

Old dog, new tricks: Exact seeding strategy improves RNA design performances

Théo Boury¹, Leonhard Sidl^{2,3}, Ivo L. Hofacker^{2,3}, Yann Ponty¹, and Hua-Ting Yao²

- 1, Laboratoire d'Informatique de l'Ecole Polytechnique (LIX; UMR 7161), Institut Polytechnique de Paris, France
- Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
 Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, 1090 Vienna, Austria

Motivation: RNA Design

Studied problem: RNA Inverse Folding

Problem 1 (RNA Inverse Folding):

Input: A secondary structure *S* (pseudoknot-free).

Output: An RNA sequence ω with $\forall S' \neq S, \Delta G(\omega, S) < \Delta G(\omega, S')$

where $\Delta G(\omega, S)$ is the free-energy of ω in:

1. Base pairs maximization model ${\cal B}$

[Bonnet et al, RECOMB 2018]

2. Turner nearest-neighbor model \mathcal{T}

- ► A new design tool based on RNAinverse + LinearBPDesign seeds.
- \triangleright \mathcal{B} -designs are good proxies for \mathcal{T} -designs.
- Seeding matters: time and diversity improvements.

Solve RNA Design in \mathcal{B} : LinearBPDesign [Boury et al, 2024]

2-separated sequence

GUUCAAAAAAAAAGAAGAAGAA

 X_U and X_A can only interact if $(X_U \mod 2) = (X_A \mod 2)$

Adapting toward \mathcal{T} : Biseparated sequences [This paper!]

(2, 2)-biseparated sequence

GGGUCCCACCCACCA GGGAAAAACCCUCUGA

 X_U and X_A X_G and X_C can only interact if $(X_U \mod 2) = (X_A \mod 2) (X_G \mod 2) = (X_C \mod 2)$

Biseparated sequences are computed in linear time

$$\mathbf{p}_{v \to \mu, (\ell_{A}, \ell_{C})}^{(\xi_{L_{A}}, \xi_{L_{C}})} = \begin{cases} \mathbb{1}_{(l \in \xi_{L_{A}}) \land (\mu = \mathsf{A})} + \mathbb{1}_{(l \in \xi_{L_{C}}) \land (\mu = \mathsf{C})} & \text{if } v \text{ is leaf} \\ 0 & \text{if } \ell \in \xi_{L_{A}} \\ \text{and } \mu \in \{\mathsf{AU}, \mathsf{UA}\} \\ \text{if } \ell \in \xi_{L_{C}} \\ \text{and } \mu \in \{\mathsf{GC}, \mathsf{CG}\} \\ 1 & \text{if } \mathsf{children}(v) = \varnothing \\ \sum_{\substack{\mu' \text{ "proper"} \\ \text{assignment} \\ \text{children}(v)}} \prod_{\substack{v_{l} \\ \in \mathsf{children}(v)}} \mathbf{p}_{v_{l} \to \mu'(v_{l}), (\ell'_{A}, \ell'_{C})}^{(\xi_{L_{A}}, \xi_{L_{C}})} \\ \text{otherwise} \end{cases}$$

Find (bi)separated sequences for "most" RNA structures in O(n)!

The dog: RNAinverse, a heuristic "simple" tool for ${\mathcal T}$

- ► RNAinverse was firstly introduced to reach the neutral network by random mutations from uniformly sampled seeds. [Hofacker et al, 1994 (... before me!)]
 - Does not run too far from the seeds: good to study them!

The trick: interface RNAinverse with (bi)separated seeds

Questions:

- 1. Are some (bi)separated seeds directly in the neutral network?
- 2. Otherwise, how quickly do we reach the neutral network?
- 3. How much are we covering the neutral network?

1. (Bi)separated sequences are mostly \mathcal{T} -designs

	Number of	Number of	Total
Seeds	MFE solved	random solved	(/3000)
	struct. (/2000)	struct. (/1000)	
Uniform	1065	15	1080
Separated	1531	952	2483
Biseparated	1524	979	2527
Uniform (> 300 seqs)	1	0	1
Separated (> 300 seqs)	1525	400	1925
Biseparated (> 300 seqs)	1392	317	1709

- ▶ Benchmark: 1000 Random structures + 2000 MFE structures.
- ightharpoonup A reasonnable amount of \mathcal{B} -designs are \mathcal{T} -designs with no use of RNAinverse.

2. \mathcal{B} -designs reach a \mathcal{T} -designs in a few mutations

- ▶ We sample 100 sequences for each 476 "hard" structure (\mathcal{B} -design $\rightarrow \mathcal{T}$ -design).
- ▶ Biseparated and Separated seeds are close to be *T*-designs

2. Our time computations are competitive

- ► Time benefit from linear time + proximity to the neutral network.
- ▶ NEMO solved all structures with at least one solution but is more time-consuming.

3. Biseparated sequences enable diversity!

- ▶ Same 100 sequences for each 476 "hard" structure as before.
- ► More likely to cover the neutral network with biseparated seeds!

"Almost" conclusion

- ▶ We revisit RNAinverse: old but gold with (bi)separated seeds.
- Diversity matters: biseparable seeds are quickly computed and varied.
- ► We can walk in the neutral network to increase even more diversity:

 Before

Perspective: Mix "positive" design and "negative" seeds, more comparisons in the paper!

What about the EterRNA 100 benchmark?

▶ Old dog: RNAinverse with no (bi)separated seeds (53)

AAA... is it really about our result?

► Forced As at unpaired positions is all you need to be competitive with the state of the art on EterRNA 100!!!

Final thought

We need more benchmarks and evaluations for design!

- ▶ We need new benchmarks of objectively hard synthetic structures.
- ► We should go beyond the "inverse optimization" problem: getting just one highly constraint solution is not enough. (Diversity, GC-content, etc)

Acknowledgements

