of the master regarding the
payment of bill are considered to be nondeterministic.

The nondeterministic specification for the solution pro-
tocol of the Dining Cryptographers’ Problem can be given
in a process calculus style as illustrated below. For the sake
of uniformity we use the w-calculus ([11]). We recall that
+ (X) is the nondeterministic sum and | (II) is the paral-
lel composition. 0 is the empty process. 7 is the silent (or
internal) action. ém and c(x) are, respectively, send and re-
ceive actions on channel ¢, where m is the message being
transmitted and z is the formal parameter. v is an operator
that, in the mw-calculus, has multiple purposes: it provides
abstraction (hiding), enforces synchronization, and gener-
ates new names. For more details on the 7-calculus and its
semantics, we refer to Appendix A.1.

In the code below, & and © represent the sum and the
subtraction modulo 3. Messages p and n sent by the master



are the requests to pay or to not pay, respectively. pay; is
the action of paying for cryptographer i.

We remark that we do not need all the expressive power
of the m-calculus for this program. More precisely, we do
not need guarded choice (all the choices are internal because
they start with 7), and we do not need neither name-passing
nor scope extrusion, thus v is used just like the restriction
operator of CCS [10].

Master = E?:o T . TP - Mig1N - Mgan . 0
+ T.mgn.myn.man.0
Crypt; = mi(x).cii(y).ciim ().
ifz=p
then pay; .ify =z
then out;agree
else out;disagree
elseify =z
then out; disagree
else out;agree
Coin; = 7.Head; + 7. Tail;
Head; = ¢;;head.Cio1,:head .0
Tail; = ©Tiitail .Cio1,itail .0
DCP = (vm)(Master

| (v&) (I, Crypt; | I, Coins) )

The actions that are to be hidden (set C) are the com-
munications of the decision of the master and the results of
the coins (171, ¢). These are already hidden in the definition
of the system DCP. The anonymous users are of course
the cryptographers, and the anonymous actions (set A) is
constituted by the pay, actions, for i = 0,1,2. The set
B is constituted by the actions of the form out;agree and
out;disagree, fori = 0,1, 2.

Let f be the function f(pay;) = pay and f(a) =
« for all the other actions. It is possible to check that
f Y f(DCP))) ~r DC P, where we recall that ~7 stands
for trace equivalence. Hence the nondeterministic notion of
anonymity, as defined in Section 2, is verified

3.1.1 Limitations of the nondeterministic approach

As a result of the nondeterminism, we cannot differentiate
between a fair coin and an unfair one. However, it is evident
that fairness of coins is essential to ensure the anonymity
property in the system. For example, if a cryptographer

knows that the coin that is not visible to her is strongly bi-
ased to be head and since she knows about two coins and
can predict the third one with high probability, she can also
guess the payer out of the other two (if any) with very high
probability. For instance if she observes (say) head in both
the coins visible to her as well, then the cryptographer who
disagrees is most likely to be the payer. As another exam-
ple, if it is known that two coins are strongly biased to be
head, and the cryptographer who sees these two coins de-
clares disagree, then she in high probability is the one who
is paying the bill. This is a limitation of the nondetermin-
istic approach. The problem raises from the fact that it can
only express whether or not it is possible to have a particular
trace, but cannot express whether one trace is more probable
than the other.

3.2 The probabilistic w-calculus

In this section we recall the definition of the probabilis-
tic m-calculus, m,, which was introduced in [7]. This cal-
culus was used in [12] to express various randomized al-
gorithms, notably the distributed implementation of the -
calculus with mixed choice. In this paper, we are going
to use it as a formalism to express systems of probabilistic
anonymous agents.

3.2.1 Probabilistic Automata

The mp,-calculus is based on the model of probabilistic au-
tomata of Segala and Lynch ([18]), which are able to ex-
press both probabilistic and nondeterministic behaviors.

A discrete probabilistic space is a pair (X, pb) where X
is a finite or countable set and pb is a function pb : X —
(0,1] suchthat 3+ pb(x) = 1. Givenaset Y, we define
the sets of all probabilistic spaces on Y as

Prob(Y) ={(X,pb) | X CYand(X,pbd)is

a discrete probabilistic space }.

Given a set of states .S and a set of actions A, a proba-
bilistic automaton on S and A is a triple (S, T, s¢) where
so € S (initial state) and 7 C S x Prob(4A x S). We
call the elements of 7 transition groups (in [18] they are
called steps). The idea is that the choice between two dif-
ferent groups is made nondeterministically, while the tran-
sition within the same group is chosen probabilistically.

Given a set of states .S and a set of actions A, a proba-
bilistic automaton on S and A is a triple (S, T, s¢) where
so € S (initial state) and 7 C S x Prob(A x S). We
call the elements of 7 transition groups (in [18] they are
called steps). The idea behind this model is that the choice
between two different groups is made nondeterministically



and possibly controlled by an external agent, e.g. a sched-
uler, while the transition within the same group is chosen
probabilistically and it is controlled internally (e.g. by a
probabilistic choice operator). An automaton in which there
is at most one transition group for each state is called fully
probabilistic.

We define now the notion of execution of an automaton
under a scheduler, by adapting and simplifying the corre-
sponding notion given in [18]. A scheduler can be seen as
a function that solves the nondeterminism of the automaton
by selecting, at each moment of the computation, a transi-
tion group among all the ones allowed in the present state.
Schedulers are sometimes called adversaries, thus convey-
ing the idea of an external entity playing “against” the pro-
cess. A process is robust with respect to a certain class of
adversaries if it achieves its intended result for each possible
scheduling imposed by an adversary in the class. Clearly,
the reliability of an algorithm depends on how “smart” the
adversaries of this class can be. We will assume that an ad-
versary can decide the next transition group depending not
only on the current state, but also on the whole history of the
computation till that moment, including the random choices
made by the automaton.

Given a probabilistic automaton M = (S, T, s¢), define
tree(M) as the tree obtained by unfolding the transition sys-
tem, i.e. the tree with a root ng labeled by sq, and such that,
for each node n, if s € S is the label of n, then for each
(s,(X,pb)) € T, and for each (u, s') € X, there is a node
n' child of n labeled by s’, and the arc from n to n’ is la-
beled by p and pb(u, s"). We will denote by nodes(M) the
set of nodes in tree(M), and by state(n) the state labeling
a node n.

An adversary for M is a function ¢ that associates
to each node n of tree(M) a transition group among
those which are allowed in state(n). More formally, ¢ :
nodes(M) — Prob(A x S) such that {(n) = (X, pb) im-
plies (state(n), (X, pb)) € T.

The execution tree of an automaton M = (S, T, so)
under an adversary ¢, denoted by etree(M,(), is the
tree obtained from tree(M) by pruning all the arcs
corresponding to transitions which are not in the
group selected by ¢. More formally, etree(M,() is
a fully probabilistic automaton (S’,77,m¢), wWhere
S' C nodes(M), no is the root of tree(M), and
(n, (X', pb")) € T"iff X' = {(u,n') | (n, state(n')) €
X andn'isachildof nin tree(M)} and pb'(u,n') =
pb(p, state(n')), where (X,pb) = ({(n). If
(n, (X',pb")) € T', (u,n') € X', and pb'(p,n') = p, we
will use sometime the notation n % n'.

An execution fragment £ is any path (finite or infinite)
from the root of etree(M, (). The notation £ < &' means

that £ is a prefix of £. If £ iSng =2 ny =5 ny 2 ..., the
Po 1 P2

probability of £ is defined as pb (&) = [, ps. If £ is maxi-
mal, then it is called execution. We denote by ezec(M, ¢)
the set of all executions in etree(M, ¢).

We define now a probability on certain sets of execu-
tions, following a standard construction of Measure The-
ory. Given an execution fragment &, let C; = {¢' €
exec(M,() | & < &'} (cone with prefix &). Define
pb(Ce) = pb(&). Let {C; }icr be a countable set of disjoint
cones (i.e. I is countable, and Vi, j. i # j = C; N C; = 0).
Then define pb(U;c; Ci) = >, pb(Cs). Two countable
sets of disjoint cones with the same union produce the same
result for pb, so pb is well defined. Further, we define the
probability of an empty set of executions as 0, and the prob-
ability of the complement of a certain set of executions, with
respect to the all executions as the complement with respect
to 1 of the probability of the set. The closure of the cones
(plus the empty set) under countable unions and comple-
mentation generates what in Measure Theory is known as a
o-field.

3.22 Syntax and transition system of the the m,-
calculus

We will now illustrate the m,-calculus. Syntactically, the
only difference with respect to the w-calculus is that we do
not have the free choice (or mixed guarded choice depend-
ing on the presentation), and we have instead the output pre-
fix

zy.P

and the following probabilistic non-output choice operator
Z pia;.P;
i

where the p;’s represents positive probabilities, i.e. they
satisfy p; € (0,1} and >°. p; = 1, and the a;’s are non-
output prefixes, i.e. either input or silent prefixes.

In order to give the formal definition of the probabilistic
model for 7, it is convenient to introduce the following
notation: given a probabilistic automaton (S, 7, so) and s €
S, we write

s {%) si|iel}
iff (s, ({(pi,s:) | @ € I},pb)) € T and Vi € I p; =

pb(ps,s;), where I is an index set. When I is not rele-
vant, we will use the simpler notation s { £ s;};. We will
Pi

also use the notation s {5 s;};.4(;), Where $(4) is a log-
pi
ical formula depending on 4, for the set s {£5 s; | i €
pi

I'and ¢(7)}.

The operational semantics of a 7, process P is a proba-
bilistic automaton whose states are the processes reachable
from P and the 7 relation is defined by the rules in Table 1.
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(%)
> i pia.P; {:07 P};

7y.P {if> P}

Py

2795 W— 7£
vyP {@ P’} ey

P{% P}
Pi

vyP {%} VyPi}tiygin(u)

P {5 P},
Pi

a; = zi(y;) and P! = P,[z;/y;] or
a; =7and P/ = P,

Ji.y & fn(u;) and
Vi. pi = p;/ Zj:yefn(w)pj

. bn(n) N fn(Q) = 0
P1Q {5 P |k
P{Z5 P} Q{5 Qi

if u; = z(z) thenz =y

P | Q {f) P | Qz}zu,:w(y) U {%) P | Qi}i:m;éw(y)

P {E%Z P

Q{5 Qi

if uyy = z(z) thenz =y

P | Q {%) yy(Pl | Qi)}i:ui:w(y) U {%) P | Qi}i:ui;é:c(y)

p=p P {g—> Q'}:

P {% Qi}i

Table 1. The probabilistic transition system of the 7,-calculus.




The following is an informal explanation of the rules in
Table 1.

SuM: This rule models the behavior of a choice process:
each transition corresponds to the possible execution
of an enabled guard «; and the consequent commit-
ment to the branch P;. Note that all possible transitions
belong to the same group, meaning that the transition
is chosen probabilistically by the process itself.

OuT: This rule expresses the fact that an output prefix pro-
cess a.P simply performs the action, and then contin-
ues with P.

REs: This rule models restriction on channel y: only the
actions on channels different from y can be performed
and possibly synchronize with an external process.
The probability is redistributed among these actions.

OPEN: This rule works in combination with CLOSE by sig-
naling that the send action labeling the transition is on
a name which is private to the sender.

PAR: This rule represents the interleaving of parallel pro-
cesses. All the transitions of the processes involved
are made possible, and they are kept separated in the
original groups. In this way we model the fact that the
selection of the process for the next computation step
is determined by a scheduler. In fact, choosing a group
corresponds to choosing a process.

CoMm: This rule models communication by handshaking.
The output action synchronizes with all matching in-
put actions of a partner, with the same probability of
the input action. The other possible transitions of the
partner are kept with the original probability as well.
Note that the the side condition ensure that all match-
ing inputs are considered. Thanks to alpha-conversion,
we can always rewrite a process so that this condition
is met.

CLosE: Thisrule is analogous to CoMm, the only difference
is that the name being transmitted is private (local) to
the sender.

CoNG: This rule rule says that structurally equivalent pro-
cesses perform the same transitions.

3.2.3 Probabilistic Dining Cryptographers

We show here how to express in 7, the probabilistic ver-
sion of the dining cryptographers, which can be obtained
from the nondeterministic one by attaching probabilities to
the the outcome of the coin tossing and the decision of the
master. The probability on actions will induce probabilities
on the traces. Thus, we can not only check whether a trace
is possible or not, but can also compare their probabilities.

In the specification which follows, the po, . .., p3 repre-
sent the probabilities of the various decisions of the master,
while py, and p; represent the probabilities of the outcome
of the coin tossing.

We remark that, also in this case, we do not use the full
power of the 7,-calculus. In particular, we only use proba-
bilistic internal choice (because all the branches are prefixed

by 7).

2 — _
Master = ) . (Pi T.M;p.Mig1n . Migan .0

+ p3T.mon.min.myn .0

Crypt; = mi(z).cii(y) - ciio1(z) -
ifz=p
then pay, .ify =2
then out;agree
else out; disagree
elseify =2
then out;disagree
else out;agree
Coin; = pp7.Head; + pi7. Tail;
Head; = ¢;;head.Cio1,:head .0
Tail; = €;;tail .Cior,itail .0
DCP = (vm)(Master

| (v&) (M, Crypt; | iy Coiny) )
4 Probabilistic Anonymity

In this section we propose our notion of probabilistic
anonymity.

Also in this case we classify the actions of a system S
into the three sets A, B and C of Section 2. As before, these
three sets are determined by the set of the anonymous users,
the specific type of action on which we want anonymity, and
the observer. We only change notation slightly:

e The set of the anonymous actions:
A={a(@)|i eI}

where I is the set of the identities of the anonymous
users and a is an injective functions from I to the set
of actions which we call abstract action. We also call
the pair (I, a) anonymous action generator.

e The set of the actions that we observe entirely, B. We
will use b, b, .. .to denote the elements of this set.



e The set of the hidden actions C.

It should be remarked the the term “observable” here is rel-
ative: we assume that the observer can observe only B and
a, but, to the purpose of defining anonymity and checking
whether a system is anonymous, we need to let the elements
of A by visible outcomes of the system. We will come back
to this point in Section 4.1.

We assume that a probability p is assigned to the actions
of the set A and O.

Definition 1 An anonymity structure is a tuple
(I,a,B,E,p) where (I,a) is an anonymous action
generator, B is a set of actions (the observables), =
the set of all possible executions of the system restricted
on C (i.e. abstracted from the hidden actions), and p is
a probability measure on the event space generated by
= (i.e. the sigma space generated by the cones in Z, see
Section 3.2.1).

Note that as expressed by the above definition, an event
is a set of executions. For the sake of simplicity, we will use
the following notation to represent some events:

e a(i): the event consisting of all the executions contain-
ing the action a(i)

e 0. the event consisting of all the executions contain-
ing as their maximal sequence of observable actions
the sequence o = by, bs, ..., b,. We will represent by
O the set of all the maximal sequences of observable
actions.

We will use the symbols Vv and A to represent the union and
the intersection of events, respectively. We will say that two
events z and y are incompatible if p(z A y) = 0. We will
say that they are compatible otherwise.

Since O contains all the maximal sequences of all pos-
sible computations, and the o’s are disjoint, we have the
following result:

Proposition 1
1. p(0) =1

2. Yo,0' € O, if o # o' then p(o V o') = p(0) + p(0).

In order to formalize the notion of anonymity, we will
use the concept of conditional probability. Recall that,
given two events z and y, the probability of x given y, de-
noted by p(z|y), is equal to the probability of z and y,
divided by the probability of y:

p(z Ay)
»(y)

In an anonymous system, it must not be possible to de-
rive any probabilistic information on the anonymous users

p(z|y) =

from the observables of O. This means that, when we ob-
serve a certain event o, the probability of o having been
induced by a(i) must be the same as the probability of o
having been induced by a(j) for any other j € I.

Definition 2 An anonymity structure (I,a, B, =, p) satis-
fies anonymity (i.e. the system is anonymous wrt the corre-
sponding observer and anonymous users) iff

Vi,j € ,Yo€ O: p(o|a(i)) = plo]a(j))

This definition of probability may seem a bit surprising
at first: one would have expected the roles of a(:) and 0
reversed. l.e.: a system is anonymous if, for every o, the
probability of a(i) given o is the same as the probability of

a(j) giveno. Formally: Vi, j € I,Yoe O :  p(a(i)|o) =
p(a(j)|o). In fact, we had tried this definition first, but
we soon realized that it did not work. On the example of
the dining cryptographers, for instance, a(4) is pay;, and
its probability is decided by the master. So in general, in-
dependently from the observables, p(a(i)) and p(a(j)) are
different.

Note the analogy between Definition 2 and the defini-
tion in Section 2 for the non-deterministic case. The lat-
ter claims that for a system to be anonymous (in the non-
deterministic sense) over events a(i) € A, if, whenever
there is a trace containing o € O and a(¢), then there should
be a trace with the same observable part o and an action a(3j)
for every other anonymous actions a(j) € A. If we include
probabilities to the events in this definition, then we have
two possible extensions, that are the one in Definition 2 and
the (wrong) one in the paragraph which follows the defini-
tion. .

We give now some sufficient criterion to prove
anonymity:

Proposition 2 Given an anonymity structure
(I,a,B,E,p), the following three properties are equiva-
lent, and each of them implies anonymity:

1. Vie I,Vo,0 € O: p(a(i)|o) = p(a(i) | o).
2.Vie I,Yoe O: p(a(i)|o) = p(a(i)).
3. VieI,Yo,0 € O: p(a(i) A o) = p(a(i))p(o).

Proof: We show that 1 implies 2. The other statements
are immediate.

pla(i)) = pla(i) AO) (Proposition 1.1)

= > .co pla(i) Ao) (Proposition 1.2)
= > oco pla(i)|o)p(o) (defof cond. prob.)
= pla(i)]o) Y ,co p(o) (hypothesis 1)

= p(a(i)|o) (Proposition 1.1)

O



4.1 Application to Dining Cryptographers’ Prob-
lem

In the probabilistic Dining Cryptographers described in
Section 3.2.3, the events a(7)’s are the actions pay;. The
observable events in B are out;agree and out;disagree,
and the sequences in O are all those of the form «g, a1, a2
where a; = out;agree or a;; = out; disagree.

It is worth noting that this system is both nondetermin-
istic and probabilistic. However, the nondeterministic com-
ponent here does not play any role, because for each sched-
ule we get always the same result (traces), modulo the order
of the visible actions. Hence we will simply assume that we
have fixed a scheduler, and we will cope with the system as
if it were a purely probabilistic automaton.

In general, for analyzing systems which are both non-
deterministic and probabilistic, one should enrich the defi-
nition of anonymity given in previous section by requiring
that the same property holds with respect to any scheduling
policy.

We now prove that the probabilistic Dining Cryptogra-
phers satisfy anonymity. According to the definition in pre-
vious section, in order to determine the anonymity of a
given system, it is required to compute p(o|a(i)). If this
value is same Vi € I, then the system is anonymous. We
could do it by examining the probability of all the compu-
tations, but we prefer to introduce a new method of proof
which will turn out to be useful also in the rest of the paper.

In the dining cryptographers’ problem, we can observe a
relationship between a trace consisting of a(i) and o’s and
the set of results of the coins. We will call the latter key-
configuration. More precisely, a key -configuration is a par-
ticular assignment of values (0 or 1) to all the edges in the
graph (keys). Giveni € I,0 € O, C(i,0) represents the
set of all key-configurations which are compatible with the
simultaneous occurrences of a() and o.

It turns out that the value of p(a()|o) is determined by
the key-configurations:

Lemmal Vie I,Yoe O: p(a(i)|o) = p(C(i,0)|o0)

Proof: In the general dining cryptographers’ problem
(graph) with n cryptographers (nodes) and m keys (edges),
the total number of key configurations is 2™. If an observ-
able set of events is known to the observer (o), then some of
these configurations can be ruled out. For examples, some
key-configurations would correspond to the case in which
more than one cryptographer inverts her output - these can
be eliminated immediately.

If the observable set of events o (a set of outputs from
all the cryptographers) is known, such that it is determined
by their binary sum that one of them is paying, then by
assuming one of the cryptographers to be the payer, we

find the possible key-configuration(s). We combine all
the satisfying key-configuration(s) for each potential payer
and obtain a one-to-one relationship between a set of key-
configuration(s) and a potential payer. This implies that,
given the observable set of events o , whenever a(i) oc-
curs, C(i,0) also occurs, and vice versa. In fact, this is
how we defined C(i,0). Thus, p(a(é)|o) will be equal to
p(C(i,0)|o). O

Extension 1: Since at most one cryptographer inverts
his output (as the situation can have only one payer), each
possible key-configuration can correspond to at most one
payer. This implies the following:
Vi,k € I,Vo € O, ifi # k then
are disjoint.

C(i,0) and C(k,o0)

Extension 2: If C(i,0) and o occurs then a(i) must
also occur. However, a(i) can occur for other values of
C(i,0) or o as well. In order to equate the probabilities we
would need to consider a(¢) occurring either with C(i, o) or
o. Thus, we get relations: p(C(i,0) A o) = p(C(i,0) A €;)
or p(C(i,0) Ao) = p(a(i) Ao). It can be noted that these re-
lations also verify the main lemma result that p(a(i) A o) =
p(C(i,0) A o).

4.1.1 Determination of Anonymity

To determine anonymity in the general dining cryptogra-
phers’ problem with possibly unfair coins, we needed to
evaluate Vi € I,Vo € O :  p(o|a(i)). However, from
the above lemma and since the probability of each key-
configuration can be computed using (known) informa-
tion on the probability of individual keys, we have shifted
the task of evaluating p(a(7) |o) to determining the set of
key-configuration(s) corresponding to the particular payer
(a(7)), given that o occurs.

This can be achieved by first selecting a node to be
the potential payer; and then making cuts on the edges
of the graph (dividing it into 2 parts) and resolving the 2
subgraphs, for all the permutations of the values on the
cut-edges. This is done recursively, till complete keys-
configuration(s) have been evaluated. It must be noted that,
based on the overall sum of the outputs and the sum of the
keys on the cut-edges, it can be determined in which of the
2 subgraph the payer lies in. Thus in each cut, we select the
key-values of the cut-edges such that their sum indicates the
payer to be in the same subgraph as that of the node which
is considered to be the potential payer.

Therefore, for the dining cryptographers’ problem, the
values of p(a(7)|o) can be computed as described in the for-
going. If this value is same Yo € O, then according to
Proposition 2 in section 4, the system is anonymous.



4.1.2 Case of Fair Coins

The previous section provides a generic procedure to deter-
mine anonymity in the general dining cryptographers’ prob-
lem. However, if we consider the coins (keys) to be fair,
then we observe some useful properties.

Lemma 2 If the coins (keys) are fair, then considering
the number of cryptographers is n Vi € I,Yo € O :
p(C(i,0)|C(0)) = 1/n

where C'(o) represents a set of key-configurations as a func-
tion of o € O. such that all the elements of the set are com-
patible with o.

Proof: First consider a simple case in which the cryp-
tographers are arranged such that the corresponding nodes
are in the form of a tree (that is, the corresponding graph is
acyclic). If the outputs for each cryptographer are known to
the observer (such that one of them is the payer), then there
is exactly one configuration of keys possible for each poten-
tial payer. Also, since all the coins (keys) are known to be
fair, the probability of each key-configuration is the same.
Thus the probability of configuration(s) corresponding to
each potential payer is equal and we get p(C'(i,0)|C(0)) =
1/n. O

To illustrate the fact that given the outputs from all the
cryptographers, there is only one configuration possible for
each potential payer in an acyclic arrangement (with fair
coins), consider the example in figure 3. The outputs from
each node (o) are known. Let us evaluate the possible con-
figurations for E (a(7)) to be the payer.

We start the analysis from the leaf-nodes of the tree. A
leaf has one unknown incident edge - while the output of the
node, and whether or not she is the payer is known. Con-
sider inversion of a node to be 1 if it is the payer, else 0; and
edge-value to be 1 if the corresponding coin is head, else
0 if tail. Thus, we can evaluate the unknown incident edge
from the rule:

output = (D edge-values + inversion)mod 2

After evaluating the incident edges on all the leaves
(D, E, F in figure 3, with incident edges 0,0,1 respec-
tively), we exclude them from further analysis. We move
toward the root from each of these nodes and consider the
next set of nodes (B, C in our example). Again, for each of
these nodes, the incident edges is not known, but the origi-
nating edges (to its children) and whether or not she is the
payer is known. We use the same rule and determine the
incident edge (1,1 for nodes B, C respectively). We thus
continue moving upward, each time determining the inci-
dent edge on the nodes, till we reach the root of the tree. At
the root, we can verify that the rule holds (as in our exam-
ple, output of A is 0, and the sum of its coins (keys) and
inversion is also 0).
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Figure 3. Determination of key-configurations
in an acyclic graph

This analysis is more complex in the situation where the
cryptographers are arranged in a manner such that the cor-
responding graph has cycles. However, in order to deter-
mine p(C(i,0) | C (o)) for a particular payer we again eval-
uate the number of key-configurations, corresponding to the
payer, and divide it by the number of configurations for all
possible payers.

It is evident that if there is one extra edge, resulting in a
single cycle, then by considering specific values (0 and 1)
for the edge, we can remove it from the graph (ensuring con-
nectivity of the rest of the graph) and evaluate the possible
configurations in the two resulting acyclic subgraphs. That
is, if we consider the extra edge to be 0 (tail), then the re-
maining graph will be acyclic and the analysis (as specified
above) for acyclic graphs will return one possible configura-
tion for each node to be the payer. By the same analysis, we
will get another (different) configuration for each node, if
the extra edge is considered to be 1(head). Thus, the number
of configurations for each node to be the payer will double
up uniformly. That is, p(C(i,0)|C(0) = 2/2n = 1/n.

We can generalize this for k extra edges. k extra edges
mean 2* possible permutations of 1s and 0s, and thus as
many acyclic subgraphs (or distinct key-configurations).
Here again, p(C (i, 0)|C(0) = 2¥/2%n = 1/n. It must be
noted that for n connected nodes with no cycles, there will
be n — 1 edges. Since all the coins (keys) are fair, we can
randomly declare edges as ’extra’ (provided connectivity is
maintained) till n — 1 edges are remaining.

4.1.3 Dependence on Fairness of Coins

Main Result: In the general dining cryptographers’ prob-
lem, if coins (keys) are fair then any possible ar-
rangement (key sharing) of the diners will maintain
anonymity of the payment of bill (from the point of
view of a cryptographer, or an external observer) pro-
vided the corresponding graph is connected.



Proof: Using lemma 2 (page 10) and the extensions of
lemma 1 (page 9) we can show that any arrangement of din-
ers satisfies the sufficient condition of anonymity for the
probabilistic case (Proposition 2). This condition states that
a system is anonymous iff

Vie I,Vo,0' € O: pla(i)]o)

Vi € 1,0,0' € Ig, we have the following:

= p(a(i)|0")

p(a(i) | o) = % (standard)
= W (extension 2)
2le(@)p(CG.)  (independence)
p(oj) = >, ploAaf(i)) (standard)
= >, p(C(i,0) Aa(i)) (extension 2)
= 2.; (p(C(i,0)) - pla(i)))  (independence)
= 3, (0(C(0)) - 3 - pla(i))) (lemma?2)
= p(C(0))-L (standard)
pla(i) o) = BB (al(,?éﬁ(ﬁ(;’o)) (from above)
pa(i) | o) = pla(i)) (lemma 2)
p(a(i) | o) = p(a(i)) (from above)
pla(@) |o) = p(a(@) | o) (Definition 2)

O

We have shown that for fair coins (keys), any possi-
ble arrangement (key sharing) of the diners will maintain
anonymity provided the corresponding graph is connected.
However if, in a given arrangement of diners there is an un-
fair key, then it may still be possible to directly show that
it is anonymous if the edge corresponding to the unfair key
forms a part of a cycle. As explained in section 4.1.1, if a
key is known to the observer, then it must be removed from
the graph, similarly, in the probabilistic case, we remove
unfair keys from the graph.

Thus, if an arrangement of diners in the general din-
ing cryptographers’ problem have unfair key(s), the corre-
sponding edges from the graph must be removed. If connec-
tivity of the graph is maintained then the system is anony-
mous for all cryptographers. Otherwise, the connected
components of the graph will represent different anony-
mous sets of cryptographers.
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5 Redated work

[8]) developed a modular framework to formalize a range
of properties (including numerous flavors anonymity and
privacy) of computer systems in which an observer has only
partial information about system behavior, thereby combin-
ing the benefits of the knowledge-based approach (natural
specification of information-hiding) and the algebra-based
approach (natural specification of system behavior). It pro-
poses the notion of function view to represent a mathemat-
ical abstraction of partial knowledge of a function. The
logical formulas describing a property are characterized as
opaqueness of certain function views, converted into predi-
cates over observational equivalence classes, and verified,
when possible, using the proof techniques of the chosen
process formalism.

In [6, 19] epistemic logic is used to characterize
a number of information-hiding requirements (including
anonymity).[19] introduces the notion of a group principal
and an associated model, language and logic to axiomatize
anonymity. The main advantage of modal logic is that even
fairly complex properties can be stated directly as formulas
in the logic. However, to verify whether a given system sat-
isfies a property it is necessary to formalize the behavior of
system agents as knowledge-based programs. On the other
hand, [6] uses a completely semantic approach and provides
an appropriate semantic framework in which to consider
anonymity. It also using this framework to derive notions
of probabilistic anonymity. The basic notions of probability
in anonymity that we have considered is similar to the ones
described there, but our definition is based only on proba-
bility theory and is free from this framework.
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A Appendix
A.1 The r-calculus

We recall here the basic notions about the 7-calculus.
We choose the variant used in [3, 15], which differs from
the standard one because is has a guarded choice instead of
the free choice. This is convenient because it will allow to
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introduce the probabilistic w-calculus, in the next section,
in a smoother way.

Let V' be a countable set of names, z,y,.... The set
of prefixes, a, 3, ..., and the set of w-calculus processes,
P,Q,...,are defined by the following abstract syntax:

Prefizes

a = z(y) | Ty | T

Processes P = 3 .0;.P; | veP | P|P

| 1P [ [z=y]P | [s#y]P

Prefixes represent the basic actions of processes: x(y) is
the input of the (formal) name y from channel z; Zy is the
output of the name y on channel z; 7 stands for any silent
(non-communication) action.

The process ), «;.P; represents guarded (global)
choice and it is usually assumed to be finite. We will use the
abbreviations 0 (inaction) to represent the empty sum, a.P
(prefix) to represent sum on one element only, and P+ () for
the binary sum. The symbols vz, |, and ! are the restriction,
the parallel, and the replication operator, respectively.

To indicate the structure of a process expression we
will use the following conventions: Py | Py | P> |...| Pr—1
stands for (... ((Py | P1) | P2)|...| Px—1), i.e. the paral-
lel operator is left associative, and a1 . Py | 2. P stands for
(a1.P1)|(az.Py), i.e. the prefix operator has precedence
over |. In all other cases of ambiguity we will use parenthe-
ses.

The operators vz and y(z) are z-binders, i.e. in the pro-
cesses vz P and y(x).P the occurrences of z in P are con-
sidered bound, with the usual rules of scoping. The set of
the free names of P, i.e. those names which do not occur in
the scope of any binder, is denoted by fn(P). The alpha-
conversion of bound names is defined as usual, and the re-
naming (or substitution) P{y/x} is defined as the result of
replacing all occurrences of x in P by y, possibly applying
alpha-conversion to avoid capture.

In the paper we use also the construct

if z = y then Pelse Q

This expression is syntactic sugar standing for the process
[z =y]P|[z#y] P

The operational semantics is specified via a transition
system labeled by actions u, p' . ... These are given by the
following grammar:

Actions p = zy | Zy | Z(y) | 7
Action zy corresponds to the input prefix z(z), where the
formal parameter z is instantiated to the actual parameter



y (see Rule I-SuM in Table 2). Action Zy correspond to
the output of a free name. The bound output Z(y) is in-
troduced to model scope extrusion, i.e. the result of send-
ing to another process a private (v-bound) name. The
bound names of an action u, bn(u), are defined as follows:
bn(z(y) = {y}; bu(zy) = ba(zy) = bn(r) = 0. Fur-
thermore, we will indicate by n(u) all the names which oc-
curin p.

In literature there are two definitions for the transition
system of the w-calculus which induce the so-called early
and late bisimulation semantics respectively. Here we
choose to present the first one. There is no difference be-
tween the two for the purposes of our paper.

The rules for the early semantics are given in Table 2.
The symbol = used in Rule CoNG stands for structural
congruence, a form of equivalence which identifies “stati-
cally” two processes. Again, there are several definition of
this relation in literature. For our purposes we do not need
a very rich notion, we will just use it to simplify the presen-
tation. Hence we only assume this congruence to satisfy the
following:

(i) P = @ if @ can be obtained from P by alpha-
renaming, notation P =, @,

(i) PIQ = QIP,
(ii}) (P|Q)IR = P|(QIR),

(iv) (vzP)|Q = va(P|Q) if = & fo(Q),
(v) 'P=P|IP,

i) [z = 2] P = P,

(vii) [z # y] P = P, if z is syntactically different from y.
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I-Sum > 0i.b Gl Pjlz/y] «a; =z(y)
O/r-Sum Zi a;.P; i) Pj a; =ryora; =7
P p
OPEN ——— z#y
vyP 20 pr
P4 p
Res  ———— yénlp)
vyP — vyP’
P54 P
PAR — bn(p) Nf(Q) =10
P|Q — P'Q
P p QY
Com
PlQ — P'|Q
P p @Yy
CLOSE —
PlQ — vy(P'|Q")
P=pP P -5Q Q=Q
CoNG
P5Q
Table 2. The transition system of the =-
calculus.




