On the mortality problem for matrices of low dimensions

Olivier Bournez^{*} and Michael Branicky^{**}

*LORIA	**Electrical Engineering
INRIA Lorraine	and Computer Science Department
Campus Scientifique BP 239	Case Western Reserve University
54506 Vandoeuvre les Nancy	Cleveland, OH 44106-7221
FRANCE	USA
bournez@loria.fr	branicky@alum.mit.edu

Abstract

In this paper, we discuss the existence of an algorithm to decide if a given set of 2×2 matrices is mortal. A set $F = \{A_1, \ldots, A_m\}$ of square matrices is said to be *mortal* if there exist an integer $k \ge 1$ and some integers $i_1, i_2, \ldots, i_k \in \{1, \ldots, m\}$ with $A_{i_1}A_{i_2}\cdots A_{i_k} = 0$. We survey this problem and propose some new extensions. We prove the problem to be BSS-undecidable for real matrices and Turing-decidable for two rational matrices. We relate the problem for rational matrices to the entry-equivalence problem, to the zero-in-the-corner problem, and to the reachability problem for piecewise-affine functions. Finally, we state some NP-completeness results.

1 Introduction

Several undecidability results are known about problems involving matrices [6, 14]. For example, given a finite set F of matrices with integer entries, it is undecidable whether the semi-group generated by M contains a matrix having a zero in the right upper corner [17], is free [11, 8], or contains the zero matrix [20]. These problems have been proved to be undecidable when restricted to 3×3 matrices. But for both of them, the question of their decidability or undecidability when restricted to 2×2 matrices remains open [6].

In this paper, we focus on the decidability of the latter problem. A set $F = \{A_1, \ldots, A_m\}$ of $d \times d$ matrices is said to be *mortal* if there exist an integer $k \geq 1$ and some integers $i_1, i_2, \ldots, i_k \in \{1, \ldots, m\}$ with $A_{i_1}A_{i_2} \cdots A_{i_k} = 0$. Therefore, we focus on the following decision problem denoted by $MORT_{\mathbb{Q}}(2)$.

Open Problem 1 • Instance: a finite set F of 2×2 matrices with rational entries.

• Question: is F mortal?

The decidability of problem $MORT_{\mathbb{Q}}(2)$ remains unknown despite a lot of interest (see [15, 16] for some references and discussions).

The question of the decidability of $MORT_{\mathbb{Q}}(2)$ was first mentioned as an open problem in [22] and was formulated as follows: "Find an algorithm, which given a finite set H of nonsingular linear transformations of the complex plane and lines L and M through the origin, determines whether some product from Hmaps L onto M."

There are at least two motivations to study the mortality problem. First, deciding whether a given set of two by two matrices is mortal is equivalent to deciding whether a switched linear system is controllable. In particular, given a system of the form x(t + 1) = A(t, u)x(t), where for all t the set of possible values of A(t, u) is a finite set F of $d \times d$ matrices, the question of mortality of F corresponds to the controllability (to the origin) of such a system (cf. [3]).

Second, proving that $MORT_{\mathbb{Q}}(2)$ is decidable or undecidable, would really clarify computational-complexity issues for discrete-time and hybrid dynamical systems (cf. [12] and [9]). For example, the reachability problem for piecewise-affine dynamical systems has been proven undecidable for two-dimensional systems, but is open and related to the mortality problem (see Section 4.3) for one-dimensional systems [12].

Observe that, if $MORT_{\mathbb{Q}}(2)$ turned out to be undecidable, it would surely give a way, which would extend the results of [1, 12, 19, 24], to simulate a Turing machine by a dynamical system of low dimension. Indeed, most of the undecidability results known up to this date rely on simulations of Turing machines.

This paper aims at giving a global picture of the mortality problem. To do so, we will also talk about the generalization of the problem to matrices with real entries. When $K \in \{\mathbb{R}, \mathbb{Q}\}$, the problem $\text{MORT}_K(d)$ (resp. $\text{MORT}_K(d, m)$) denotes the following decision problem:

- Instance: a finite set F of $d \times d$ matrices with entries in K (resp. a set F of $m \ d \times d$ matrices with entries in K).
- Question: is F mortal?

The main contributions of the paper are:

- An undecidability result, already in the case of only two 2×2 matrices, for $K = \mathbb{R}$ in the Blum-Shub-Smale model of computation [5].
- A decidability result for two 2×2 matrices, in the case $K = \mathbb{Q}$ for the Turing model of computation.

For arbitrary |F| = m, the question remains open.

• Reducibility relations between the mortality problem and other problems in the literature.

2 Links between dimension and number of matrices

Paterson proved in [20] that the mortality problem restricted to 3×3 matrices is not decidable.

Theorem 1 ([20]) $MORT_{\mathbb{Q}}(3)$ is recursively unsolvable.

More precisely, Paterson proved in [20] that, if the Post Correspondence Problem (PCP) is undecidable with p rules, then $MORT_{\mathbb{Q}}(3, 2p + 2)$ is undecidable. Using the Modified Post Correspondence Problem (MPCP) instead of PCP, we improve this result.

Proposition 1 Suppose that the Post Correspondence Problem is undecidable with p rules. Then decision problem $MORT_{\mathbb{Q}}(3, p+2)$ is undecidable.

Proof. The Post Correspondence Problem (PCP) is the decision problem "given a finite set of pairs of words $\{\langle U_i, V_i \rangle \mid i = 1, \ldots, p\}$, determine if there exists a sequence of indexes i_1, i_2, \ldots, i_k in $\{1, 2, \ldots, p\}$ with $U_{i_1}U_{i_2}\cdots U_{i_k} = V_{i_1}V_{i_2}\cdots V_{i_k}$ ".

The arguments of Paterson in [20] prove that, to any instance $\{\langle U_i, V_i \rangle \mid i = 1, \ldots, p\}$ of PCP, can be associated a finite set

$$F = \{S, T, W(U_j, V_j), W'(U_j, V_j) \mid j = 1, \dots, p\}$$

of integer matrices, which satisfy

- 1. F is mortal if and only if there exists some integers i_1, i_2, \ldots, i_k with $SW'(U_{i_1}, V_{i_1})W(U_{i_2}, V_{i_2})\cdots W(U_{i_k}, V_{i_k})T = 0;$
- 2. This latter case holds if and only if $U_{i_1}U_{i_2}\cdots U_{i_k} = V_{i_1}V_{i_2}\cdots V_{i_k}$.

We replace the Post Correspondence Problem (PCP) by the Modified Post Correspondence Problem (MPCP) [10] to obtain our result. The difference between PCP and MPCP is that in the latter the first index i_1 must be equal to 1. Namely, the Modified Post Correspondence Problem is the decision problem "given a finite set of pairs of words $\{\langle U_i, V_i \rangle \mid i = 1, \ldots, p\}$, determine if there exists a sequence of indexes i_2, \ldots, i_k in $\{1, 2, \ldots, p\}$ with $U_1U_{i_2} \cdots U_{i_k} =$ $V_1V_{i_2} \cdots V_{i_k}$ ".

Since any instance of PCP can be solved by p calls to MPCP, the undecidability of PCP with p rules implies the undecidability of MPCP with p rules.

There only remains to prove that MPCP with p rules reduces to $MORT_{\mathbb{Q}}(3, p+2)$. Since in MPCP the first index i_1 is 1, the set of matrices

$$F = \{T, SW'_{U_1, V_1}, W_{U_j, V_j} \mid j = 1, \dots, p\}$$

is mortal if and only if there exist some integers i_2, \ldots, i_k with

$$SW'(U_1, V_1)W(U_{i_2}, V_{i_2})\cdots W(U_{i_k}, V_{i_k})T = 0.$$

By condition 2 above, this holds if and only if $\{\langle U_i, V_i \rangle \mid i = 1, ..., p\}$ is a positive instance of MPCP.

The following result is proved in [2] and in [6].

Lemma 1 [2, 6] For all $n \ge 2$, $m \ge 1$, $MORT_{\mathbb{Q}}(d,m)$ undecidable implies $MORT_{\mathbb{Q}}(dm,2)$ undecidable.

The minimal number p of rules for which PCP is undecidable is not known, but p is an integer between 3 and 7 (cf. [18]).

Hence, from Proposition 1, the following can be stated.

Corollary 1 • Decision problem $MORT_{\mathbb{Q}}(3,9)$ is undecidable.

• Decision problem $MORT_{\mathbb{Q}}(27,2)$ is undecidable.

3 On the decidability of MORT(2,2).

We now come back to the decidability of the mortality problem for two-dimensional matrices. We prove first that $MORT_{\mathbb{R}}(2,2)$ is BSS-undecidable. Then we prove that $MORT_{\mathbb{Q}}(2,2)$ is Turing-decidable.

We make use of the following lemma several times.

Lemma 2 A finite set $F = \{A_1, \ldots, A_m\}$ of 2×2 matrices is mortal if and only if there exist an integer k and integers $i_1, \ldots, i_k \in \{1, \ldots, m\}$ with $A_{i_1} \cdots A_{i_k} = 0$, and

- 1. $\operatorname{rank}(A_{i_i}) = 2 \text{ for } 1 < j < k$,
- 2. $\operatorname{rank}(A_{i_i}) < 2 \text{ for } j \in \{1, k\}.$

Proof. Only the direct sense requires a proof. Assume that F is mortal. Then there exists a null product $A_{i_1} \cdots A_{i_k} = 0$ where k is minimal. Assume $k \ge 2$, because otherwise the assertion is immediate. The matrices A_{i_1} and A_{i_k} of this product are singular because otherwise a null-product with fewer matrices could be obtained by multiplying $A_{i_1} \cdots A_{i_k}$ by their inverse(s).

Let $j \geq 2$ be the smallest integer with $\operatorname{rank}(A_{i_j}) < 2$. Since we have $A_{i_1} \cdots A_{i_k} = 0$, matrix $A_{i_1} \cdots A_{i_{j-1}}$ sends the image I of matrix $A_{i_j} \cdots A_{i_k}$ to 0. Now, I is also equal to the image of A_{i_j} and is of dimension 1. Indeed, first, I is clearly included in the image of A_{i_j} . Second, by definition of k, I cannot be of dimension 0, and third, the dimension of the image of A_{i_j} is at most 1 because $\operatorname{rank}(A_{i_j}) < 2$. We obtain $A_{i_1} \cdots A_{i_{j-1}}A_{i_j} = 0$. This implies j = k, and the direct sense of the lemma.

3.1 BSS-undecidability of $MORT_{\mathbb{R}}(2,2)$

Talking about the decidability or undecidability of $MORT_{\mathbb{R}}(2)$ requires one to talk about machines that manipulate real numbers.

One approach is to use the machine model studied in recursive analysis (e.g., see [26]). However, this model does not meet our needs because one cannot decide whether a real number is equal to zero in this model [26].

Another approach is to use the Turing machine model for real numbers proposed by Blum, Shub, and Smale in [4, 5]. Roughly speaking, a BSS-machine¹ is an extended Random Access Machine [10] that treats real numbers as basic entities; namely a BSS-machine contains an unbounded number of real registers x_1, \ldots, x_n, \ldots each of which can hold one real number in unbounded precision. Moreover, a BSS-machine contains a finite number of built-in constants $\lambda_1, \ldots, \lambda_m$. Its program is made of arithmetic operations between its real registers of type $x_i := x_j \# x_k$, for $\# \in \{+, -, *, /\}$, or of type $x_i := \lambda_j$, or of tests of type $x_i \# x_j$ with $\# \in \{>, \ge, <, \le, =, \neq\}$. Let $\mathbb{R}^{\infty} = \bigcup_{i \in \mathbb{N}} \mathbb{R}^i$. An input $x \in \mathbb{R}^{\infty}$ is of type $x = (x_1, \ldots, x_i)$ for some *i*. The input is said to be *accepted* by the machine if the program of the machine eventually halts when started with its real registers set to $(x_1, \ldots, x_i, 0, \ldots, 0, \ldots)$. A language $L \subset \mathbb{R}^{\infty}$ is said to be *BSS-recursively enumerable* if it consists of the accepted inputs of some BSS-machine. The language L is said to be *BSS-recursive* if, in addition, its complement is BSS-recursively enumerable.

In other words, BSS recursive sets are those that can be decided using only arithmetical operations and tests. The reader should refer to [4, 5] for more formal descriptions. We assume that the reader is familiar with the BSS-model in the rest of this paper.

We first recall a lemma proved in [5]. A set $S \subset \mathbb{R}^n$ is said to be a *basic semi-algebraic set* if $S = \{(x_1, \ldots, x_n) \mid p_1(x_1, \ldots, x_n) > 0 \land \cdots \land p_{n_1}(x_1, \ldots, x_n) > 0 \land p'_1(x_1, \ldots, x_n) = 0 \land \cdots \land p'_{n_2}(x_1, \ldots, x_n) = 0 \}$ for some *n*-variable polynomials $p_1, p_2, \ldots, p_{n_1}, p'_1, \ldots, p'_{n_2}$. A *semi-algebraic set* is a finite union of basic semi-algebraic sets.

Lemma 3 Let $L \subset \mathbb{R}^{\infty}$ be a BSS-recursively enumerable set. Then L is a denumerable union of semi-algebraic sets.

Sketch of proof. Write $L = \bigcup_{t \in \mathbb{N}} ACC_t$, where ACC_t is the subset of the inputs that are accepted by the machine at time t. Each subset ACC_t is a semi-algebraic set. See [5] for the formal details. \Box

The remaining arguments of this subsection are inspired from [13]. (In fact, there seems to be a close relation between mortality and stability. Cf. [13].)

We start with the following preliminary result.

Lemma 4 Let $a, b, \lambda \in \mathbb{R}$ be some real numbers with $a^2 + b^2 \neq 0$ and $\lambda \neq 0$. Let θ be an argument of complex number a + ib. The pair of matrices $F(a, b, \lambda) = \{A_1, A_2\}$ with

 $^{^1{\}rm The}$ BSS-model is not a realizable computation concept but is of mathematical interest for studying computations on the reals.

$$A_1 = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}, \qquad A_2 = \begin{pmatrix} -\lambda & 1 \\ 0 & 0 \end{pmatrix},$$

is mortal if and only if there exists an integer $n \in \mathbb{N}$ with $\lambda = \tan(n\theta)$.

Proof. From Lemma 2, we know that $F(a, b, \lambda)$ is mortal if and only if there exists an integer $n \in \mathbb{N}$ with $A_2A_1^nA_2 = 0$. This holds if and only if there exists a *n*th power of A_1 which sends the image of A_2 to its kernel. Since $\operatorname{Im}(A_2) = \prec (1, 0) \succ$, $\operatorname{Ker}(A_2) = \prec (1, \lambda) \succ$, and since A_1 is the composition of an homothety and a rotation of angle θ , this is true if and only if there exists an integer $n \in \mathbb{N}$ with $\lambda = \tan(n\theta)$. \Box

The following observations are easy.

Lemma 5 Let θ be a real number. Let $E(\theta)$ be the subset of \mathbb{R} defined by

 $E(\theta) = \{\lambda \mid \text{there exists an integer } n \in \mathbb{N} \text{ with } \lambda = \tan(n\theta)\}.$

- 1. $E(\theta)$ is a dense subset of \mathbb{R} if and only if $\theta/\pi \notin \mathbb{Q}$.
- 2. There exist two rational numbers $a, b \in \mathbb{Q}$ such that any argument θ of complex number a + ib satisfies $\theta/\pi \notin \mathbb{Q}$. Indeed, take for example a = 1 and b = 2 (see Lemma 6).
- 3. When $\theta/\pi \notin \mathbb{Q}$, the complement $E^c(\theta)$ of $E(\theta)$ in \mathbb{R} has an uncountable number of connected components; actually, every point of $E^c(\theta)$ is its own connected component.

We can now prove that $MORT_{\mathbb{R}}(2,2)$ is BSS-undecidable. Observe that the arguments are close to the ones in [13]. We, however, deal with a different problem and with a modified family of matrices.

Theorem 2 MORT_{\mathbb{R}}(2,2) is BSS-recursively enumerable but is not BSS-recursive.

Proof. Building a BSS-machine that semi-recognizes $MORT_{\mathbb{R}}(2,2)$ is easy. Therefore the problem is BSS-recursively enumerable.

Representing the matrices by their coefficients, the space of the instances of problem $\text{MORT}_{\mathbb{R}}(2,2)$ is \mathbb{R}^8 . Denote by $\text{POS} \subset \mathbb{R}^8$ (resp. by $\text{NEG} \subset \mathbb{R}^8$) the subset of the positive (resp. negative) instances of the problem. Using Lemma 3, we only need to prove that NEG is not a countable union of semi-algebraic sets.

Let $a, b \in \mathbb{Q}$ with $a + ib = \rho e^{i\theta}, \theta/\pi \notin \mathbb{Q}$ as in Lemma 5. Let $\gamma : \mathbb{R} \to \mathbb{R}^8$ be the function that sends $\lambda \in \mathbb{R}$ to the pair of matrices $F(a, b, \lambda)$. By definition of γ , the image $\operatorname{Im} \gamma$ of γ is an algebraic subset of \mathbb{R}^8 and γ realizes an homeomorphism between \mathbb{R} and $\operatorname{Im} \gamma$. By Lemma 4, we know that $\gamma^{-1}(\operatorname{Pos}) = E(\theta)$ and $\gamma^{-1}(\operatorname{NEG}) = E^c(\theta)$. Since γ is an homeomorphism, $E^c(\theta)$ and $\gamma(E^c(\theta)) = \operatorname{NEG} \cap \operatorname{Im} \gamma$ must have the same number of connected components. That is, by part 3 of Lemma 5, they must have an uncountable number of connected components. Assume, by contradiction, that we can write $\operatorname{NEG} = \bigcup_{i \in \mathbb{N}} S_i$ where each S_i is a semi-algebraic subset. We would have $\operatorname{NEG} \cap \operatorname{Im} \gamma = \bigcup_{i \in \mathbb{N}} (\operatorname{Im} \gamma \cap S_i)$. Each of the $(\operatorname{Im} \gamma \cap S_i)$ must be a semi-algebraic subset as the result of the intersection between an algebraic set and a semi-algebraic set. Since a semi-algebraic set has a finite number of connected components, $\operatorname{NEG} \cap \operatorname{Im} \gamma$ must have a countable number of connected components. This leads to a contradiction. \Box

We obtain the following immediately.

- **Corollary 2** For $n \ge 2$, $m \ge 2$, the problem $MORT_{\mathbb{R}}(n,m)$ is BSSrecursively enumerable but not BSS-recursive.
 - $MORT_{\mathbb{R}}(2)$ is BSS-recursively enumerable but not BSS-recursive.

However, observe that it is easy to extract the following fact from the proofs of the next section.

Theorem 3 Problem $MORT_{\mathbb{R}}(2,2)$ restricted to matrices with real eigenvalues is BSS-recursive.

Let us discuss the results of Theorem 2 and Corollary 2. Deciding whether a set of matrices is mortal using *only arithmetical operations* is not possible. But it does not mean that the problem cannot be decided by an algorithm which uses non-arithmetical operations or which uses arguments about the semi-ring K of the entries for $K \neq \mathbb{R}$.

Actually, using number-theoretical arguments, we prove in the next subsection that the decision problem $MORT_{\mathbb{Q}}(2,2)$ is Turing-decidable.

3.2 Turing-decidability of $MORT_{\mathbb{Q}}(2,2)$

The decidability of $MORT_{\mathbb{Q}}(2,2)$ has already been claimed [6, 21]. However, the proofs were either wrong or incomplete. More precisely, in [6], the result is claimed without proof. In [21], the result is claimed but the proof is wrong. Indeed, the proof of [21] presents an algorithm to decide $MORT_{\mathbb{Q}}(2,2)$ which uses only arithmetical operations, and this precisely contradicts² Theorem 2. We present a full proof herein.

From the previous section, we know that to prove the decidability of $MORT_{\mathbb{Q}}(2,2)$, we need the use of number-theoretical arguments. The arguments³ we use are based on the following result extracted from [23].

Lemma 6 ([23]) • The following decision problem is decidable.

- Instance: rational numbers $p, q \in [-1, 1]$.

 $^{^{2}}$ Concretely, the cases studied in the proof [21] do not cover all the cases. In particular, the proof forgets the case of rational matrices with complex eigenvalues.

³Not present in [21]. Of course, those arguments could always be patched to the (missing) cases of the proof of [21], but we prefer presenting a complete, independent, and correction-/patch-free proof.

- Question: does there exist $\theta \in \mathbb{R}$ and an integer $n \in \mathbb{N}$ with $\cos(\theta) = p$ and $\cos(n\theta) = q$?
- When p ∉ {0,1/2,1}, there are at most a finite number of such n and those n can be computed effectively.

Proof. For completeness we provide the proof, which is almost cut-and-paste from [23].

Write p = r/s, q = u/v where r, s, u, v are integers such that gcd(r, s) = gcd(u, v) = 1. The decidability of the problem when p = 0, p = 1/2, or p = 1 is trivial, since in that case the sequence $n \to cos(n\theta)$ assumes only a computable finite number of values that can be tested against q. Suppose $p \notin \{0, 1/2, 1\}$. The function $cos(n\theta)$ is a polynomial in $cos(\theta)$ with integer coefficients. If this polynomial is written $cos(n\theta) = p_n(r/s)$, then $s^n p_n(r/s)$ is some integer c_n which satisfies

$$2rc_{n+1} - s^2 c_n = c_{n+2}, (1)$$

with $c_1 = r$ and $c_2 = 2r^2 - s^2$; indeed if we denote $a_n = \sin(nx)$ and $b_n = \cos(nx)$, this recurrence comes from $a_{n+1} = a_1b_n + b_1a_n$, $b_{n+1} = b_1b_n - a_1a_n$,

Suppose that s is not a power of 2. Write $s = 2^{a}b$, $v = 2^{a'}b'$ with b > 1, $b' \ge 1$ odd. We are searching for an integer n such that $c_n/(2^{an}b^n) = u/(2^{a'}b')$. We claim $gcd(c_n, b^n) = 1$ for all $n \in \mathbb{N}$. Indeed, if some odd integer d divides s and c_n simultaneously, then, since gcd(r, s) = 1, the assertions $d|c_{n-1}, d|c_{n-2}, \ldots, d|c_2$ imply $d|r^2$, which implies d = 1. As a consequence, an integer candidate n must satisfy $b' = b^n$. There are at most a finite number of such n and those n are computable.

Suppose now that s is a power of 2. Write $s = 2^k$, k > 1 (remember that we supposed $r/s \neq 1/2$). Write every c_n as $c_n = 2^{\lambda_n} v_n$ where v_n is an odd integer. Recurrence (1) becomes

$$2^{\lambda_{n+1}+1}rv_{n+1} - 2^{\lambda_n+2k}v_n = 2^{\lambda_{n+2}}v_{n+2}.$$
(2)

We prove first that there exists an integer n with $\lambda_n + 1 < 2k + \lambda_{n-1}$. Indeed, if it were false, we would always have $\lambda_n + 1 \ge 2k + \lambda_{n-1}$, so that $\lambda_n + 1 \ge 2(n-1)k + \lambda_1$ would hold for all n. Since $|\cos(n\theta)| < 1$, we have $kn \ge \lambda_n$ which implies $kn \ge 2(n-1)k + \lambda_1 - 1$ for all $n \in \mathbb{N}$. Clearly this is impossible.

Let n_0 be the smallest integer such that $\lambda_{n_0+1} + 1 < 2k + \lambda_{n_0}$. Integer n_0 can be computed effectively by testing this condition for increasing n. We have $\lambda_{n_0+2} = \lambda_{n_0+1} + 1$. Indeed, from (1) we must have $rv_{n_0+1} - 2^{\lambda_{n_0}+2k-\lambda_{n_0+1}-1}v_{n_0} = 2^{\lambda_{n_0+2}-\lambda_{n_0+1}-1}v_{n_0+2}$. Considering parity of both sides, this can happen only if $\lambda_{n_0+2} = \lambda_{n_0+1} + 1$.

Since that implies $\lambda_{n_0+2} + 1 = \lambda_{n_0+1} + 2 < \lambda_{n_0+1} + 2k$, we can repeat the argument, and get by induction that for all integers $h \ge 0$, $\lambda_{n_0+2+h} = \lambda_{n_0+1+h} + 1$ holds. Hence, for each positive integer h, we must have $\lambda_{n_0+h} = \lambda_{n_0} + h$.

Now, return to the existence of an integer n with $\cos(n\theta) = u/v$. For $\cos(\theta)$ having denominator 2^k , v must be a power of 2. Suppose $v = 2^m$. It may

happen that there exists a solution for $n \leq n_0$. For $n > n_0$, a solution $n = n_0 + h$ must satisfy $\cos((n_0 + h)\theta) = v_{n_0+h}2^{\lambda_{n_0}+h}/2^{k(n_0+h)} = u/2^m$, hence $k(n_0 + h) - \lambda_{n_0} - h = m$, or $h = (m + \lambda_{n_0} - kn_0)/(k-1)$. That is, the only integer n candidate exceeding n_0 is $n_0 + (m + \lambda_{n_0} - kn_0)/(k-1)$. Hence, there are at most $n_0 + 2$ integer candidates n that could satisfy $\cos(n\theta) = u/v$, and those candidates are computable.

With this we now obtain the following.

Theorem 4 MORT_{\mathbb{O}}(2,2) is decidable.

Proof. Let $F = \{A_1, A_2\}$ be an instance of the problem. Suppose without loss of generality that the rank of A_2 is greater than the rank of A_1 . If A_1 is of rank 2, then the two matrices are nonsingular and F is non-mortal by Lemma 2. If A_1 is of rank 0 then F is mortal. If the two matrices have rank 1, by Lemma 2, it suffices to test whether one of the products $A_1^2, A_1A_2, A_2A_1, A_2^2$ is null.

There remains only the case where A_2 is nonsingular and A_1 is of rank 1. By Lemma 2, F is mortal if and only if there exists an integer $n \in \mathbb{N}$ with

$$A_1 A_2^n A_1 = 0. (3)$$

We want to check this relation algebraically using the Jordan forms of the matrices A_1 and A_2 . Write

$$A_{1} = P_{1}^{-1} J_{1} P_{1}, \qquad A_{2} = P_{2}^{-1} J_{2} P_{2},$$
$$J_{1} = \begin{pmatrix} \kappa & 0\\ 0 & 0 \end{pmatrix},$$

and

$$J_2 = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}.$$

with P_1 and P_2 nonsingular. Eigenvalue κ is equal to the trace of rational matrix A_1 , and hence, is a rational number. Eigenvalues λ and μ are the (possibly complex) roots of the characteristic polynomial of rational matrix A_2 .

Equation (3) becomes

$$P_1^{-1}J_1P_1P_2^{-1}J_2^nP_2P_1^{-1}J_1P_1 = 0$$

or, since P_1 is nonsingular,

$$J_1 P J_2^n P^{-1} J_1 = 0$$

where

$$P = P_1 P_2^{-1} = \left(\begin{array}{cc} p & q \\ r & s \end{array}\right).$$

Now, after substituting P, P^{-1} and J, the problem is equivalent to testing whether there exists an integer $n \in \mathbb{N}$ with

• $ps\lambda^n - qr\mu^n = 0$, when J_2 is of the first form; or

• $(ps - qr)\lambda^n - rpn = 0$, when J_2 is of the second form.

Suppose that J_2 is of the second form. Eigenvalue λ is rational because λ is equal to the trace of rational matrix A_2 divided by two. Coefficients κ, p, q, r , and s are computable rational numbers which can easily be expressed in terms of the coefficients of the matrices A_1 and A_2 from previous considerations. Testing whether there exists an integer n with $(ps - qr)\lambda^n - rpn = 0$ is easy in that case. Indeed, the equation $(ps - qr)\lambda^x - rpx = 0$ over real variable x clearly has a unique real solution x^* in that case; any numerical method⁴ can return an approximation to precision 1/2 of x^* , namely a rational number $x_{\rm app}$ with $|x_{\rm app} - x^*| < 1/2$; testing whether $(ps - qr)\lambda^n - rpn = 0$ has a solution is then equivalent to testing this equation with $n = \lfloor x_{\rm app} \rfloor$.

Suppose that J_2 is of the first form. We want to test the existence of an integer n with $ps\lambda^n - qr\mu^n = 0$. Observe that $\lambda \neq 0, \mu \neq 0$ since A_2 is of rank 2. λ, μ and the coefficients p, q, r, s can be complex numbers but are computable elements of $\mathbb{Q}(\lambda)$. That is, they are of the form $a + \lambda b$ for some rational numbers $a, b \in \mathbb{Q}$ computable from the rational coefficients of the matrices A_1 and A_2 . By computing in $\mathbb{Q}(\lambda)$, the cases ps = 0 or qr = 0 are trivial. Suppose now $ps \neq 0$ and $qr \neq 0$. The problem is equivalent to testing whether there exists an integer n with $(\lambda/\mu)^n = (pq)/(rs)$. We must have $|\lambda/\mu|^n = |pq|/|rs|$. When $|\lambda/\mu| \neq 1$, n must be equal to $|pq|/(|rs| \log |\lambda/\mu|)$; we only need to use any numerical algorithm for approximating this real quantity x^* by some rational number $x_{\rm app}$ with $|x_{\rm app} - x^*| < 1/2$, and test the equation for integer $n = \lfloor x_{\rm app} \rfloor$. When $|\lambda/\mu| = 1$ and λ and μ are real numbers, we have necessarily that $\lambda = \mu$ or $\lambda = -\mu$. In both cases, by computing in $\mathbb{Q}(\lambda)$ the problem is trivial. When $|\lambda/\mu| = 1$ and $|pq|/|rs| \neq 1$ the problem has no solution.

There remains only the case where λ and μ are two conjugated complex roots and (pq)/(rs) is a complex number of modulus 1. In that case λ is a complex number with rational real part because λ is a root of the characteristic polynomial of matrix A_2 with rational coefficients. Therefore, complex numbers λ/μ and (pq)/(rs) of type $a + \lambda b$ with computable $a, b \in \mathbb{Q}$ must also have rational computable real parts. If θ denotes an argument of complex number λ/μ of modulus 1, an integer n solution must satisfy $\cos(n\theta) = r'$ where r' is the real part of (pq)/(rs). When the real part p' of λ/μ is equal to $1/2, n \mapsto (\lambda/\mu)^n$ is a periodic sequence of period 6, and it suffices to check $(\lambda/\mu)^n = (pq)/(rs)$ for $n = 0, 1, \ldots, 5$. Cases p' = 0 and p' = 1 can be dealt with similarly. Now, when $p' \notin \{0, 1/2\}$, by Lemma 6, there are at most a finite number of integers n satisfying $\cos(n\theta) = r'$ and those integers are computable. It suffices to check if equation $(\lambda/\mu)^n = (pq)/(rs)$ holds for those integers.

We have just proved that $MORT_{\mathbb{Q}}(2,2)$ is Turing-decidable. We do not know whether $MORT_{\mathbb{Q}}(2,3)$ is decidable. So our knowledge of the decidability of $MORT_{\mathbb{Q}}(2)$ stops at the previous theorem. However, our proof of the BSS-undecidability of the problem shows that the problem is more a numbertheoretic problem than a simple computability problem.

 $^{^4\}mathrm{For}$ example, Newton's method.

In the next section, we show that $MORT_{\mathbb{Q}}(2)$ can be related to other open problems in the literature.

As pointed out by an anonymous referee, the previous theorem can also be proved in a much more compact (but not self-contained) way using the results of [25]. Let A_0, A_1 be two 2×2 matrices with rational entries. To the word $w = w_1 w_2 \dots w_n \in \{0, 1\}^*$ we associate the matrix $A_w = A_{w_1} A_{w_2} \dots A_{w_n}$. The language $Z(A_0, A_1)$ is the set of words w for which $A_w = 0$. Theorem 4 says that given two 2×2 matrices A_0, A_1 with rational entries, one can effectively test if $Z(A_0, A_1)$ is empty. This could also be seen as a consequence of the following stronger claim: given two 2×2 matrices A_0, A_1 with rational entries, one can effectively compute the language $Z(A_0, A_1)$.

Indeed, if both matrices are of rank 2, then $Z(A_0, A_1)$ is empty. If rank $(A_0) = 0$ the problem is trivial, so assume rank $(A_0) = 1$. Then $A_0 = bc^T$ where b and c are nonzero column vectors with rational entries. By Lemma 2, if there exists a mortal product, then $A_0A_1^kA_0 = 0$ for some integer k. This condition is equivalent to $c^TA_1^kb = 0$. Let $\gamma_k = c^TA_1^kb$; the sequence γ_k is a linear recursive sequence of order 2. [25] proves that there exists an algorithm for finding a semi-linear definition of the set of zeros of any linear recursive sequence of order ≤ 3 from a definition of the sequence. That implies that the set of indices k for which $\gamma_k = 0$ can be computed effectively. The language Z is equal to the set of words uvw where u and w are arbitrary words, and v is a word of the form 01111...1110 where the number of 1's is any k for which $\gamma_k = 0$.

4 Relations to other problems in the literature

In this section we prove that $MORT_{\mathbb{Q}}(2)$ is equivalent to the entry-equivalence problem studied in [15], to the zero-in-the-corner problem studied in [17, 6], and can be linked to the problems studied in [12].

When C is a matrix, $C_{i,j}$ denotes the entry in its *i*th row and *j*th column.

4.1 The Entry-Equivalence Problem

Here is a variation of Theorem 2 of [15] (unlike Theorem 2 of [15], we do not suppose F to be composed of only nonsingular matrices).

Lemma 7 Let F be a finite set of 2×2 matrices. There exists an integer k and some integers i_1, \ldots, i_k such that $A_{i_1} \cdots A_{i_k}$ is a matrix C satisfying $C_{2,1} = C_{2,2}$ if and only if the finite set F' composed of the matrices of F and of the matrix

$$H = \left(\begin{array}{cc} 0 & 1\\ 0 & -1 \end{array}\right)$$

is mortal.

Proof. First observe that HCH = 0 holds if and only if $C_{2,1} = C_{2,2}$. That proves the direct sense.

Conversely, by Lemma 2, if F is mortal there exist i_1, \ldots, i_k with $A_{i_1} \cdots A_{i_k} = 0$, $A_{i_j} \neq H$ for 1 < j < k, and $\operatorname{rank}(A_{i_j}) < 2$ for $j \in \{1, k\}$. If $A_{i_1} = A_{i_k} = H$ the remark of the previous paragraph implies that $C = A_{i_2} \cdots A_{i_{k-1}}$ satisfies $C_{2,1} = C_{2,2}$. If $A_{i_1} \neq H$ and $A_{i_k} \neq H$ then $A_{i_1} \cdots A_{i_k}$ is a product of matrices from F equal to the null-matrix, and the null-matrix O satisfies $O_{2,1} = O_{2,2}$. Now, for the remaining cases, observe that equation HC = 0 (resp. CH = 0) implies $C_{2,1} = C_{2,2}$.

We can now extend a result of [15].

Theorem 5 (Entry-Equivalence) Let $K \in \{\mathbb{R}, \mathbb{Q}\}$.

Problem $MORT_K(2)$ is equivalent to the following decision problem:

- Instance: a finite set $F = \{A_1, \dots, A_m\}$ of 2×2 matrices with entries in K.
- Question: does there exist an integer k and some integers i₁,..., i_k such that A_{i1} ··· A_{ik} is a matrix C satisfying C_{2,1} = C_{2,2}?

and to the following decision problem:

- Instance: a finite set $F = \{A_1, \ldots, A_m\}$ of nonsingular 2×2 matrices with entries in K.
- Question: does there exist an integer k and some integers i₁,..., i_k such that A_{i1} ··· A_{ik} is a matrix C satisfying C_{2,1} = C_{2,2}?

Proof. Clearly the second problem reduces to the first. The first problem reduces to the mortality problem for 2×2 matrices by Lemma 7 and a reduction from the mortality problem for 2×2 matrices to the second problem is given in [15].

As a corollary to our results, we obtain that the above-mentioned problems are not decidable over \mathbb{R} , and open and equivalent over \mathbb{Q} .

4.2 The Zero-in-the-Corner Problem

It is known that the problem of deciding whether the semi-group generated by a finite set of 3×3 nonsingular matrices contains an element with a zero in the right upper corner is undecidable [6, 17]. However, the decidability of the problem for 2×2 matrices is left open [6].

Nevertheless, this problem can be related to the mortality problem by the next theorem.

Theorem 6 (Zero-in-the-Corner) Let $K \in \{\mathbb{R}, \mathbb{Q}\}$.

Problem $MORT_K(2)$ is equivalent to the following decision problem:

- Instance: a finite set $F = \{A_1, \ldots, A_m\}$ of 2×2 matrices with entries in K.
- Question: does there exist an integer k and some integers i_1, \ldots, i_k such that $A_{i_1} \ldots A_{i_k}$ is a matrix C satisfying $C_{1,1} = 0$?

and to the following decision problem:

- Instance: a finite set $F = \{A_1, \ldots, A_m\}$ of nonsingular 2×2 matrices with entries in K.
- Question: does there exist an integer k and some integers i₁,..., i_k such that A_{i1} ··· A_{ik} is a matrix C satisfying C_{1,1} = 0?

Proof. Denote

$$P = \left(\begin{array}{cc} 0 & 1\\ 1 & 1 \end{array}\right)$$

Observing that, for all matrix C, matrix $C' = PCP^{-1}$ satisfies $C'_{1,1} = 0$ if and only if $C_{2,1} = C_{2,2}$, the above problems are equivalent to the equivalent problems of Theorem 5 by conjugations by matrix P.

As a corollary to our results, we obtain that the above-mentioned problems are not decidable over \mathbb{R} , and open and equivalent over \mathbb{Q} .

4.3 Restriction to lower triangular matrices

It was proposed in [15] to restrict the previous problems to lower triangular matrices. Indeed, [20] also proves that the entry-equivalence problem is undecidable for lower-triangular 3×3 matrices with rational entries.

Problem MORT_Q(2) restricted to lower triangular matrices is trivially decidable [15]. Indeed, a finite set F of lower triangular matrices is mortal if and only if there exist two matrices A, B in F with $A_{1,1} = 0$ and $B_{2,2} = 0$. The zeroin-the-corner problem also becomes trivial when restricted to lower-triangular matrices.

However, the answer to the following question is not known.

Open Problem 2 (Lower triangular matrices) Is the following decision problem decidable?

- Instance: a finite set $F = \{A_1, \ldots, A_m\}$ of nonsingular lower-triangular 2×2 matrices with rational entries.
- Question: does there exist an integer k and some integers i₁,..., i_k such that A_{i1} ··· A_{ik} is a matrix C satisfying C_{2,1} = C_{2,2}?

We prove that this problem can be related to a non-deterministic version of the open problem mentioned in [12].

Theorem 7 Open Problem 2 is equivalent to the decidability of the following decision problem:

• Instance: a finite set $F = \{f_1, \ldots, f_m\}$ of non-constant rational affine functions of dimension 1 (i.e. a set of functions of type $f_i : x \mapsto a_i x + b_i$, $a_i, b_i \in \mathbb{Q}, a_i \neq 0$).

 Question: does there exists a composition f_{i1} ◦ f_{i2} ◦ · · · ◦ f_{ik} of these functions that maps point 0 to point 1?

Proof. Call this problem the *composition problem*. Suppose that a finite set $F = \{A_1, \ldots, A_m\}$ of nonsingular lower-triangular matrices is given. Without loss of generality, we can suppose $A_{2,2} = 1$ for each matrix $A \in F$. Indeed, each matrix $A \in F$ must satisfy $A_{2,2} \neq 0$ to be nonsingular, and replacing each matrix A by matrix $A/A_{2,2}$ in F does not change the mortality of set F.

Open Problem 2 reduces to the instance $F' = \{f_1, \ldots, f_m\}$ of the composition problem where $f_i : x \mapsto (A_i)_{1,1}x + (A_i)_{2,1}$. Indeed, any product $C = A_{i_1} \cdots A_{i_k}$ of lower-triangular matrices with $(A_{i_j})_{2,2} = 1$ satisfies $C_{2,2} = 1$ and $C_{2,1} = f_{i_1} \circ f_{i_2} \cdots \circ f_{i_k}(0)$.

Conversely the composition problem reduces to Open Problem 2. When a finite set $F = \{f_1, \ldots, f_m\}$ of non-constant affine rational functions is given, $f_i : x \mapsto a_i x + b_i$, it suffices to consider $F' = \{A_1, \ldots, A_m\}$ with

$$A_i = \left(\begin{array}{cc} a_i & 0\\ b_i & 1 \end{array}\right)$$

and to observe that any product $C = A_{i_1} \cdots A_{i_k}$ of matrices of this form satisfies $C_{2,2} = 1$ and $C_{2,1} = f_{i_1} \circ f_{i_2} \cdots \circ f_{i_k}(0)$.

4.4 NP-completeness results

4.4.1 K-length mortality

A set $F = \{A_1, \ldots, A_m\}$ of $d \times d$ matrices is said to be *K*-length mortal if there exist an integer $k \leq K$ and some integers $i_1, i_2, \ldots, i_k \in \{1, \ldots, m\}$ with $A_{i_1}A_{i_2} \cdots A_{i_k} = 0.$

Theorem 8 Given a set F of $m \ 3 \times 3$ matrices with rational entries and an integer $K \le 1+m/2$, the decision problem "Is F K-length-mortal?" is NP-hard.

Proof. Via the reduction of [20] (or the proof of Proposition 1) and the NP-completeness of Bounded PCP [7]. \Box

Observe that [2] proves that this result remains true whenever the matrices are assumed to have entries in $\{0, 1\}$.

4.4.2 Mortality without repetition

When repetitions of matrices are not allowed, the problem also becomes clearly decidable. A multi-set $F = \{A_1, \ldots, A_m\}$ of $d \times d$ matrices is said to be *mortal* without repetition if there exist integers $k \ge 1$ and some integers $i_1, i_2, \ldots, i_k \in \{1, \ldots, m\}$ such that $A_{i_1}A_{i_2} \cdots A_{i_k} = 0$ and $i_{j_1} \ne i_{j_2}$ for all $j_1 \ne j_2$.

Theorem 9 Given a finite multi-set F of $m \ 2 \times 2$ matrices, and an integer K, the decision problem "Is F K-length-mortal without repetition?" is NP-hard in the strong sense.

The proof uses a reduction from subset product [7]. We restate this problem here.

Proposition 2 (Subset Product (Yao)) Given a finite set A, a size $s(a) \in \mathbb{N}^+$ for each $a \in A$, and a positive integer B, the decision problem "Is there a subset $A' \subset A$ such that the product of the sizes of the elements in A' is exactly B?" is NP-complete in the strong sense.

Proof. [of Theorem 9] Given an instance of subset product with |A| = n, define n + 3 matrices as follows.

$$\left(\begin{array}{cc}1&0\\0&s(a)\end{array}\right), \text{ for } a \in A, \qquad \left(\begin{array}{cc}1&0\\B&1\end{array}\right), \qquad \left(\begin{array}{cc}0&1\\0&-1\end{array}\right), \qquad \left(\begin{array}{cc}0&1\\0&-1\end{array}\right).$$

Note that we have repeated the last matrix, since we are required to use it twice. Denote the last matrix by H. Check that for all 2×2 matrices A, HAH = 0 if and only if $A_{2,1} = A_{2,2}$. Hence, by Lemma 2, this set of matrices is mortal without repetition with length $4 \le k \le n+3$ steps if and only if subset product has a solution in $1 \le k-3 \le n$ steps.

5 Thanks

We would like to thank Eduardo Sontag for having pointed out reference [13].

We would also like to thank the anonymous referees for valuable comments and improvements concerning the results of this paper.

References

- E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems having piecewise-constant derivatives. *Theoretical Computer Science*, 138(1):35–65, February 1995.
- [2] V. D. Blondel and J. N. Tsitsiklis. When is a pair of matrices mortal? Information Processing Letters, 63(5):283–286, September 1997.
- [3] V.D Blondel and J.N. Tsitsiklis. Complexity of stability and controllability of elementary hybrid systems. *Automatica*, 35(3), 1999.
- [4] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, 1998.
- [5] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers; NP completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society, 21(1):1–46, July 1989.

- [6] J. Cassaigne and J. Karhumäki. Examples of undecidable problems for 2generator matrix semigroups. *Theoretical Computer Science*, 204(1):29–34, September 1998.
- [7] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Co., New York, 1979.
- [8] T. Harju and J. Karhumaki. Morphisms. In G. Rozenberg and A. Salomaa, eds., *Handbook of Formal Languages*. Volume 1, pp. 439–510, Springer-Verlag, Berlin, 1997.
- [9] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What's decidable about hybrid automata? *Journal of Computer and System Sciences*, 57(1):94–124, August 1998.
- [10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, MA, 1979.
- [11] D.A. Klarner, J.C. Birget, and W. Satterfield. On the undecidability of the freeness of integer matrix semigroups. *Int. J. Algebra Comp.*, 1:223–226, 1991.
- [12] P. Koiran, M. Cosnard, and M. Garzon. Computability with lowdimensional dynamical systems. *Theoretical Computer Science*, 132(1-2):113–128, September 1994.
- [13] V.S. Kozyakin. Algebraic unsolvability of problem of absolute stability of desynchronized systems. *Scientific-Industrial Organization of Automatic Control Systems*, 6:41–47, 1990.
- [14] M. Krom. An unsolvable problem with products of matrices. Mathematical System Theory, 14:335–337, 1981.
- [15] M. Krom and M. Krom. Recursive solvability of problems with matrices. Zeitschr. f. math. Logik und Grundlagen d. Math, 35:437–442, 1989.
- [16] M. Krom and M. Krom. More on mortality. American Mathematical Monthly, 97:37–38, 1990.
- [17] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.
- [18] Y. Matiyasevich and G. Sénizergues. Decision problems for semi-Thue systems with a few rules. In *Proceedings*, 11th Annual IEEE Symposium on Logic in Computer Science, pages 523-531. IEEE Computer Society Press, 27-30 July 1996. An extended version can be found on the web page http://dept-info.labri.u-bordeaux.fr/~ges/publis_rewriting.html.
- [19] C. Moore. Unpredictability and undecidability in dynamical systems. *Phys-ical Review Letters*, 64(20):2354–2357, May 1990.

- [20] M. S. Paterson. Unsolvability in 3 × 3 matrices. Studies in Applied Mathematics, XLIX(1):105–107, March 1970.
- [21] Y. Saouter. The mortality of a pair of 2×2 matrices is decidable. Technical Report RR-2842, Institut National de Recherche en Informatique et en Automatique, 1996.
- [22] P. Schultz. Mortality of 2 × 2 matrices. American Mathematical Monthly, 84(2):463–464, 1977. Correction, 85:263, 1978.
- [23] H. S. Shank. The rational case of a matrix problem of Harrison. Discrete Mathematics, 28:207–212, 1979.
- [24] H. T. Siegelmann and E. D. Sontag. On the computational power of neural nets. Journal of Computer and System Sciences, 50(1):132–150, February 1995.
- [25] N. Vereshchagin. Occurrence of zero in a linear recursive sequence. Math. Notes, 38:609-615, 1985. Translation from Math. Zametki 38(2):609-615, 1985
- [26] K. Weihrauch. A simple introduction to computable analysis. Technical Report 171–2/1995, Fernuniversität Gesamthochschule in Hagen, Fachbereich Informatik, Hagen, Allemagne, 1995.