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Abstract We present an analog and machine-independent algebraic
characterization of elementarily computable functions over the real num-
bers in the sense of recursive analysis: we prove that they correspond to
the smallest class of functions that contains some basic functions, and
closed by composition, linear integration, and a simple limit schema.

We generalize this result to all higher levels of the Grzegorczyk Hierarchy.

This paper improves several previous partial characterizations and has a
dual interest:

– Concerning recursive analysis, our results provide machine-indepen-
dent characterizations of natural classes of computable functions over
the real numbers, allowing to define these classes without usual con-
siderations on higher-order (type 2) Turing machines.

– Concerning analog models, our results provide a characterization of
the power of a natural class of analog models over the real numbers
and provide new insights for understanding the relations between
several analog computational models.

1 Introduction

Several approaches have been proposed to model computations over real num-
bers. Recursive analysis or computable analysis, was introduced by Turing [38],
Grzegorczyk [17], Lacombe [21]. Many works have been devoted to giving com-
putable foundations to most of the concepts of mathematical analysis in this
framework : see e.g. monograph [39].

Alternative views exist. Among them, we can mention the model proposed
by Blum et al., sometimes called real Turing machine, measuring the algebraic
complexity of problems independently of real number representation considera-
tions defined in [5] and extended to arbitrary structures in [33]. Several papers
have been devoted to understanding complexity classes and their relations in
this framework: see monographs [4,33].

These models concern discrete time computability. Models of machines where
the time is continuous can also be considered. The first ever built computers were
continuous time machines: e.g. Blaise Pascal’s pascaline or Lord Kelvin’s model
of Differential Analyzer [20], that gave birth to a real machine, built in 1931 at



the MIT to solve differential equations [9], and which motivated Shannon’s Gen-
eral Purpose Analog Computer (GPAC) model [36], whose computational power
was characterized algebraically in terms of solutions of polynomial differential
equations [36,34,22,16]. Continuous time machines also include analog neural
networks [32,37], hybrid systems [3,6], or theoretical physical models [31,19,15]:
see also survey [32].

The relations between all the models are not fully understood. One can say,
that the theory of analog computations has not yet experienced the unification
that digital discrete time computations have experienced through Turing work
and the so-called Church thesis [13,32].

This however becomes a crucial matter since the progress of electronics makes
the construction of some of the machines realistic, whereas some models were
recently proved very (far too?) powerful: using the so-called Zeno’s paradox,
some models make it possible to compute non-Turing computable functions in
a constant time: see e.g. [23,7,3,19,15].

Notice that understanding whether there exist analog continuous time models
that do not suffer from Zeno’s paradox problems is also closely related to the
important problems of finding criteria for so-called robustness for continuous
(hybrid) time models: see e.g. [18,2].

In [23], Moore introduced a class of functions over the reals inspired from the
classical characterization of computable functions over integers: observing that
the continuous analog of a primitive recursion is a differential equation, Moore
proposes to consider the class of R-recursive functions, defined as the the smallest
class of functions containing some basic functions, and closed by composition,
differential equation solving (called integration), and minimization.

This class of functions, also investigated in [24,25,26,27,28,29], can be related
to GPAC computable functions: see [23], corrected by [16].

Putting aside possible objections about the physical feasibility of the µ-
operator considered in paper [23], the original definitions of this class in [23]
suffer from several technical problems1. At least some of them make it possible
to use a “compression trick” (another incarnation of Zeno’s paradox) to simu-
late in a bounded time an unbounded number of discrete transitions in order to
recognize arithmetical reals [23].

In [11,12,13], Campagnolo, Costa and Moore propose to consider the (better-
defined) subclass L of R-recursive functions corresponding to the smallest class
of functions containing some basic functions and closed by composition and
linear integration. Class L is related to functions elementarily computable over
integers in classical recursion theory and functions elementarily computable over
the real numbers in recursive analysis (discussed in [40]): any function of class L
is elementarily computable in the sense of recursive analysis, and conversely, any
function over the integers computable in the sense of classical recursion theory
is the restriction to integers of a function that belongs to L [12,13].

1 For example not well defined functions are considered, ∞ × 0 is always considered
as 0, etc. . . . Some of them are discussed in [11,12,13] and even in the original paper
[23].
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However, the previous results do not provide a characterization of all func-
tions over the reals that are computable in the sense of recursive analysis.

This paper provides one:

Theorem 1. For functions over the reals of class C2 defined on a product of
compact intervals with rational endpoints, f is elementarily computable in the
sense of recursive analysis iff it belongs to the smallest class of functions con-
taining some basic functions and closed by composition, linear integration and a
simple limit schema.

We extend this theorem to a characterization of all higher levels of the Grze-
gorczyk hierarchy (observe that previous theorem is a consequence of this theo-
rem).

Theorem 2. For functions over the reals of class C2 defined on a product of
compact intervals with rational endpoints, f is computable in the sense of re-
cursive analysis in level n ≥ 3 of the Grzegorczyk hierarchy iff f belongs to the
smallest class of functions containing some (other) basic functions and closed by
composition, linear integration and a simple limit schema.

Concerning analog models, these results have several impacts: first, they con-
tribute to understand analog models, in particular the relations between GPAC
computable functions, R-recursive functions, and computable functions in the
sense of recursive analysis. Furthermore, they prove that no Super-Turing phe-
nomenon can occur for these classes of functions. In particular we have a “robust”
class of functions in the sense of [18,2].

Concerning recursive analysis, our theorems provide a purely algebraic and
machine independent characterization of elementarily computable functions over
the reals. Observe the potential benefits offered by these characterizations com-
pared to classical definitions of these classes in recursive analysis, involving dis-
cussions about higher-order (type 2) Turing machines (see e.g. [39]), or compared
to characterizations in the spirit of [10].

In Section 2, we start by some mathematical preliminaries. In Section 3, we
recall some notions from classical recursion theory. We present basic definitions
of recursive analysis in Section 4. Previous known results are recalled in Section
5. Our characterizations are presented in Section 6. The proofs are given in
Sections 7 and 8. Some extensions are presented in Section 9 and 10.

2 Mathematical preliminaries

Let N, Q, R, R>0 denote the set of natural integers, the set of rational numbers,
the set of real numbers, and the set of positive real numbers respectively. Given
x ∈ Rn, we write −→x to emphasize that x is a vector.

We will use the following simple mathematical result
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Lemma 1. Let F : R × V ⊂ Rk+1 → Rl be a function of class2 C1, and β(x) :
V → R, K(x) : V → R be some continuous functions.

– Assume that for all t and −→x , ‖∂F∂t (t,−→x )‖ ≤ K(−→x ) exp(−tβ(−→x )).
Let D be the subset of the −→x ∈ V with β(−→x ) > 0.
Then,

• for all −→x ∈ D, F (t,−→x ) has a limit L(−→x ) in t = +∞.
• Function L(−→x ) is a continuous function.
• Furthermore

‖F (t,−→x ) − L(−→x )‖ ≤
K(−→x ) exp(−tβ(−→x ))

β(−→x )

– Assume that, in addition, for all t and −→x , ∂2F
∂t∂xi

(t,−→x ) exists and ‖ ∂2F
∂t∂xi

(t,−→x )‖ ≤
K(−→x ) exp(−tβ(−→x )).
Then:

• Function L(−→x ) is of class C1.
• Its partial derivative ∂L

∂xi
are the limit of ∂F

∂xi
(t,−→x ) in t = +∞.

• Furthermore

‖
∂F

∂xi
(t,−→x ) −

∂L

∂xi
(−→x )‖ ≤

K(−→x ) exp(−tβ(−→x ))

β(−→x )
.

Proof. By mean value theorem,

‖F (t,−→x ) − F (t′,−→x )‖ ≤
∫ t′

t
K exp(−tβ(−→x ))dt

≤ K
∫ +∞

t
exp(−tβ(−→x ))dt = K exp(−tβ(−→x ))

β(−→x )

This implies that F (t,−→x ) satisfies Cauchy criterion, and hence converges in
t = +∞. This implies the existence of function L. The first inequality of the
lemma is obtained by letting t′ go to +∞ in previous inequality. Observe that
it implies that the convergence is uniform in −→x in every compact domain.

L is continuous since the limit of a uniformly convergent sequence of contin-
uous function is continuous.

Replacing F (t,−→x ) by ∂F
∂xi

(t,−→x ) in previous arguments proves the uniform

convergence of ∂F
∂xi

(t,−→x ) in t = +∞ on every compact domain under the addi-
tional hypothesis.

Observing that the derivative of a converging sequence of functions, whose
sequence of derivatives converges uniformly, exists and is the limit of the deriva-
tives, and that the limit of a uniformly converging sequence of continuous func-
tions is continuous, the other assertions follow.

2 Recall that function f : D ⊂ Rk → Rl, k, l ∈ N, is said to be of class Cr if it is
r-times continuously differentiable on D. It is said to be of class C∞ if it is of class
Cr for all r.
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The following result3, with previous lemma, is a key to provide upper bounds
on the growth of functions of our classes (c.f. Lemma 7).

Lemma 2 (Bounding Lemma for Linear Differential Equations [1]).
For linear differential equation −→x ′ = A(t)−→x , if A is defined and continuous on
interval I = [a, b], where a ≤ 0 ≤ b, then, for all −→x 0, the solution of −→x ′ = A(t)−→x
with initial condition −→x (0) = −→x 0 is defined and unique on I. Furthermore, the
solution satisfies

‖−→x (t)‖ ≤ ‖−→x 0‖ exp( sup
τ∈[0,t]

‖A(τ)‖t).

Remark 1. Recall that the solution of any differential equation of type −→x ′ =
A(t)−→x + B(t), −→x (0) = −→x 0, where A(t) is a n × n matrix and B(t) is a n
dimension vector can be obtained by the solution of linear differential equation
−→y ′ = C(t)−→y , −→y (0) = −→y 0 by working in dimension n+ 1 and considering

y(t) =

(

x(t)
1

)

, y0 =

(

x0

1

)

, and C =

(

A B
0 0

)

.

3 Classical Recursion Theory

Classical recursion theory deals with functions over integers. Most classes of clas-
sical recursion theory can be characterized as closures of a set of basic functions
by a finite number of basic rules to build new functions [35,30]: given a set F of
functions and a set O of operators on functions (an operator is an operation that
maps one or more functions to a new function), [F ;O] will denote the closure of
F by O.

Proposition 1 (Classical settings: see e.g. [35,30]). Let f be a function
from Nk to N for k ∈ N. Function f is

– elementary iff it belongs to E = [0, S, U,+,	; COMP,BSUM,BPROD];
– in class En of the Grzegorczyk Hierarchy (n ≥ 3) iff it belongs to En =

[0, S, U,+,	, En−1; COMP,BSUM,BPROD];
– primitive recursive iff it belongs to PR = [0, U, S; COMP,REC];
– recursive iff it belongs to Rec = [0, U, S; COMP,REC,MU].

A function f : Nk → Nl is elementary (resp: primitive recursive, recursive)
iff its projections are elementary (resp: primitive recursive, recursive).

The base functions 0, (Umi )i,m∈N, S,+,	 and the operators COMP, BSUM,
BPROD, REC, MU are given by

1. 0 : N → N, 0 : n 7→ 0; Umi : Nm → N, Umi : (n1, . . . , nm) 7→ ni; S : N →
N, S : n 7→ n + 1; + : N2 → N, + : (n1, n2) 7→ n1 + n2; 	 : N2 → N,
	 : (n1, n2) 7→ max(0, n1 − n2);

3 As it was already the case in [11,12,13].
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2. BSUM : bounded sum. Given f , h = BSUM(f) is defined by h : (−→x , y) 7→
∑

z<y f(−→x , z); BPROD : bounded product. Given f , h = BPROD(f) is de-
fined by h : (−→x , y) 7→

∏

z<y f(−→x , z);
3. COMP : composition. Given f and g, h = COMP(f, g) is defined as the

function verifying h(−→x ) = g(f(−→x ));
4. REC : primitive recursion . Given f and g, h = REC(f, g) is defined as the

function verifying h(−→x , 0) = f(−→x ) and h(−→x , n+ 1) = g(−→x , n, h(−→x , n)).
5. MU : minimization. The minimization of f is h : −→x 7→ inf{y : f(−→x , y) = 0}.

Functions En, involved in the definition of the classes En of the Grzegorczyk
Hierarchy, are defined by induction as follows (when f is a function, f [d] denotes
its d-th iterate: f [0](−→x ) = x, f [d+1](−→x ) = f(f [d](−→x ))):

1. E0(x, y) = x+ y,
2. E1(x, y) = (x+ 1) × (y + 1),
3. E2(x) = 2x,

4. En+1(x) = E
[x]
n (1) for n ≥ 2.

PR corresponds to functions computable using loop programs. E corresponds
to computable functions bounded by some iterate of the exponential function
[35,30].

The following facts are known:

Proposition 2 ([35,30]).

– E3 = E ( PR ( Rec
– En ( En+1 for n ≥ 3.
– PR =

⋃

i Ei

Previous classes can also be related to complexity classes. If TIME(t) and
SPACE(t) denote the classes of functions that are computable with time and
space t, then:

Proposition 3 ([35,30]). For all n ≥ 3,

– En = TIME(En) = SPACE(En),
– PR = TIME(PR) = SPACE(PR).

In classical computability, more general objects than functions over the inte-
gers can be considered, in particular functionals, i.e. functions Φ : (NN)m×Nk →
Nl. A functional will be said to be elementary (respectively. En, primitive recur-
sive, recursive) when it belongs to the corresponding4 class.

4 Formally, a function f over the integers can be considered as functional f :
(V1, . . . , Vm,−→n ) 7→ f(−→n ). Similarly, an operator Op on functions f1, . . . , fm

over the integers can be extended to Op(F1, . . . , Fm) : (V1, . . . , Vm,−→n ) 7→

Op(F1(V1, . . . , Vm, .), . . . , Fm(V1, . . . , Vm, .))(−→n ). We will still (abusively) denote by
[f1, . . . , fp; O1, . . . , Oq ] for the smallest class of functionals that contains basic
functions f1, . . . , fp, plus the functionals Mapi : (V1, . . . , Vm, n) → (Vi)n, the
nth element of sequence Vi, and which is closed by the operators O1, . . . , Oq .
For example, a functional will be said to be elementary iff it belongs to E =
[Map, 0, S, U, +,	; COMP, BSUM, BPROD].
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4 Computable Analysis

The idea sustaining Computable analysis, also called recursive analysis, is to
define computable functions over real numbers by considering functionals over
fast-converging sequences of rationals [38,21,17,39].

Let νQ : N → Q be the following representation5 of rational numbers by inte-
gers: νQ(〈p, r, q〉) 7→ p−r

q+1 , where 〈., ., .〉 : N3 → N is an elementarily computable
bijection.

A sequence of integers (xi) ∈ NN represents a real number x if it converges
quickly toward x (denoted by (xi) x) in the following sense:

∀i, |νQ(xi) − x| < exp(−i).

For X = ((x1), . . . , (xk)) ∈ (NN)k, −→x = (x1, . . . , xk) ∈ Rk, we write X  −→x for
(xi) xi for i = 1, . . . , k.

Definition 1 (Recursive analysis). A function f : D → R, where D is a
closed subset of Rk for some integer k, is said to be computable (in the sense of

recursive analysis) if there exists a recursive functional φ : (Nk)
N
× N → N such

that for all −→x ∈ D, for all X ∈ (Nk)N, we have (φ(X, j))j  f(−→x ) whenever
X  −→x .

A function f : D → Rl, with l > 1, is said to be computable if all its
projections are.

A function f will be said to be elementarily (respectively En) computable
whenever the corresponding functional φ is. The class of elementarily (respec-
tively En) computable functions over the reals will be denoted by E(R) (resp.
En(R)).

Elementarily computable functions have been discussed in [40]. Observing
that classical proofs for computable functions (see e.g. [39]) use only elementary
functionals one can state:

Proposition 4. Functions +, −, ×, ex, sin(x), cos(x), 1/x are elementarily
computable6 in the sense of recursive analysis.

The following result is also well-known:

Proposition 5 (see e.g. [39]). All (elementarily) computable functions in the
sense of recursive analysis are continuous.

Actually, one can go further: adapting to the elementary case the classical
statements and proofs of recursive analysis (see e.g. [39]), one can state that ele-
mentarily computable functions are uniformly continuous on all compact subsets
of their domains with an elementarily computable modulus of continuity.

5 Many other natural representations of rational numbers can be chosen and provide
the same class of computable functions: see [39].

6 More precisely, with our definition, 1/x restricted to any closed domain, is elemen-
tarily computable in the sense of recursive analysis.
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Definition 2. A modulus of continuity of a function f : D → Rl defined over
a closed domain is a function M : N → N such that for all i ∈ N, for all x, y,

‖x− y‖ < exp(−M(i)) ⇒ ‖f(x) − f(y)‖ < exp(−i).

Adapting the arguments of [39] to elementarily computable functions, one
gets easily:

Proposition 6. If f ∈ E(R) is defined over a product of compact intervals, then
f has a modulus of continuity in E.

Actually, more generally, we have:

Proposition 7. If f ∈ E(R) is defined over a product of closed intervals D ⊂
Rk, then there is a function M : N2 → N in E, such that for all integer K,
M(K,_) is a modulus of continuity of f over D ∩ [−K,K]k.

When f is (elementarily) computable, then its derivative f ′ is not necessarily
computable. However, this holds for functions of class C2 over a compact domain
(we are still adapting to the elementary case the classical proofs of recursive
analysis: see e.g. [39]):

Lemma 3. Let f : D ⊂ Rk → Rl be a function of class C2 defined over compact
domain D.

If f is elementarily computable, then its partial derivatives are.

Proof. We give the proof for a function f defined on interval [0, 1] to R. The
general case is easy to obtain.

Since f ′′ is continuous on a compact set, f ′′ is bounded by some constant
M . By mean value theorem, we have |f ′(x) − f ′(y)| ≤M |x− y| for all x, y.

Given x ∈ [0, 1], and i ∈ N, an approximation z of f ′(x) at precision exp(−i)
can be computed as follows: compute n with M exp(−n) ≤ exp(−i)/2. Compute
y1 a rational at most exp(−i− n − 2) far from f(x), and y2 a rational at most
exp(−i− n− 2) far from f(x+ exp(−n)). Take z = (y1 − y2)/ exp(−n).

This is indeed a value at most exp(−i) far from f ′(x) since by mean value

theorem there exists χ ∈ [x, x+ exp(−n)] such that f ′(χj) = f(x+exp(−n))−f(x)
exp(−n) .

Now

|z − f ′(x)| ≤ |y1−f(x)|
exp(−n) + |y2−f(x+exp(−n))|

exp(−n) + | f(x+exp(−n))−f(x)
exp(−n) − f ′(x)|

≤ exp(−i− n− 2) exp(n) + exp(−i− n− 2) exp(n)
+|f ′(χj) − f ′(x)|

≤ 2 exp(−i− 2) +M exp(−n)
≤ exp(−i)/2 + exp(−i)/2
≤ exp(−i).
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5 Real-recursive and recursive functions

Following the original ideas from [23], but observing that the minimization
schema considered in [23] is the source of many technical problems, Campag-
nolo, Costa and Moore proposed in [11,12,13] not to consider classes of functions
over the reals defined in analogy with the full class of recursive functions, but
with subclasses. Indeed, the considered classes are built in analogy with class
of elementary functions and the classes of the Grzegorczyk hierarchy . Further-
more, they proposed to restrict the integration schema to a simpler (and better
defined) linear integration schemata LI [13,12].

We call real extension of a function f : Nk → Nl a function f̃ from Rk to Rl

whose restriction to Nk is f .

Definition 3 ([13,12]). Let L and Ln be the classes of functions f : Rk → Rl,
for some k, l ∈ N, defined by

L = [0, 1,−1, π, U, θ3; COMP,LI]

and
Ln = [0, 1,−1, π, U, θ3, En−1; COMP,LI]

where the base functions 0, 1, −1, π, (Umi )i,m∈N, θ3, En and the schemata
COMP and LI are defined as follows:

1. 0, 1,−1, π are the corresponding constant functions; Umi : Rm → R are, as
in the classical settings, projections: Umi : (x1, . . . , xm) 7→ xi;

2. θ3 : R → R is defined as θ3 : x 7→ x3 if x ≥ 0, 0 otherwise.
3. En: for n ≥ 3, let En denote a monotone real extension of the function expn

over the integers defined inductively by exp2(x) = 2x, expi+1(x) = exp
[x]
i (1).

4. COMP: composition is defined as in the classical settings: Given f and g,
h = COMP(f, g) is the function verifying h(−→x ) = g(f(−→x ));

5. LI: linear integration. From g and h, LI(g, h) is the maximal solution of
the linear differential equation ∂f

∂y (−→x , y) = h(−→x , y)f(−→x , y) with f(−→x , 0) =

g(−→x ).
In this schema, if g goes to Rn, f = LI(g, h) also goes to Rn and h(−→x , y) is
a n× n matrix with elements in L.

Lemma 4. These classes contain functions id : x 7→ x, sin, cos, exp, +,×,
x 7→ r for all rational r, as well as for all f ∈ L, or f ∈ L∗, its primitive
function F equal to

−→
0 at

−→
0 , denoted by

∫

(f).

Proof. Indeed,
∫

(f) can be defined by

(

F
1

)

= LI

([

0
1

]

,

[

0 f
0 0

])

.

Function id is given by
∫

(1).

Function Θ : t 7→ (sin(t), cos(t)) can be defined by LI

([

0
1

]

,

[

0 1
−1 0

])

.

Project this function on each of its two variables to get sinus and cosinus func-
tion.
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Function exp is given by LI(0, 1).
Addition is given by x+0 = x, ∂x+y∂y = 1. Multiplication is given by x×0 = 0,

∂x×y
∂y = x.

Given p, q ∈ N with q > 0, Function x 7→ p, is 1 + 1 + . . . + 1, function
x 7→ xq−1 is x× . . .× x, and p×

∫

(x 7→ xq−1) is x 7→ pxq/q whose value in 1 is
p/q.

However, non total functions like x 7→ 1/x can not belong to the class since
all functions from L are total:

Proposition 8 ([12,13]). All functions from L and Ln are continuous, defined
everywhere, and of class C2.

The previous classes can be partially related to classes E , En over integers
and to classes E(R) and En(R) over real numbers. Indeed, in order to compare
functions over the reals with functions over the integers, we introduce the fol-
lowing notation: given some class C of functions from Rk to Rl, we write DP(C)
(DP stands for discrete part) for the class of functions from Nk to Nl which have
a real extension in C.

One main contribution of [12,13] is:

Proposition 9 ([12,13]).

– DP(L) = E;
– DP(Ln) = En.

Actually, stronger inclusions were proved in [12,13]:

Proposition 10 ([12,13]).

– L ⊂ E(R).
– Ln ⊂ En(R).

However there is no hope to get the other inclusion: these inclusions are strict.
Indeed, x 7→ 1/x is elementarily computable while Proposition 8 says that all
functions from L are defined everywhere. A similar argument works for En(R).
We conjecture the inclusions to be strict even when restricting to total functions.

Remark 2. Let θk be the function defined by θk(x) =

{

xk if x > 0
0 otherwise

.

If one replace θ3 by θk for a k > 3 in the definitions of L and Ln, the classes
L and Ln may differ from previous ones.

However:

– Propositions 9 and 10 still hold for the obtained classes
– Proposition 8 is changed into “All functions from L and Ln, are continuous,

defined everywhere, and of class Ck−1”

Remark 3. Note that all base functions except θ3 (and the θk) are analytic,
and that all previous schemes preserve analyticity: in other words, the use of
such a function θk is necessary in order to be able not to consider only analytic
functions.
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6 Real-recursive and recursive functions revisited

We now propose to consider new classes of functions that we will prove to cor-
respond precisely to E(R) and En(R).

First, we restrict to functions defined over closed domains. These functions
include in particular functions defined over Rk for some k, that is total functions,
but also functions defined on closed subsets of Rk.

The motivation is the following (observe that in this paper we defined com-
putability in the sense of recursive analysis only for our class of functions, but
computability over more general domains can also be defined: see e.g. [39]).

Lemma 5. General elementarily computable functions are not stable by compo-
sition7.

To do so, we slightly modify LI schema, by allowing not-necessarily maximal
solutions of linear differential equations to be considered. By abuse of notation,
LI will denote this schema in what follows.

Definition 4 (LI schema). From g and h, LI(g, h) is any solution defined
on a product of closed intervals of the linear differential equation ∂f

∂y (−→x , y) =

h(−→x , y)f(−→x , y) with f(−→x , 0) = g(−→x ).
In this schema, if g goes to Rn, f = LI(g, h) also goes to Rn and h(−→x , y) is

a n× n matrix with elements in L.

Now, we suggest to add a limit operator.

Remark 4. The idea of adding a limit operator has already been investigated in
papers like [28,24]. However, since we are interested in R-sub-recursive functions,
and not to build a whole hierarchy above recursive functions as in [28,24], our
limit schema will not be as general: as the LI schema of [11,12,13] is a restrained
version of Moore’s integration operator, our LIM may be seen as a restrained
version of the operators of [28,24].

The conditions we impose on LIM are inspired from Lemma 1: a polynomial
β over x ∈ R is a function of the form β : R → R, β : x 7→

∑n
i=0 aix

i for some
a0, . . . , an ∈ R. A polynomial β over −→x = (x1, . . . , xk+1) ∈ Rk+1 is a function of
the form β : Rk+1 → R, β : −→x 7→

∑n
i=0 aix

i
k+1 for some a0, . . . , an polynomial

over (x1, . . . , xk) ∈ Rk.

Definition 5 (LIM schema). Let f : R × D ⊂ Rk+1 → Rl, K : D → R

and β : D → R a polynomial with the following hypothesis: such that for all
−→x = (x1, . . . , xk), for all t ≥ ‖−→x ‖,

‖
∂f

∂t
(t,−→x )‖ ≤ K(−→x ) exp(−tβ(−→x )),

7 The proof uses non-total functions, defined on open domains. Computable functions
defined over closed domains can be shown stable by composition.
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∂2f
∂t∂xi

(t, xi) exists for all 1 ≤ i ≤ k, and

‖
∂2f

∂t∂xi
(t,−→x )‖ ≤ K(−→x ) exp(−tβ(−→x )).

Then, on every product of closed intervals I ⊂ Rk on which β(−→x ) > 0,
F (−→x ) = limt→+∞ f(t,−→x ) exists by Lemma 1. If F is of class8 C2, then we
define LIM(f,K, β) as this function F : I → R.

We are ready to define our classes:

Definition 6 (Classes L∗, L∗
n ). The class L∗, and L∗

n, for n ≥ 3, of functions
from Rk to Rl, for k, l ∈ N, are the following classes:

– L∗ = [0, 1,−1, U, θ3; COMP,LI,LIM].
– L∗

n = [0, 1,−1, U, θ3, En−1; COMP,LI,LIM].

Remark 5. Previous classes can easily be shown stable by the primitive operator
that sends a function f to its primitive

∫

(f) equal to
−→
0 at

−→
0 .

Indeed,
∫

(f) can still be defined by

(

F
1

)

= LI

([

0
1

]

,

[

0 f
0 0

])

.

Remark 6. Unlike classes from previous sections, class L∗ also includes some
non-total functions.

In particular any restriction to a closed domain of function 1
x :

{

R>0 → R

x 7→ 1
x

.

Indeed, E(t, x) =
∫

(exp(−tx)) is such that E(t, x) =

{

(1−exp(−tx))
x for x 6= 0
t for x = 0

(of class Ck for all k). Now 1
x = LIM(E,K, id) for some suitably chosen constant

K (depending on the domain).
Our classes are supersets of previous classes:

Proposition 11. L ( L∗, Ln ( L∗
n for all n ≥ 3.

Proof. The function x 7→ π is actually in L∗. Indeed, from x 7→ 1
1+x2 in the class,

we have arctanx =
∫

( 1
1+x2 ), and π = 4 arctan(1).

The main results of this paper are the following (proved in following two
sections):

Theorem 1 (Characterization of E(R)). Let f : D ⊂ Rk → Rl be some
function over the reals of class C2, with D product of compact intervals.

f is in E(R) iff it belongs to L∗.

8 By Lemma 1, if f is of class C1, function F is at least of class C1.
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Theorem 2 (Characterization of En(R)). Let f : D ⊂ Rk → Rl be some
function over the reals of class C2, with D product of compact intervals. Let
n ≥ 3.

f is in En(R) iff it belongs to L∗
n.

Observe that Theorem 1 is clearly the particular case n = 3 of Theorem 2.

Remark 7. If we replace θ3 by θk for a k ≥ 3 in the definitions of L∗ and L∗
n, and

impose the result of a LIM operation to be of class Ck−1 in Definition 5 (instead
of C2), the classes L∗ and L∗

n may differ. However, we have almost the same
theorems for the corresponding classes: replace C2 by Ck−1 in the statements of
the theorems.

7 Upper bounds

We now prove the upper bound L∗ ⊂ E(R). As one may expect, this direction of
the proof has many similarities with the proof L ⊂ E in [12,13]: main differences
lie in the presence of non-total functions and of schema LIM.

We first discuss the domain of the considered functions.

Lemma 6. All functions from L∗ are of class C2 and defined on a domain of
the form I1 × I2 . . .× Ik where each Ii is a closed interval.

Proof. By structural induction

– This is clear for basic functions (1, 0, −1, U , and θ3).
– Composition preserves this property.
– Linear differential equations preserve class C2 [1,14]. They also preserve the

domain property by definition.
– If g = LIM(f,K, β), from definition of LIM schema, this is clear.

We propose to introduce the following notation: given a ∈ R, let ρa be the
function x 7→ 1

x−a . Let ρ+∞ and ρ−∞ be the function identity x 7→ x.
Given I real interval with bounds a, b ∈ R ∪ {−∞,+∞}, ρI(x) = |ρa(x)| +

|ρb(x)|. For D = I1 × I2 . . . × Ik , let ρD(x) = ρI1(U
k
1 (x)) + . . .+ ρIk

(Ukk (x)). In
any case, ρD(x) is elementarily computable and grows to +∞ when x gets close
to a bound of domain D.

The following Lemma is an extension of a Lemma of [11,12,13].

Lemma 7. Let f : D ⊂ Rk → Rl be a function of L∗. There exist some in-
teger d, and some constants A and B such that for all −→x ∈ D, ‖f(−→x )‖ ≤
A exp[d](BρD(−→x )). Call the smallest such integer d the degree of f (denoted by
deg f). All partial derivatives of f also have a finite degree.

Proof. By some elementary algebra and elementary properties of the exponential
function, observe that by adjusting constants A, B, it is always possible to
assume for all functions f and g, deg fg ≤ max(deg f, deg g), and deg(f + g) ≤
max(deg f, deg g).

Now, by structural induction:
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– 0, 1, −1, U and all their derivatives have degree at most 1.
– θ3(x) and its derivative have degree 1.
– The degree of COMP(f, g) is less than deg(f) + deg(g), since deg(f ◦ g) ≤

deg(f) + deg(g) can easily be established using basic properties of exponen-
tial function. By the chain rule, the degree of any of the derivative of the
composition f(g) is bounded by maxi(deg ∂g

∂i , deg ∂f
∂i + deg g).

– For f = LI(g, h) as in Definition 3, Lemma 2 allows us to write

‖f(x, y)‖ ≤ ‖g(x)‖ exp( sup
τ∈[0,y]

‖h(x, τ)‖y).

It follows that the degree of f is less than max(deg g, degh+ 1).
The derivative of f relative to y is h(−→x , y)f(−→x , y). Hence its degree is
also bounded by max(deg g, degh + 1). By [1,14], we know that the other
derivative relative to variable x is solution of linear differential equation
d′ = hd + ∂h

∂i f with initial condition d(x, 0) = ∂g
∂x . The bound given by

Lemma 2 for this linear differential equation allows us to state that the de-
gree of this derivative is less than max(deg ∂g

∂x , degh+1, deg ∂h
∂x+1, deg f+1).

– Let g = LIM(f,K, β) as in Definition 5. By Lemma 1, we know that g(−→x ) =
limi→∞ f(i,−→x ), g is of class C1, ‖g(−→x )‖ ≤ ‖f(0,−→x )‖ + K(−→x )/β(−→x ) and
‖ ∂g
∂xi

‖ ≤ ‖ ∂f∂xi

(0,−→x )‖+K(−→x )/β(−→x ). Now, the degree of 1

β(−→x )
for any poly-

nomial β can easily be shown to be less than 1. Hence, the degree of g and
of ∂g

∂x is smaller than max(deg f, degK).

We are ready to prove the upper bound.

Proposition 12. L∗ ⊆ E(R).

Proof. By structural induction:

– The basic functions 0, 1,−1, U, θ3 are easily shown elementarily computable.
– When h = COMP(f, g), f and g elementarily computable, then h is also el-

ementarily computable: the constructions in [39] preserve elementarily com-
putability.

– Let g = LIM(f,K, β), with f computed by elementary functional φ. We give
the proof for f defined on R × C to R where C is a compact interval of R.
The general case is easy to obtain.
Let x ∈ R, with β(x) > 0. Since β(x) is a polynomial, 1/β(x) can be bounded
elementarily by some computable integer N in some computable neighbor-
hood of x.
K(x) can be bounded elementarily by some computable integer K in some
computable neighborhood of x. In a same way, the norm of x can be bounded
by some computable integer X .
Let (xn)  x. For all i, j ∈ N, if we write abusively i for the constant
sequence k 7→ i, we have |νQ(φ(((i, xn), j)) − f(i, x)| < exp(−j).
By Lemma 1, if i is big enough (i > ‖x‖), we have

|f(i, x) − g(x)| ≤ K exp(−β(x)i)
β(x)

≤ KN exp(−β(x)i).
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Hence,

|νQ(φ((i, xn), j)) − g(x)| < exp(−j) +KN exp(−β(x)i).

If we take j′ ≥ j+1, i′ ≥ N(j+1+dln(KN)e), we have exp(−j ′) ≤ 1
2 exp(−j),

and KN exp(−β(x)i′) ≤ 1
2 exp(−j). Hence g is computed by the functional

ψ : ((xn), j) 7→ φ((max(X,N(j + 1 + dln(KN)e), xn)), j + 1). since for all j,

‖νQ(ψ((xn), j)) − g(x)‖ ≤
exp(−j)

2
+
exp(−j)

2
≤ exp(−j).

– Let f = LI(g, h). We give the proof for g : [0, 1] → R and h : [0, 1]×[c, d] → R.
The general case is easy to obtain.
This proof is copied from [12,13]. The idea is that, to find φ elementary
computing f , one uses a numeric integration algorithm (Euler’s Method).
First, let us note that f is twice differentiable with respect to its second
variable since its derivative is the product of f and h that are differentiable.
To compute f(x, y), we will slice [0, y] into segments of length λ and compute
approximations of f(x, τi) for τi multiple of λ.

h ∈ E(R). Let φh computing h. Let (φ) (x, τi). Let us define ωi = (φh(φ))n

n+1
for n to be chosen.
f ∈ E(R). Let φg computing g. Let (φx)  x. We will approach f(x, τi) by
ψi defined by

ψ0 =
(φg(φx))m
m+ 1

ψi+1 = ψi + λψiωi

Let us now compute the error induced by our approximation. Let εi =
f(x, τi) − ψi.

∀i, ∃χ ∈ [τi, τi+1]; f(x, τi+1) = f(x, τi) + λf(x, τi)h(x, τi) + λ2

2
∂f
∂y (x, χ).

εi+1 = f(x, τi) − ψi + λf(x, τi)h(x, τi) − λψiωi + λ2

2
∂f
∂y (x, χ)

|εi+1| 6 |εi| + |λh(x, τi)(f(x, τi) − ψi)| + |λψi(ωi − h(x, τi))| + |λ
2

2
∂f
∂y (x, χ)|

6 |εi| × |1 + λh(x, τi)| + λψi|ωi − h(x, τi)| +
λ2

2 β

< |εi| × |1 + λh(x, τi)| + λψi
1

n+1 + λ2

2 β

With β = maxχ∈[0,y](
∂f
∂y (x, χ)).

εi+1 < |εi| × |1 + λy| + λ
n+1y + λ2

2 β

With y set as a bound for h that can be elementarily computed as shown by
the preceding lemma.
Some little algebra shows then

|εi| < |ε0| [1 + λy]
i
+

(

λy 1
n+1 + λ2

2 β
)

(1+λy)i−1
λy

<
[

1
m+1 + λβ

2y + ψi

y(n+1)

]

exp(λiy)

<
[

1
m+1 + 1

n+1 + λβ
2y

]

exp(λiy)
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So, if we choose m, n, and i adequately (this choice can be made elemen-
tarily), we can make the error as little as wanted. This proves that f is
elementarily computable and terminates our proof.

This ends the proof.

Replacing in previous proofs the bounds of Lemma 7 by bounds of type

‖f(−→x )‖ ≤ AE
[d]

n−1(BρD(−→x )), one can also obtain:

Proposition 13. ∀n ≥ 3, L∗
n ⊆ En(R).

8 Lower bounds

We will now consider the opposite inclusion: E(R) ⊆ L∗, proved for functions of
class C2 on compact domains with rational endpoints.

Let ε > 0 be some real. We write Nε for the set of reals of the form iε for
some integer i. Given y ∈ R, write bycε for the unique jε with j integer and
y ∈ [jε, jε+ ε).

Lemma 8. Let ε : R → R be some decreasing function of L∗, with ε(x) > 0 for
all x and going to 0 when x goes to +∞, and 1/ε(x) ∈ L∗. Write εi for ε(bic).

Given f : R2 → Rl in L∗, there exists F : R2 → Rl in L∗ with the following
properties:

– For all i ∈ N, x ∈ Nεi, F (i, x) = f(i, x)
– For all i ∈ N, x ∈ R, ‖F (i, x) − f(i, bxcεi)‖ ≤ ‖f(i, bxcεi + εi) − f(i, bxcεi)‖
– For all i ∈ R, x ∈ R, ‖ ∂F∂i (i, x)‖ ≤ 5‖f(bi + 1c, bxcεi) − f(bic, bxcεi)‖ +

25‖f(bic, bxcεi + εi) − f(bic, bxcεi)‖ + 25‖f(bi+ 1c, bxcεi+1
+ εi+1) − f(bi+

1c, bxcεi+1
)‖.

Proof. Let ζ = 3π
2 . Let ω : x 7→ ζθ3(sin(2πx)). ∀i,

∫ i+1

i
ω = 1 and ω is equal to

0 on [i+ 1
2 , i+ 1] for i ∈ N. Let Ω =

∫

(ω) its primitive, and int : x 7→ Ω(x− 1
2 ).

int is a function similar to the integer part: ∀i, ∀x ∈ [i, i+ 1
2 ], int(x) = i = bxc.

Figure 1 shows graphical representations of ω and int respectively.
Let ∆(i, x) = f(i, x+ ε(i)) − f(i, x). For all i,x, we have

ω(x/ε(i))
ε(i) ∆(i, ε(i) int(x/ε(i))) = 0 whenever x− bxcε(i) ≥ ε(i)/2

= ω(x/ε(i))
ε(i) ∆(i, bxcε(i)) otherwise.

Let G be the solution of the linear differential equation

{

G(i, 0) = f(0)
∂G
∂x (i, x) = ω(x/ε(i))

ε(i) ∆(i, ε(i)int(x/ε(i)))

An easy induction on j then shows that G(i, jε(i)) = f(i, jε(i)) for all j ∈ N.
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Figure 1. Graphical representations of ω and int.

On [jε(i), (j + 1)ε(i)),

G(i, x) − f(i, bxcε(i)) =

∫ x−jε(i)

jε(i)

ω(t/ε(i))

ε(i)
∆(i, btcε(i))dt,

hence, for all i ∈ N,

‖G(i, x) − f(i, bxcεi)‖ ≤ ‖∆(i, bxcεi)‖ = ‖f(i, bxcεi + εi) − f(i, bxcεi)‖.

Now, let ∆′(i, x) = G(i+ 1, x) −G(i, x). For all i,x we have

ω(i)∆′(int(i), x) = 0 whenever i− bic ≥ 1/2
= ω(i)∆′(bic, x) otherwise

Let F be the solution of linear differential equation

{

F (0, x) = G(0, x)
∂F
∂i = ω(i)∆′(int(i), x)

An easy induction on i shows that F (i, x) = G(i, x) for all integer i, and all
x ∈ R. Hence F (i, x) = f(i, x) for all i ∈ N, x ∈ Nεi and

‖F (i, x) − f(i, bxcεi)‖ ≤ ‖f(i, bxcεi + εi) − f(i, bxcεi)‖

for all i ∈ N, x ∈ R.
Now, ∂F

∂i is either 0 or ω(i)∆′(bic, x) = ω(i)(G(bi + 1c, x) − G(bic, x)). In

any case, it is derivable in x, and hence ∂2F
∂x∂i is either 0 or ω(i)( ∂G∂x (bi+ 1c, x)−

∂G
∂x (bic, x)).

When x ∈ Nεi, bounding ω by 5 (ζ ≤ 5),

‖
∂F

∂i
‖ ≤ 5‖f(bi+ 1c, x) − f(bic, x)‖.

When x ∈ R,

‖
∂2F

∂x∂i
‖ ≤ ‖

∂G

∂x
(bi+ 1c, x‖ + ‖

∂G

∂x
(bic, x)‖.
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The term ‖∂G∂x (bic, x)‖ can be either 0 or

5‖ω(x/εi)
εi

∆(bic, bxcεi)‖ ≤ 25
εi
‖∆(bic, bxcεi)‖

≤ 25
εi
‖f(bic, bxcεi + εi) − f(bic, bxcεi)‖.

A similar bound holds for the other term, replacing i by i+ 1.
Using mean value theorem,

‖∂F∂i (i, x)‖ ≤ ‖∂F∂i (i, bxcεi)‖ + ‖ ∂
2F

∂x∂i (i, x)‖(x− bxcεi)

≤ ‖∂F∂i (i, bxcεi)‖ + ε(i)‖ ∂
2F

∂x∂i (i, x)‖
,

which yields the expected bound.

Lemma 9. If f : C ⊂ R → R is defined over a closed interval containing
−→
0 ,

with bounds either rational or infinite, of class C1, and elementarily computable,
then the primitive

∫

(f) is in L∗.

Proof. Let MN : N2 → N be the function given by Proposition 7 for function
f : given some integer, K, MN(K,_) is a elementarily computable modulus of
continuity of function f on [−K,K].

For all i ∈ N and j ∈ N, consider xj = j exp(−MN(i+ 1, i)), so that for all
x, y ∈ [xj , xj+1] ∩ [−i− 1, i+ 1], we have

|f(x) − f(y)| ≤ exp(−i).

For all j, let pj and qj two integers such that pj×exp(−qj) is at most exp(−i)
far from f(xj). The functions pN : N2 → N, and qN : N2 → N that map (i, j) to
corresponding pj and qj are elementary.

By Proposition 9, these functions as well as function MN can be extended
to function p : R2 → R, q : R2 → R, M : R2 → R ∈ L. Consider func-
tion g : R × C → R defined on all (i, x) ∈ R × C by g(i, x) = p(i, exp(M(i +
1, i))x)e−q(i,exp(M(i+1,i))x). By construction, for i, j integer, we have

g(i, xj) = pj exp(−qj).

Consider the function F given by Lemma 8 for function g and ε : i 7→
exp(−M(i+ 1, i)). We have

F (i, xj) = g(i, xj)

and
‖g(i, xj) − f(xj)‖ ≤ exp(−i)

for all i, j.
For all x ∈ C, and all integer i ≥ ‖x‖ we have (observe that if xj denotes

bxcε, we have xj , xj+1 ∈ [−i− 1, i+ 1])

‖F (i, x) − f(x)‖ ≤ ‖F (i, x) − F (i, bxcε)‖ + ‖F (i, bxcε) − g(i, bxcε)‖
+‖g(i, bxcε) − f(bxcε)‖ + ‖f(bxcε) − f(x)‖

≤ ‖F (i, bxcε + ε) − F (i, bxcε)‖ + 0 + exp(−i) + exp(−i)
≤ ‖g(i, xj+1) − g(i, xj)‖ + 2 exp(−i)
≤ ‖g(i, xj+1) − f(xj+1)‖ + ‖g(i, xj) − f(xj)‖

+‖f(xj+1) − f(xj)‖ + 2 exp(−i)
≤ 5 × exp(−i).
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Consider the function G : R2 → R defined for all i, x ∈ R by the linear
differential equation

{

G(i, 0) = 0
∂G
∂x (i, x) = F (i, x)

Hence

G(i, x) =

∫ x

0

F (i, u)du.

We get

‖
∂G

∂x
(i, x) − f(x)‖ = ‖F (i, x) − f(x)‖ ≤ 5 × exp(−i)

and by mean value theorem on function G(i, x) − f(x), we get

‖G(i, x) −

∫ x

0

(f)(x)‖ ≤ (5 × exp(−i))|x|,

when i ≥ ‖x‖.
Hence,

∫

(f)(x) is the limit of G(i, x) when i goes to +∞ with integer values.
We just need to check that schema LIM can be applied to function G of L∗ to
conclude: indeed, the limit of G(i, x) when i goes to +∞ will exist and coincide
with this value, i.e.

∫

(f)(x).

Since ∂G
∂x = F , we have ‖ ∂

2G
∂i∂x‖ = ‖∂F∂i ‖. Since ∂G

∂i =
∫ x

0
∂F
∂i (i, u)du implies

‖
∂G

∂i
‖ ≤

∫ x

0

‖
∂F

∂i
‖du ≤ |x| × ‖

∂F

∂i
‖ ≤ (x2 + 1) × ‖

∂F

∂i
‖,

we only need to prove that we can bound ‖ ∂F∂i ‖ by K(x) × exp(−i) for some
function K ∈ L∗, and i ≥ ‖x‖.

But from Lemma 8, we know that for all i, x,

‖∂F∂i (i, x)‖ ≤ 5‖g(bi+ 1c, bxcεi) − g(bic, bxcεi)‖
+25‖g(bic, bxcεi + εi) − g(bic, bxcεi)‖
+25‖g(bi+ 1c, bxcεi+1

+ εi+1) − g(bi+ 1c, bxcεi+1
)‖.

First term can be bounded by 5 × exp(−i) + 5 × exp(−i) = 10× exp(−i).
Second term can be bounded by 25(‖g(bic, bxcεi + εi) − f(bxcεi + εi)‖ +

‖f(bxcεi + εi) − f(bxcεi)‖ + ‖g(bic, bxcεi) − f(bxcεi)‖) ≤ 25 × exp(−i) + 25 ×
exp(−i) + 25 × exp(−i) = 75× exp(−i) , for i ≥ ‖x‖.

Similarly for third term, replacing i by i+ 1.
Hence, when i ≥ ‖x‖,

‖
∂F

∂i
(i, x)‖ ≤ 160× exp(−i),

and

‖
∂G

∂i
(i, x)‖ ≤ 160× (x2 + 1) × exp(−i),

and so schema LIM can be applied on function G of L∗ to get function
∫

(f).
This ends the proof.
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Actually, the previous lemma can easily be extended a little bit to get any
primitive:

Lemma 10. Let h be elementarily computable and defined on 0.
If f : C ⊂ R → R is defined over a closed interval containing

−→
0 , with bounds

either rational or infinite, of class C1, and elementarily computable, then the
primitive of f equal to h(0) in 0 is in L∗.

Proof. Replace in previous proof the initial condition G(i, 0) = 0 of the differen-
tial equation defining function G, by G(i, 0) = g(i) where g : R → R is a function
converging to h(0), obtained by extending a suitably chosen function g : N → N.

We are now ready to prove the missing inclusion of Theorem 1.

Proposition 14. Let f : D ⊂ Rk → Rl be some function over the reals of class
C2, with D product of compact intervals with rational endpoints. If f is in E(R),
then it belongs to L∗.

Proof. Putting together Lemma 3, Proposition 7 and Lemma 10 applied on f ′,
we obtain this proposition when k = l = 1. The case k > 1, l = 1 can be obtained
by adapting the previous arguments to functions of several variables. The case
l > 1 is immediate since a function is in L∗ if its projections are.

The missing inclusion of Theorem 2 can be proved similarly for all levels
n ≥ 3 of the Grzegorczyk hierarchy.

Proposition 15. Let f : D ⊂ Rk → Rl be some function over the reals of class
C2, with D product of compact intervals with rational endpoints. If f is in En(R),
for n ≥ 3, then it belongs to L∗

n.

9 Extensions

Observe now that, for non-compact domains we have:

Proposition 16. Let f : D ⊂ Rk → Rl be some function over the reals of class
C2, with D product of closed intervals with rational or infinite endpoints.

If f and the derivatives of f are in E(R) then f ∈ L∗.

Proof. This follows from Proposition 7 and more specifically Lemma 10.

Recall that we have, conversely L∗ ⊂ E(R) by Proposition 12.

Remark 8. If one suppresses the condition, in LIM schema, that the limit must
be of class C2, then one does not need to assume in Lemma 10 that the function is
of class C1. In that case, any function f ∈ E(R), differentiable, whose derivatives
are in E(R), can be obtained as in Lemma 10, that is as a limit schema of
functions of L∗.

We have also the following corollary:
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Corollary 1. Let f : D ⊂ Rk → Rl be some function over the reals of class C∞,
with D product of compact intervals with rational endpoints. If f is E(R), then
all its derivatives f (n), n ≥ 0, belong to L∗.

Proof. From Lemma 3, for all n, f (n+1) is elementarily computable since it is of
class C2 over a compact domain. Now, for all n, f (n)(x) ∈ L∗ from Lemma 10
applied on f (n+1).

We also have a kind of normal form theorem:

Proposition 17. If constant function π is added to the base functions of L∗,
then every function of L∗can be defined using only 1 schema LIM.

Proof. The previous proof shows that to represent a C2 function that belongs to
E(R), using one LIM is sufficient, if π is considered as base function (in order
to have the inclusion L ⊂ L∗. That means that all functions from L∗ can be
written with at most one LIM in that case.

A corollary of this proposition is that composing several LIM schemata is
always equivalent to at most one for functions of our classes, if constant function
π is considered as a base function. Otherwise, two limits are sufficient.

All previous results generalize to Grzegorczyk’s hierarchy.

10 Variations on schemas

First, we can note that it is possible to change a bit our schemata in order to
have a more natural LIM schema. The price to pay is a less natural LI schema,
that we called CLI in [8].

Formally, we define CLI as follows:

Definition 7 (CLI schema). From g,h and c, with h differentiable and first
derivatives of h bounded by c,

CLI(g, h, c) is any solution defined on a product of closed intervals of the
linear differential equation ∂f

∂y (−→x , y) = h(−→x , y)f(−→x , y) with f(−→x , 0) = g(−→x ).

In this schema, if g goes to Rn, f = CLI(g, h, c) also goes to Rn and h(−→x , y)
is a n× n matrix with elements in L.

One first useful remark is to understand that replacing LI schema by CLI
schema in the definition of class L, does not change the statements of Proposi-
tions 8, 9 and 10.

Now, using this controlled linear integration schema, we do not need to im-
pose a bound on the second derivatives in LIM schema, since the reason for this
bound was to be able to state in Lemma 7 that partial derivatives of a function
of the class have finite degree, and hence to be able to apply Euler’s method in
Proposition 12. Using CLI, we know that the first derivatives of the functions are
bounded elementarily and hence that the second derivatives of the constructed
function are also bounded elementarily. Observing the proof, this is sufficient.

So if we denote LIMw the schema:
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Definition 8 (LIMw schema). Let f : R × D ⊂ Rk+1 → Rl, K : D → R

and β : D → R a polynomial with the following hypothesis: such that for all −→x ,
t ≥ ‖−→x ‖|, ‖∂f∂t (t,

−→x )‖ ≤ K(−→x ) exp(−tβ(−→x )),
Then, on every product of closed intervals I ⊂ Rk on which β(−→x ) > 0,

F (−→x ) = limt→+∞ f(t,−→x ) exists by Lemma 1. If F is of class C2, then we define
LIMw(f,K, β) as this function F : I → R.

We can then claim that if, in the definition of class L∗ and L∗
n, LIMw schema

is substituted to LIM schema, and CLI schema is substituted to LI schema, then
we still have Theorem 1 and Theorem 2, as well as all following lemmas and
propositions (except last assertion of Lemma 7 as discussed above).
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