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Abstract

In this paper, we discuss the existence of an algorithm to decide if a

given set of 2 × 2 matrices is mortal. A set F = {A1, . . . , Am} of square

matrices is said to be mortal if there exist an integer k ≥ 1 and some

integers i1, i2, . . . , ik ∈ {1, . . . , m} with Ai1
Ai2

· · ·Aik
= 0. We survey

this problem and propose some new extensions. We prove the problem

to be BSS-undecidable for real matrices and Turing-decidable for two

rational matrices. We relate the problem for rational matrices to the

entry-equivalence problem, to the zero-in-the-corner problem, and to the

reachability problem for piecewise-affine functions. Finally, we state some

NP-completeness results.

1 Introduction

Several undecidability results are known about problems involving matrices [6,
14]. For example, given a finite set F of matrices with integer entries, it is
undecidable whether the semi-group generated by M contains a matrix having
a zero in the right upper corner [17], is free [11, 8], or contains the zero matrix
[20]. These problems have been proved to be undecidable when restricted to
3 × 3 matrices. But for both of them, the question of their decidability or
undecidability when restricted to 2 × 2 matrices remains open [6].

In this paper, we focus on the decidability of the latter problem. A set
F = {A1, . . . , Am} of d×d matrices is said to be mortal if there exist an integer
k ≥ 1 and some integers i1, i2, . . . , ik ∈ {1, . . . , m} with Ai1Ai2 · · ·Aik

= 0.
Therefore, we focus on the following decision problem denoted by MortQ(2).

Open Problem 1 • Instance: a finite set F of 2×2 matrices with rational
entries.
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• Question: is F mortal?

The decidability of problem MortQ(2) remains unknown despite a lot of
interest (see [15, 16] for some references and discussions).

The question of the decidability of MortQ(2) was first mentioned as an open
problem in [22] and was formulated as follows: “Find an algorithm, which given
a finite set H of nonsingular linear transformations of the complex plane and
lines L and M through the origin, determines whether some product from H
maps L onto M .”

There are at least two motivations to study the mortality problem. First,
deciding whether a given set of two by two matrices is mortal is equivalent to
deciding whether a switched linear system is controllable. In particular, given
a system of the form x(t + 1) = A(t, u)x(t), where for all t the set of possible
values of A(t, u) is a finite set F of d × d matrices, the question of mortality of
F corresponds to the controllability (to the origin) of such a system (cf. [3]).

Second, proving that MortQ(2) is decidable or undecidable, would really
clarify computational-complexity issues for discrete-time and hybrid dynamical
systems (cf. [12] and [9]). For example, the reachability problem for piecewise-
affine dynamical systems has been proven undecidable for two-dimensional sys-
tems, but is open and related to the mortality problem (see Section 4.3) for
one-dimensional systems [12].

Observe that, if MortQ(2) turned out to be undecidable, it would surely
give a way, which would extend the results of [1, 12, 19, 24], to simulate a
Turing machine by a dynamical system of low dimension. Indeed, most of
the undecidability results known up to this date rely on simulations of Turing
machines.

This paper aims at giving a global picture of the mortality problem. To do
so, we will also talk about the generalization of the problem to matrices with
real entries. When K ∈ {R, Q}, the problem MortK(d) (resp. MortK(d, m))
denotes the following decision problem:

• Instance: a finite set F of d × d matrices with entries in K (resp. a set F
of m d × d matrices with entries in K).

• Question: is F mortal?

The main contributions of the paper are:

• An undecidability result, already in the case of only two 2 × 2 matrices,
for K = R in the Blum-Shub-Smale model of computation [5].

• A decidability result for two 2 × 2 matrices, in the case K = Q for the
Turing model of computation.

For arbitrary |F | = m, the question remains open.

• Reducibility relations between the mortality problem and other problems
in the literature.
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2 Links between dimension and number of ma-

trices

Paterson proved in [20] that the mortality problem restricted to 3 × 3 matrices
is not decidable.

Theorem 1 ([20]) MortQ(3) is recursively unsolvable.

More precisely, Paterson proved in [20] that, if the Post Correspondence
Problem (PCP) is undecidable with p rules, then MortQ(3, 2p + 2) is unde-
cidable. Using the Modified Post Correspondence Problem (MPCP) instead of
PCP, we improve this result.

Proposition 1 Suppose that the Post Correspondence Problem is undecidable
with p rules. Then decision problem MortQ(3, p + 2) is undecidable.

Proof. The Post Correspondence Problem (PCP) is the decision problem
“given a finite set of pairs of words {〈Ui, Vi〉 | i = 1, . . . , p}, determine if there
exists a sequence of indexes i1, i2, . . . , ik in {1, 2, . . . , p} with Ui1Ui2 · · ·Uik

=
Vi1Vi2 · · ·Vik

”.
The arguments of Paterson in [20] prove that, to any instance {〈Ui, Vi〉 | i =

1, . . . , p} of PCP, can be associated a finite set

F = {S, T, W (Uj, Vj), W
′(Uj , Vj) | j = 1, . . . , p}

of integer matrices, which satisfy

1. F is mortal if and only if there exists some integers i1, i2, . . . , ik with
SW ′(Ui1 , Vi1 )W (Ui2 , Vi2) · · ·W (Uik

, Vik
)T = 0;

2. This latter case holds if and only if Ui1Ui2 · · ·Uik
= Vi1Vi2 · · ·Vik

.

We replace the Post Correspondence Problem (PCP) by the Modified Post
Correspondence Problem (MPCP) [10] to obtain our result. The difference be-
tween PCP and MPCP is that in the latter the first index i1 must be equal to
1. Namely, the Modified Post Correspondence Problem is the decision prob-
lem “given a finite set of pairs of words {〈Ui, Vi〉 | i = 1, . . . , p}, determine if
there exists a sequence of indexes i2, . . . , ik in {1, 2, . . . , p} with U1Ui2 · · ·Uik

=
V1Vi2 · · ·Vik

”.
Since any instance of PCP can be solved by p calls to MPCP, the undecid-

ability of PCP with p rules implies the undecidability of MPCP with p rules.
There only remains to prove that MPCP with p rules reduces to MortQ(3, p+

2). Since in MPCP the first index i1 is 1, the set of matrices

F = {T, SW ′

U1,V1
, WUj ,Vj

| j = 1, . . . , p}

is mortal if and only if there exist some integers i2, . . . , ik with

SW ′(U1, V1)W (Ui2 , Vi2 ) · · ·W (Uik
, Vik

)T = 0.
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By condition 2 above, this holds if and only if {〈Ui, Vi〉 | i = 1, . . . , p} is a
positive instance of MPCP. 2

The following result is proved in [2] and in [6].

Lemma 1 [2, 6] For all n ≥ 2, m ≥ 1, MortQ(d, m) undecidable implies
MortQ(dm, 2) undecidable.

The minimal number p of rules for which PCP is undecidable is not known,
but p is an integer between 3 and 7 (cf. [18]).

Hence, from Proposition 1, the following can be stated.

Corollary 1 • Decision problem MortQ(3, 9) is undecidable.

• Decision problem MortQ(27, 2) is undecidable.

3 On the decidability of Mort(2, 2).

We now come back to the decidability of the mortality problem for two-dimensional
matrices. We prove first that MortR(2, 2) is BSS-undecidable. Then we prove
that MortQ(2, 2) is Turing-decidable.

We make use of the following lemma several times.

Lemma 2 A finite set F = {A1, . . . , Am} of 2×2 matrices is mortal if and only
if there exist an integer k and integers i1, . . . , ik ∈ {1, . . . , m} with Ai1 · · ·Aik

=
0, and

1. rank(Aij
) = 2 for 1 < j < k,

2. rank(Aij
) < 2 for j ∈ {1, k}.

Proof. Only the direct sense requires a proof. Assume that F is mortal.
Then there exists a null product Ai1 · · ·Aik

= 0 where k is minimal. Assume
k ≥ 2, because otherwise the assertion is immediate. The matrices Ai1 and
Aik

of this product are singular because otherwise a null-product with fewer
matrices could be obtained by multiplying Ai1 · · ·Aik

by their inverse(s).
Let j ≥ 2 be the smallest integer with rank(Aij

) < 2. Since we have
Ai1 · · ·Aik

= 0, matrix Ai1 · · ·Aij−1
sends the image I of matrix Aij

· · ·Aik

to 0. Now, I is also equal to the image of Aij
and is of dimension 1. Indeed,

first, I is clearly included in the image of Aij
. Second, by definition of k, I

cannot be of dimension 0, and third, the dimension of the image of Aij
is at

most 1 because rank(Aij
) < 2. We obtain Ai1 · · ·Aij−1

Aij
= 0. This implies

j = k, and the direct sense of the lemma. 2
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3.1 BSS-undecidability of MortR(2, 2)

Talking about the decidability or undecidability of MortR(2) requires one to
talk about machines that manipulate real numbers.

One approach is to use the machine model studied in recursive analysis (e.g.,
see [26]). However, this model does not meet our needs because one cannot
decide whether a real number is equal to zero in this model [26].

Another approach is to use the Turing machine model for real numbers pro-
posed by Blum, Shub, and Smale in [4, 5]. Roughly speaking, a BSS-machine1

is an extended Random Access Machine [10] that treats real numbers as basic
entities; namely a BSS-machine contains an unbounded number of real registers
x1, . . . , xn, . . . each of which can hold one real number in unbounded preci-
sion. Moreover, a BSS-machine contains a finite number of built-in constants
λ1, . . . , λm. Its program is made of arithmetic operations between its real reg-
isters of type xi := xj#xk , for # ∈ {+,−, ∗, /}, or of type xi := λj , or of
tests of type xi#xj with # ∈ {>,≥, <,≤, =, 6=}. Let R∞ = ∪i∈NRi. An input
x ∈ R∞ is of type x = (x1, . . . , xi) for some i. The input is said to be accepted
by the machine if the program of the machine eventually halts when started
with its real registers set to (x1, . . . , xi, 0, . . . , 0, . . .). A language L ⊂ R∞ is
said to be BSS-recursively enumerable if it consists of the accepted inputs of
some BSS-machine. The language L is said to be BSS-recursive if, in addition,
its complement is BSS-recursively enumerable.

In other words, BSS recursive sets are those that can be decided using only
arithmetical operations and tests. The reader should refer to [4, 5] for more
formal descriptions. We assume that the reader is familiar with the BSS-model
in the rest of this paper.

We first recall a lemma proved in [5]. A set S ⊂ Rn is said to be a basic semi-
algebraic set if S = {(x1, . . . , xn) | p1(x1, . . . , xn) > 0∧· · ·∧pn1

(x1, . . . , xn) >
0∧p′1(x1, . . . , xn) = 0∧· · ·∧p′n2

(x1, . . . , xn) = 0} for some n-variable polynomials
p1, p2, . . . , pn1

, p′1, . . . , p
′

n2
. A semi-algebraic set is a finite union of basic semi-

algebraic sets.

Lemma 3 Let L ⊂ R∞ be a BSS-recursively enumerable set. Then L is a
denumerable union of semi-algebraic sets.

Sketch of proof. Write L = ∪t∈NAcct, where Acct is the subset of the
inputs that are accepted by the machine at time t. Each subset Acct is a
semi-algebraic set. See [5] for the formal details. 2

The remaining arguments of this subsection are inspired from [13]. (In fact,
there seems to be a close relation between mortality and stability. Cf. [13].)

We start with the following preliminary result.

Lemma 4 Let a, b, λ ∈ R be some real numbers with a2 +b2 6= 0 and λ 6= 0. Let
θ be an argument of complex number a + ib. The pair of matrices F (a, b, λ) =
{A1, A2} with

1The BSS-model is not a realizable computation concept but is of mathematical interest
for studying computations on the reals.
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A1 =

(

a −b
b a

)

, A2 =

(

−λ 1
0 0

)

,

is mortal if and only if there exists an integer n ∈ N with λ = tan(nθ).

Proof. From Lemma 2, we know that F (a, b, λ) is mortal if and only if
there exists an integer n ∈ N with A2A

n
1 A2 = 0. This holds if and only if

there exists a nth power of A1 which sends the image of A2 to its kernel. Since
Im (A2) =≺ (1, 0) �, Ker(A2) =≺ (1, λ) �, and since A1 is the composition of
an homothety and a rotation of angle θ, this is true if and only if there exists
an integer n ∈ N with λ = tan(nθ). 2

The following observations are easy.

Lemma 5 Let θ be a real number. Let E(θ) be the subset of R defined by

E(θ) = {λ | there exists an integer n ∈ N with λ = tan(nθ)}.

1. E(θ) is a dense subset of R if and only if θ/π 6∈ Q.

2. There exist two rational numbers a, b ∈ Q such that any argument θ of
complex number a + ib satisfies θ/π 6∈ Q. Indeed, take for example a = 1
and b = 2 (see Lemma 6).

3. When θ/π 6∈ Q, the complement Ec(θ) of E(θ) in R has an uncountable
number of connected components; actually, every point of Ec(θ) is its own
connected component.

We can now prove that MortR(2, 2) is BSS-undecidable. Observe that the
arguments are close to the ones in [13]. We, however, deal with a different
problem and with a modified family of matrices.

Theorem 2 MortR(2, 2) is BSS-recursively enumerable but is not BSS-recursive.

Proof. Building a BSS-machine that semi-recognizes MortR(2, 2) is easy.
Therefore the problem is BSS-recursively enumerable.

Representing the matrices by their coefficients, the space of the instances of
problem MortR(2, 2) is R8. Denote by Pos ⊂ R8 (resp. by Neg ⊂ R8) the
subset of the positive (resp. negative) instances of the problem. Using Lemma
3, we only need to prove that Neg is not a countable union of semi-algebraic
sets.

Let a, b ∈ Q with a + ib = ρeiθ, θ/π 6∈ Q as in Lemma 5. Let γ : R → R8

be the function that sends λ ∈ R to the pair of matrices F (a, b, λ). By def-
inition of γ, the image Im γ of γ is an algebraic subset of R8 and γ real-
izes an homeomorphism between R and Im γ. By Lemma 4, we know that
γ−1(Pos) = E(θ) and γ−1(Neg) = Ec(θ). Since γ is an homeomorphism,
Ec(θ) and γ(Ec(θ)) = Neg ∩ Im γ must have the same number of connected
components. That is, by part 3 of Lemma 5, they must have an uncountable
number of connected components.
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Assume, by contradiction, that we can write Neg = ∪i∈NSi where each Si is
a semi-algebraic subset. We would have Neg∩ Im γ = ∪i∈N(Im γ ∩Si). Each of
the (Im γ ∩ Si) must be a semi-algebraic subset as the result of the intersection
between an algebraic set and a semi-algebraic set. Since a semi-algebraic set has
a finite number of connected components, Neg ∩ Im γ must have a countable
number of connected components. This leads to a contradiction. 2

We obtain the following immediately.

Corollary 2 • For n ≥ 2, m ≥ 2, the problem MortR(n, m) is BSS-
recursively enumerable but not BSS-recursive.

• MortR(2) is BSS-recursively enumerable but not BSS-recursive.

However, observe that it is easy to extract the following fact from the proofs
of the next section.

Theorem 3 Problem MortR(2, 2) restricted to matrices with real eigenvalues
is BSS-recursive.

Let us discuss the results of Theorem 2 and Corollary 2. Deciding whether a
set of matrices is mortal using only arithmetical operations is not possible. But
it does not mean that the problem cannot be decided by an algorithm which
uses non-arithmetical operations or which uses arguments about the semi-ring
K of the entries for K 6= R.

Actually, using number-theoretical arguments, we prove in the next subsec-
tion that the decision problem MortQ(2, 2) is Turing-decidable.

3.2 Turing-decidability of MortQ(2, 2)

The decidability of MortQ(2, 2) has already been claimed [6, 21]. However,
the proofs were either wrong or incomplete. More precisely, in [6], the result
is claimed without proof. In [21], the result is claimed but the proof is wrong.
Indeed, the proof of [21] presents an algorithm to decide MortQ(2, 2) which
uses only arithmetical operations, and this precisely contradicts2 Theorem 2.
We present a full proof herein.

From the previous section, we know that to prove the decidability of MortQ(2, 2),
we need the use of number-theoretical arguments. The arguments3 we use are
based on the following result extracted from [23].

Lemma 6 ([23]) • The following decision problem is decidable.

– Instance: rational numbers p, q ∈ [−1, 1].

2Concretely, the cases studied in the proof [21] do not cover all the cases. In particular,
the proof forgets the case of rational matrices with complex eigenvalues.

3Not present in [21]. Of course, those arguments could always be patched to the (missing)
cases of the proof of [21], but we prefer presenting a complete, independent, and correction-
/patch-free proof.
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– Question: does there exist θ ∈ R and an integer n ∈ N with cos(θ) = p
and cos(nθ) = q?

• When p 6∈ {0, 1/2, 1}, there are at most a finite number of such n and
those n can be computed effectively.

Proof. For completeness we provide the proof, which is almost cut-and-
paste from [23].

Write p = r/s, q = u/v where r, s, u, v are integers such that gcd(r, s) =
gcd(u, v) = 1. The decidability of the problem when p = 0, p = 1/2, or p = 1 is
trivial, since in that case the sequence n → cos(nθ) assumes only a computable
finite number of values that can be tested against q. Suppose p 6∈ {0, 1/2, 1}.
The function cos(nθ) is a polynomial in cos(θ) with integer coefficients. If this
polynomial is written cos(nθ) = pn(r/s), then snpn(r/s) is some integer cn

which satisfies
2rcn+1 − s2cn = cn+2, (1)

with c1 = r and c2 = 2r2 − s2; indeed if we denote an = sin(nx) and bn =
cos(nx), this recurrence comes from an+1 = a1bn + b1an, bn+1 = b1bn − a1an,
. . . .

Suppose that s is not a power of 2. Write s = 2ab, v = 2a′

b′ with b > 1, b′ ≥ 1
odd. We are searching for an integer n such that cn/(2anbn) = u/(2a′

b′). We
claim gcd(cn, bn) = 1 for all n ∈ N. Indeed, if some odd integer d divides s and cn

simultaneously, then, since gcd(r, s) = 1, the assertions d|cn−1, d|cn−2, . . . , d|c2

imply d|r2, which implies d = 1. As a consequence, an integer candidate n must
satisfy b′ = bn. There are at most a finite number of such n and those n are
computable.

Suppose now that s is a power of 2. Write s = 2k, k > 1 (remember that we
supposed r/s 6= 1/2). Write every cn as cn = 2λnvn where vn is an odd integer.
Recurrence (1) becomes

2λn+1+1rvn+1 − 2λn+2kvn = 2λn+2vn+2. (2)

We prove first that there exists an integer n with λn + 1 < 2k + λn−1.
Indeed, if it were false, we would always have λn + 1 ≥ 2k + λn−1, so that
λn + 1 ≥ 2(n − 1)k + λ1 would hold for all n. Since | cos(nθ)| < 1, we have
kn ≥ λn which implies kn ≥ 2(n − 1)k + λ1 − 1 for all n ∈ N. Clearly this is
impossible.

Let n0 be the smallest integer such that λn0+1 + 1 < 2k + λn0
. Inte-

ger n0 can be computed effectively by testing this condition for increasing
n. We have λn0+2 = λn0+1 + 1. Indeed, from (1) we must have rvn0+1 −
2λn0

+2k−λn0+1−1vn0
= 2λn0+2−λn0+1−1vn0+2. Considering parity of both sides,

this can happen only if λn0+2 = λn0+1 + 1.
Since that implies λn0+2 + 1 = λn0+1 + 2 < λn0+1 + 2k, we can repeat the

argument, and get by induction that for all integers h ≥ 0, λn0+2+h = λn0+1+h+
1 holds. Hence, for each positive integer h, we must have λn0+h = λn0

+ h.
Now, return to the existence of an integer n with cos(nθ) = u/v. For cos(θ)

having denominator 2k, v must be a power of 2. Suppose v = 2m. It may
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happen that there exists a solution for n ≤ n0. For n > n0, a solution n =
n0 + h must satisfy cos((n0 + h)θ) = vn0+h2λn0

+h/2k(n0+h) = u/2m, hence
k(n0 + h) − λn0

− h = m, or h = (m + λn0
− kn0)/(k − 1). That is, the only

integer n candidate exceeding n0 is n0 + (m + λn0
− kn0)/(k − 1). Hence, there

are at most n0 + 2 integer candidates n that could satisfy cos(nθ) = u/v, and
those candidates are computable. 2

With this we now obtain the following.

Theorem 4 MortQ(2, 2) is decidable.

Proof. Let F = {A1, A2} be an instance of the problem. Suppose without
loss of generality that the rank of A2 is greater than the rank of A1. If A1 is of
rank 2, then the two matrices are nonsingular and F is non-mortal by Lemma 2.
If A1 is of rank 0 then F is mortal. If the two matrices have rank 1, by Lemma
2, it suffices to test whether one of the products A2

1, A1A2, A2A1, A
2
2 is null.

There remains only the case where A2 is nonsingular and A1 is of rank 1.
By Lemma 2, F is mortal if and only if there exists an integer n ∈ N with

A1A
n
2A1 = 0. (3)

We want to check this relation algebraically using the Jordan forms of the
matrices A1 and A2. Write

A1 = P−1
1 J1P1, A2 = P−1

2 J2P2,

J1 =

(

κ 0
0 0

)

,

and

J2 =

(

λ 0
0 µ

)

or

(

λ 1
0 λ

)

.

with P1 and P2 nonsingular. Eigenvalue κ is equal to the trace of rational matrix
A1, and hence, is a rational number. Eigenvalues λ and µ are the (possibly
complex) roots of the characteristic polynomial of rational matrix A2.

Equation (3) becomes

P−1
1 J1P1P

−1
2 Jn

2 P2P
−1
1 J1P1 = 0

or, since P1 is nonsingular,

J1PJn
2 P−1J1 = 0

where

P = P1P
−1
2 =

(

p q
r s

)

.

Now, after substituting P, P−1 and J , the problem is equivalent to testing
whether there exists an integer n ∈ N with

• psλn − qrµn = 0, when J2 is of the first form; or
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• (ps − qr)λn − rpn = 0, when J2 is of the second form.

Suppose that J2 is of the second form. Eigenvalue λ is rational because λ is
equal to the trace of rational matrix A2 divided by two. Coefficients κ, p, q, r,
and s are computable rational numbers which can easily be expressed in terms of
the coefficients of the matrices A1 and A2 from previous considerations. Testing
whether there exists an integer n with (ps − qr)λn − rpn = 0 is easy in that
case. Indeed, the equation (ps − qr)λx − rpx = 0 over real variable x clearly
has a unique real solution x∗ in that case; any numerical method4 can return
an approximation to precision 1/2 of x∗, namely a rational number xapp with
|xapp − x∗| < 1/2; testing whether (ps− qr)λn − rpn = 0 has a solution is then
equivalent to testing this equation with n = bxappc.

Suppose that J2 is of the first form. We want to test the existence of an
integer n with psλn−qrµn = 0. Observe that λ 6= 0, µ 6= 0 since A2 is of rank 2.
λ, µ and the coefficients p, q, r, s can be complex numbers but are computable
elements of Q(λ). That is, they are of the form a+λb for some rational numbers
a, b ∈ Q computable from the rational coefficients of the matrices A1 and A2.
By computing in Q(λ), the cases ps = 0 or qr = 0 are trivial. Suppose now
ps 6= 0 and qr 6= 0. The problem is equivalent to testing whether there exists
an integer n with (λ/µ)n = (pq)/(rs). We must have |λ/µ|n = |pq|/|rs|. When
|λ/µ| 6= 1, n must be equal to |pq|/(|rs| log |λ/µ|); we only need to use any
numerical algorithm for approximating this real quantity x∗ by some rational
number xapp with |xapp−x∗| < 1/2, and test the equation for integer n = bxappc.
When |λ/µ| = 1 and λ and µ are real numbers, we have necessarily that λ = µ
or λ = −µ. In both cases, by computing in Q(λ) the problem is trivial. When
|λ/µ| = 1 and |pq|/|rs| 6= 1 the problem has no solution.

There remains only the case where λ and µ are two conjugated complex
roots and (pq)/(rs) is a complex number of modulus 1. In that case λ is a
complex number with rational real part because λ is a root of the characteristic
polynomial of matrix A2 with rational coefficients. Therefore, complex numbers
λ/µ and (pq)/(rs) of type a + λb with computable a, b ∈ Q must also have
rational computable real parts. If θ denotes an argument of complex number
λ/µ of modulus 1, an integer n solution must satisfy cos(nθ) = r′ where r′ is the
real part of (pq)/(rs). When the real part p′ of λ/µ is equal to 1/2, n 7→ (λ/µ)n

is a periodic sequence of period 6, and it suffices to check (λ/µ)n = (pq)/(rs)
for n = 0, 1, . . . , 5. Cases p′ = 0 and p′ = 1 can be dealt with similarly. Now,
when p′ 6∈ {0, 1/2}, by Lemma 6, there are at most a finite number of integers
n satisfying cos(nθ) = r′ and those integers are computable. It suffices to check
if equation (λ/µ)n = (pq)/(rs) holds for those integers. 2

We have just proved that MortQ(2, 2) is Turing-decidable. We do not
know whether MortQ(2, 3) is decidable. So our knowledge of the decidabil-
ity of MortQ(2) stops at the previous theorem. However, our proof of the
BSS-undecidability of the problem shows that the problem is more a number-
theoretic problem than a simple computability problem.

4For example, Newton’s method.
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In the next section, we show that MortQ(2) can be related to other open
problems in the literature.

As pointed out by an anonymous referee, the previous theorem can also be
proved in a much more compact (but not self-contained) way using the results
of [25]. Let A0, A1 be two 2 × 2 matrices with rational entries. To the word
w = w1w2...wn ∈ {0, 1}∗ we associate the matrix Aw = Aw1

Aw2
...Awn

. The
language Z(A0, A1) is the set of words w for which Aw = 0. Theorem 4 says
that given two 2 × 2 matrices A0, A1 with rational entries, one can effectively
test if Z(A0, A1) is empty. This could also be seen as a consequence of the
following stronger claim: given two 2 × 2 matrices A0, A1 with rational entries,
one can effectively compute the language Z(A0, A1).

Indeed, if both matrices are of rank 2, then Z(A0, A1) is empty. If rank(A0) =
0 the problem is trivial, so assume rank(A0) = 1. Then A0 = bcT where b and
c are nonzero column vectors with rational entries. By Lemma 2, if there ex-
ists a mortal product, then A0A

k
1A0 = 0 for some integer k. This condition is

equivalent to cT Ak
1b = 0. Let γk = cT Ak

1b; the sequence γk is a linear recursive
sequence of order 2. [25] proves that there exists an algorithm for finding a
semi-linear definition of the set of zeros of any linear recursive sequence of order
≤ 3 from a definition of the sequence. That implies that the set of indices k for
which γk = 0 can be computed effectively. The language Z is equal to the set
of words uvw where u and w are arbitrary words, and v is a word of the form
01111...11110 where the number of 1’s is any k for which γk = 0.

4 Relations to other problems in the literature

In this section we prove that MortQ(2) is equivalent to the entry-equivalence
problem studied in [15], to the zero-in-the-corner problem studied in [17, 6], and
can be linked to the problems studied in [12].

When C is a matrix, Ci,j denotes the entry in its ith row and jth column.

4.1 The Entry-Equivalence Problem

Here is a variation of Theorem 2 of [15] (unlike Theorem 2 of [15], we do not
suppose F to be composed of only nonsingular matrices).

Lemma 7 Let F be a finite set of 2×2 matrices. There exists an integer k and
some integers i1, . . . , ik such that Ai1 · · ·Aik

is a matrix C satisfying C2,1 = C2,2

if and only if the finite set F ′ composed of the matrices of F and of the matrix

H =

(

0 1
0 −1

)

is mortal.

Proof. First observe that HCH = 0 holds if and only if C2,1 = C2,2. That
proves the direct sense.

11



Conversely, by Lemma 2, if F is mortal there exist i1, . . . , ik with Ai1 · · ·Aik
=

0, Aij
6= H for 1 < j < k, and rank(Aij

) < 2 for j ∈ {1, k}. If Ai1 = Aik
= H

the remark of the previous paragraph implies that C = Ai2 · · ·Aik−1
satisfies

C2,1 = C2,2. If Ai1 6= H and Aik
6= H then Ai1 · · ·Aik

is a product of matrices
from F equal to the null-matrix, and the null-matrix O satisfies O2,1 = O2,2.
Now, for the remaining cases, observe that equation HC = 0 (resp. CH = 0)
implies C2,1 = C2,2. 2

We can now extend a result of [15].

Theorem 5 (Entry-Equivalence) Let K ∈ {R, Q}.
Problem MortK(2) is equivalent to the following decision problem:

• Instance: a finite set F = {A1, . . . , Am} of 2 × 2 matrices with entries in
K.

• Question: does there exist an integer k and some integers i1, . . . , ik such
that Ai1 · · ·Aik

is a matrix C satisfying C2,1 = C2,2?

and to the following decision problem:

• Instance: a finite set F = {A1, . . . , Am} of nonsingular 2 × 2 matrices
with entries in K.

• Question: does there exist an integer k and some integers i1, . . . , ik such
that Ai1 · · ·Aik

is a matrix C satisfying C2,1 = C2,2?

Proof. Clearly the second problem reduces to the first. The first problem
reduces to the mortality problem for 2×2 matrices by Lemma 7 and a reduction
from the mortality problem for 2× 2 matrices to the second problem is given in
[15]. 2

As a corollary to our results, we obtain that the above-mentioned problems
are not decidable over R, and open and equivalent over Q.

4.2 The Zero-in-the-Corner Problem

It is known that the problem of deciding whether the semi-group generated by
a finite set of 3 × 3 nonsingular matrices contains an element with a zero in
the right upper corner is undecidable [6, 17]. However, the decidability of the
problem for 2 × 2 matrices is left open [6].

Nevertheless, this problem can be related to the mortality problem by the
next theorem.

Theorem 6 (Zero-in-the-Corner) Let K ∈ {R, Q}.
Problem MortK(2) is equivalent to the following decision problem:

• Instance: a finite set F = {A1, . . . , Am} of 2 × 2 matrices with entries in
K.

• Question: does there exist an integer k and some integers i1, . . . , ik such
that Ai1 . . . Aik

is a matrix C satisfying C1,1 = 0?

12



and to the following decision problem:

• Instance: a finite set F = {A1, . . . , Am} of nonsingular 2 × 2 matrices
with entries in K.

• Question: does there exist an integer k and some integers i1, . . . , ik such
that Ai1 · · ·Aik

is a matrix C satisfying C1,1 = 0?

Proof. Denote

P =

(

0 1
1 1

)

Observing that, for all matrix C, matrix C ′ = PCP−1 satisfies C ′

1,1 = 0 if
and only if C2,1 = C2,2, the above problems are equivalent to the equivalent
problems of Theorem 5 by conjugations by matrix P . 2

As a corollary to our results, we obtain that the above-mentioned problems
are not decidable over R, and open and equivalent over Q.

4.3 Restriction to lower triangular matrices

It was proposed in [15] to restrict the previous problems to lower triangular
matrices. Indeed, [20] also proves that the entry-equivalence problem is unde-
cidable for lower-triangular 3 × 3 matrices with rational entries.

Problem MortQ(2) restricted to lower triangular matrices is trivially decid-
able [15]. Indeed, a finite set F of lower triangular matrices is mortal if and only
if there exist two matrices A, B in F with A1,1 = 0 and B2,2 = 0. The zero-
in-the-corner problem also becomes trivial when restricted to lower-triangular
matrices.

However, the answer to the following question is not known.

Open Problem 2 (Lower triangular matrices) Is the following decision prob-
lem decidable?

• Instance: a finite set F = {A1, . . . , Am} of nonsingular lower-triangular
2 × 2 matrices with rational entries.

• Question: does there exist an integer k and some integers i1, . . . , ik such
that Ai1 · · ·Aik

is a matrix C satisfying C2,1 = C2,2?

We prove that this problem can be related to a non-deterministic version of
the open problem mentioned in [12].

Theorem 7 Open Problem 2 is equivalent to the decidability of the following
decision problem:

• Instance: a finite set F = {f1, . . . , fm} of non-constant rational affine
functions of dimension 1 (i.e. a set of functions of type fi : x 7→ aix + bi,
ai, bi ∈ Q, ai 6= 0).

13



• Question: does there exists a composition fi1◦fi2◦· · ·◦fik
of these functions

that maps point 0 to point 1?

Proof. Call this problem the composition problem. Suppose that a finite set
F = {A1, . . . , Am} of nonsingular lower-triangular matrices is given. Without
loss of generality, we can suppose A2,2 = 1 for each matrix A ∈ F . Indeed,
each matrix A ∈ F must satisfy A2,2 6= 0 to be nonsingular, and replacing each
matrix A by matrix A/A2,2 in F does not change the mortality of set F .

Open Problem 2 reduces to the instance F ′ = {f1, . . . , fm} of the com-
position problem where fi : x 7→ (Ai)1,1x + (Ai)2,1. Indeed, any product
C = Ai1 · · ·Aik

of lower-triangular matrices with (Aij
)2,2 = 1 satisfies C2,2 = 1

and C2,1 = fi1 ◦ fi2 · · · ◦ fik
(0).

Conversely the composition problem reduces to Open Problem 2. When a
finite set F = {f1, . . . , fm} of non-constant affine rational functions is given,
fi : x 7→ aix + bi, it suffices to consider F ′ = {A1, . . . , Am} with

Ai =

(

ai 0
bi 1

)

and to observe that any product C = Ai1 · · ·Aik
of matrices of this form satisfies

C2,2 = 1 and C2,1 = fi1 ◦ fi2 · · · ◦ fik
(0). 2

4.4 NP-completeness results

4.4.1 K-length mortality

A set F = {A1, . . . , Am} of d × d matrices is said to be K-length mortal if
there exist an integer k ≤ K and some integers i1, i2, . . . , ik ∈ {1, . . . , m} with
Ai1Ai2 · · ·Aik

= 0.

Theorem 8 Given a set F of m 3 × 3 matrices with rational entries and an
integer K ≤ 1+m/2, the decision problem “Is F K-length-mortal?” is NP-hard.

Proof. Via the reduction of [20] (or the proof of Proposition 1) and the
NP-completeness of Bounded PCP [7]. 2

Observe that [2] proves that this result remains true whenever the matrices
are assumed to have entries in {0, 1}.

4.4.2 Mortality without repetition

When repetitions of matrices are not allowed, the problem also becomes clearly
decidable. A multi-set F = {A1, . . . , Am} of d× d matrices is said to be mortal
without repetition if there exist integers k ≥ 1 and some integers i1, i2, . . . , ik ∈
{1, . . . , m} such that Ai1Ai2 · · ·Aik

= 0 and ij1 6= ij2 for all j1 6= j2.

Theorem 9 Given a finite multi-set F of m 2× 2 matrices, and an integer K,
the decision problem “Is F K-length-mortal without repetition?” is NP-hard in
the strong sense.
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The proof uses a reduction from subset product [7]. We restate this problem
here.

Proposition 2 (Subset Product (Yao)) Given a finite set A, a size s(a) ∈
N+ for each a ∈ A, and a positive integer B, the decision problem “Is there a
subset A′ ⊂ A such that the product of the sizes of the elements in A′ is exactly
B?” is NP-complete in the strong sense.

Proof.[of Theorem 9] Given an instance of subset product with |A| = n,
define n + 3 matrices as follows.
(

1 0
0 s(a)

)

, for a ∈ A,

(

1 0
B 1

)

,

(

0 1
0 −1

)

,

(

0 1
0 −1

)

.

Note that we have repeated the last matrix, since we are required to use it twice.
Denote the last matrix by H . Check that for all 2 × 2 matrices A, HAH = 0
if and only if A2,1 = A2,2. Hence, by Lemma 2, this set of matrices is mortal
without repetition with length 4 ≤ k ≤ n+3 steps if and only if subset product
has a solution in 1 ≤ k − 3 ≤ n steps. 2
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