(NP-hard?) RNA Design in linear time and space! (most of the time)

ightarrow e.g. for structures without isolated stacks or base pairs

Théo Boury¹, Laurent Bulteau², Yann Ponty¹

- 1, Laboratoire d'Informatique de l'Ecole Polytechnique (CNRS/LIX; UMR 7161), Institut Polytechnique de Paris, France
- 2, Laboratoire d'Informatique Gaspard Monge (CNRS/LIGM; UMR 8049), Université Gustave Eiffel, France

RNA 2D folding vs RNA structural design

Inverse folding (IF): Formal definition

Goal: Find ω such that T is unique+optimal+valid fold for ω $\forall S \neq T, S$ comp. with $\omega, \# BasePairs(S) < \# BasePairs(T)$

Inverse folding (IF): Formal definition

Goal: Find ω such that T is unique+optimal+valid fold for ω $\forall S \neq T, S$ comp. with $\omega, \# BasePairs(S) < \# BasePairs(T)$

Minimal undesignable structures

[Halès et al, 2017]

- ► Any target featuring occurrence of m3o or m5 is not designable
- ► Inverse folding (+ minor constraints) is NP-hard [Bonnet et al, 2018]

 → Infinite (+ exp. growth) list of min undesignable motifs

 (unless P=NP)
- ▶ Decision version of Inverse Folding not reducible to pattern matching

Design complexity

Inverse Folding efficiently solved for non-bonsai structures

 h_{min} = Minimum #base pairs in an helix

Theorem: Inverse folding (IF) is solved in linear time and space for secondary structures with $h_{min} = 3$. [This talk]

Design complexity when $h_{min} = 3$

Technical point: Separable structure

[Halès et al, 2017]

- ► Unpaired: A, Paired: G, U, C
- ▶ Separated sequence $\leftrightarrow \forall$ alternative A-U, $\#G \#C \neq 0$
- ▶ Separable structure $\leftrightarrow \exists \omega$, separated sequence $\rightarrow \omega$, solution for IF

Result:

[This talk]

Deciding if a structure is separable is NP-complete

Technical point: Separable structure

- ► Unpaired: A, Paired: G, U, C
- ▶ Separated sequence $\leftrightarrow \forall$ alternative A-U, $\#G \#C \neq 0$
- ▶ Separable structure $\leftrightarrow \exists \omega$, separated sequence $\to \omega$, solution for IF

Result:

[This talk]

Deciding if a structure is separable is NP-complete

m-separable structure

Result:

[This talk]

- ► Core: Structures with $h_{min} = 3 \rightarrow 2$ -separable
- ▶ In general: m-separated design is $\Theta(n.m.2^m)$ time and $\Theta(m.n)$ space (e.g. Fixed-Parameter Tractable in m)
- Corollary: Structures with $h_{min} = 3$ solved in O(n)!
- Bonus: Uniform sampling of sequences

Experimental results at a glance

Structures with $h_{min} \leq 2 \rightarrow$ Mainly designable in practice (around 100 nucleotides), but exponential decay of numbers of solutions

➤ Sampled solutions from 2-separable structures are more promising according to the Turner energy model than random compatible sequences

Conclusion

- ▶ $h_{min} = 3 \rightarrow \text{IF}$ solved in linear time with 2-separable
- ▶ $h_{min} \leq 2 \rightarrow \text{IF partially solved, } \frac{\text{FPT in } m}{\text{with } m\text{-separable}}$

Ongoing work (Return to the REAL world¹)

- ► Solutions as seed sequences of RNAINVERSE
- ► Test on Eterna v2 benchmark (100 artificial puzzles)
 - → almost everyone is 2-separable
- ▶ One puzzle has a multiloop of degree 25
 - → still linear, just with a large constant
- \triangleright solved \sim 80 puzzles, (almost) immediate solutions in half of them

¹where Hua-Ting tries to steal an authorship

Thanks to...

Yann Ponty

Laurent Bulteau

Link to the paper

Collaborator: Hua Ting Yao (that did the last slide) And to the other members of the AMIBio team: Sarah Berkemer Alan Azede Sebastian Will Nan Pan

Tree formalism

Definition (Levels): Given a tree coloring, the level $L:V(T)\to \mathbb{Z}$ of a node v is $L(v):=|p|_{\bullet}-|p|_{\bigcirc}$ where p denotes the color vector associated with the node sequence from parent(v) to Root.

Decide separability is NP-complete

Problem 1 (INTERVAL PACKING):

Input: set of distinct integers $A = \{a_1, \dots, a_n\}$, integers k and B **Output:** function x from A to intervals of [0, kB - 1] such that:

- \triangleright $x(a_i)$ is an interval of size a_i
- $ightharpoonup x(a_i)$ and $x(a_j)$ are disjoint for $i \neq j$
- \triangleright $x(a_i)$ does not contain both jB-1 and jB for any i,j.

Which instances are non-separable but designable?

► Harder to find with helices of size 2 or more. (currently more than 1000 nucleotides long)

Core widget of the designable non-separable instances with helices of size 2

Modulo-separability

Definition ((Modulo) m-separability): Let m be an integer. A coloring *Color* is m-separated (or separated with modulus m) for a target secondary structure T, if an only if

$$\{Lv(v) \bmod m \mid Color(v) = \bigcirc\} \cap \{Lv(v) \bmod m \mid v \text{ is a leaf}\} = \emptyset$$

▶ Modulo separability coincides with separability with $m \ge \frac{n}{2}$

Problem 2 (MODULO SEPARABILITY):

Input: A tree T (with no $m_{3\bullet}$ or m_5 motif), a modulus $m \in \mathbb{N}$ **Output:** A coloring of T that is m-separated, or \bot if no such coloring exists.

Dynamic programming scheme for modulo separability

$$\mathbf{d}_{v \to c, l}^{\xi_L} = \begin{cases} \text{False} & \text{if } \ell \in \xi_L \land c = \bigoplus \\ \text{or } \ell' \notin \xi_L, \text{ and } \\ \exists \text{ leaf in children}(v) \\ \text{if children}(v) = \emptyset \\ \text{otherwise.} \end{cases}$$
 with $\ell' := \ell + \delta(c) \mod m$

- ▶ $d_{v \to c, \ell}^{\xi_L}$: existence of a valid assignment for a subtree of T rooted at internal node v, with v occurring at level ℓ , and being assigned a prior color c.
- \blacktriangleright ξ_L : Leaves levels (thus $\llbracket 0, m \rrbracket \setminus \xi_L$ are \bigcirc levels.)
- \triangleright δ : level increment induced by a color c

Instances with helices of size 3 or more are all separable

First layer (fixed)

Available nodes

Trailing (monochrome) nodes sequence

Modular level of upcoming nodes

Modular level of gray node(s)

$$\ell + 1 \equiv_2 x$$
 $\ell + 1 \equiv_2 x$
 $\ell + 1 \equiv_2 x$
 $\ell + 1 \equiv_2 x$
 $\ell + 1 \equiv_2 x$

Theorem: Secondary structures with helices of size 3 or more are 2-separable (thus designable) in linear time

21/13

Inverse folding: Complexity Zoo

- ▶ NP-hard, 2008, Schnall-Levin et al · · ·
- ► Linear, 2017, Halès et al · · ·

But only on a subset called "separable instances".

- ► NP-hard, 2018, Bonnet et al · · · But only an extension with constrained base pairs.
- Our contribution:

Linear by avoiding isolated base pairs and stacks, 2024, Boury et al.

Beyond helices of size 3: instances with helices of size 2

There is no certainty that these instances are Modulo *m*-separable!

► Surprisingly enough, all instances containing helices of size 2 were found Modulo *m*-separable thus designable.

Turner energy of designed sequence with helices of size 3

$$\begin{split} \Delta \Delta G(\omega, T) &:= \Delta G(\omega, \alpha(w, T)) - \Delta G(\omega, T) \\ \alpha(\omega, T) &:= \min\{\Delta G(\omega, T') \mid |T' \triangle T| \geq 3\} \end{split}$$

Turner energy of designed sequence with helices of size 3

$$\Delta\Delta G(\omega, T) := \Delta G(\omega, C(w, T)) - \Delta G(\omega, T)$$
$$C(\omega, T) := \min\{\Delta G(\omega, T') \mid |T' \triangle T| \ge 3\}$$

► Even if guarantied only in a base pairs model, our sequences represent better competitor in Turner energy model than simply compatible sequences