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Abstract We provide machine-independent characterizations of some complexity classes,
over an arbitrary structure, in the model of computation proposed by L. Blum,
M. Shub and S. Smale. We show that the levels of the polynomial hierarchy cor-
respond to safe recursion with predicative minimization. The levels of the digital
polynomial hierarchy correspond to safe recursion with digital predicative min-
imization. Also, we show that polynomial alternating time corresponds to safe
recursion with predicative substitutions and that digital polynomial alternating
time corresponds to safe recursion with digital predicative substitutions.

1 Introduction

Classical complexity can be considered as the restriction to finite structures
of a more general notion of computability and complexity over arbitrary struc-
tures, see [4, 20]. To understand computability in a whole perspective, it is
therefore interesting to study machine-independent characterizations of com-
plexity classes over arbitrary structures.

We focus on function algebras characterizing classical complexity classes
as initiated by Bellantoni and Cook [3], Leivant [17] and Marion [18]. This
implicit approach, stemming on Fagin seminal logical characterization of non-
deterministic polynomial time and other works [11, 6, 16, 10, 15, 21] is based
on a purely syntactic distinction between different types of arguments, and
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avoids explicit upper bounds on computational resources or restrictions on the
growth as originally done by Cobham in [7].

In a previous paper [5], based on classical characterizations in [3] and [19],
we exhibited machine-independent characterizations of the classes of functions
over an arbitrary structure computable in polynomial sequential or parallel
time. Our aim here is to provide such machine-independent characterizations
over an arbitrary structure for polynomial hierarchy and polynomial alternat-
ing time. Our characterizations need to coincide with the classical ones when
restricted to a structure yielding the classical notion of computation.

Over an arbitrary structure, two kinds of nondeterminism may be consid-
ered according to whether the witness is allowed to be an arbitrary element of
the structure or is restricted to be in {0, 1}. The latter is usually called digital
and a letter D is used to denote complexity classes arising from the use of dig-
ital nondeterminism. Note that in classical complexity theory, i.e., over a finite
structure, these two notions of nondeterminism coincide and they yield the
same polynomial hierarchy and class of polynomial alternating time. More-
over, polynomial alternating time coincides with PSPACE and with PAR (the
class of sets decided in parallel polynomial time). This need not to be so over
infinite structures. For instance, over (R,+,−, ∗, /,≤), we have the following
inclusions of complexity classes [9]

DPATR PATR

↗ ↘ ↗ ↘
DPHR PARR PEXPR

↘ ↗ ↘ ↗
PHR EXPR

where an arrow means inclusion, EXPR denotes exponential time, PEXPR

parallel exponential time, PHR is the polynomial hierarchy, and PATR poly-
nomial alternating time. In addition the two inclusions PARR ⊂ PATR and
PARR ⊂ EXPR are known to be strict.

Concerning classical complexity, our characterizations of PAT and DPAT,
combined with our previous one of PAR in [5], provide several new original
alternative characterizations of PSPACE.

Concerning complexity over arbitrary structures, we believe our characteri-
zations to provide nice and natural definitions of complexity classes. First, our
characterizations are machine-independent and avoid usual technical consid-
erations about machines. Second, they do not require over arbitrary structure
to distinguish two (not so natural) types of functions (called “number terms”
and “index terms” in [14]) in order to be able to use finiteness considerations
over the models even in presence of infinite underlying domains like the field
of real numbers as in [13, 14].



We believe that the minimization schemes we introduce for coping with
non-determinism, related to Hilbert choice operator and to the operators used
to tailor recursion [1, 12] shed some light on the nature of choice operators.

Based on previous characterizations of deterministic complexity classes [5],
recalled in Section 2 and 3, we provide in Section 4 a characterization of the
polynomial hierarchy. Minor changes allow us to characterize the digital poly-
nomial hierarchy in Section 5. Section 6 is devoted to a characterization of
polynomial alternating time, with a similar characterization of digital polyno-
mial alternating time in Section 7.

2 Arbitrary Structures
Definition 1

A structure K = (K, {opi}i∈I , rel1, . . . , rell,0,1) is given by some underlying
set K, a family of operators opi, and a finite number of relations rel1, . . . , rell.
Constants correspond to operators of arity 0. While the index set I may be
infinite, the number of operators of non-null arity needs to be finite.

We will not distinguish between operator and relation symbols and their
corresponding interpretations as functions and relations respectively over the
underlying set K. We assume that the equality relation = is a relation of the
structure, and that there are at least two constant symbols, with different inter-
pretations (denoted by 0 and 1 in our work) in the structure.

An example of structure is K = (R,+,−, ∗,=,≤, {cr}r∈R). Another
example, corresponding to classical complexity and computability theory, is
K = ({0, 1},=,0,1).

We denote by K
∗ =

⋃

i∈N
K

i the set of words over the alphabet K. The
space K

∗ is the analogue to Σ∗ the set of all finite sequences of zeros and
ones. Words of elements in K will be represented with overlined letters, while
elements in K will be represented by letters: a.x stands for the word in K

∗

whose first letter is a and which ends with the word x. We denote by ε the
empty word. The length of a word w ∈ K

∗ is denoted by |w|.
We assume that the reader has some familiarities with the BSS model of

computation. Detailed accounts can be found in [4] —for structures like real
and complex numbers— or [20] —for considerations about more general struc-
tures.

Roughly speaking, a BSS machine over K is a a kind of Turing ma-
chine which is able to perform the basic operations opi and the basic tests
rel1, . . . , rell at unit cost, and whose tape cells can hold arbitrary elements of
the underlying set K. Operations opi of arity 0, i.e., constants, occur in a finite
number in every machine. [20, 4].

In this setting resources such as time, parallel time or alternating time can
be considered allowing one to define several complexity classes. For example,



a problem P ⊂ K∗ will be said polynomial iff there exists a machine that,
given some word w = a1.a2. . . . .an ∈ K∗, determine whether w ∈ P using
a polynomial number in the length n of w of basic operations and basic tests.
For most natural complexity classes, complete problems can be exhibited [4].

In a previous paper [5], we provided machine independent characterizations
of the class of computable functions and of the class of functions computable
in polynomial time. Since this work is based on the latter characterization, we
next briefly recall our previous result.

3 Safe Recursive Functions
We shall define formally the set of safe recursive functions over an arbitrary

structure K, extending the notion of safe recursive functions over the natu-
ral numbers found in [3]. Safe recursive functions are defined in a similar
manner as primitive recursive functions, i.e. as the closure of some basic func-
tions under the application of some operations, among which one operation
of safe recursion. However, in the spirit of [3], safe recursive functions have
two different types of arguments, each of them having different properties and
purposes. The first type of argument, called normal, can be used to make ba-
sic computation steps or to control recursion. The second type of argument,
called safe, can not be used to control recursion. This distinction between safe
and normal arguments ensures that safe recursive functions can be computed
in polynomial time. Algebras of functions with this distinction between safe
and normal arguments are sometimes denoted as BC functions, referring to
Bellantoni and Cook [3].

To emphasize the distinction between normal and safe variables we will
write f : N × S → R where N indicates the domain of the normal arguments
and S that of the safe arguments. If all the arguments of f are of one kind,
say safe, we will write ∅ in the place of N . If x and y are these arguments, we
will write f(x; y) separating them by a semicolon “;”. Normal arguments are
placed at the left of the semicolon and safe arguments at its right.

Definition 2 We call basic functions the following four kinds of functions:

(i) functions making elementary manipulations of words over K. For any a ∈
K, x, x1, x2 ∈ K

∗

hd(; a.x) = a tl(; a.x) = x cons(; a.x1, x2) = a.x2

hd(; ε) = ε tl(; ε) = ε cons(; ε, x2) = x2.

(ii) projections. For any n ∈ N, i ≤ n, Prni (;x1, . . . , xi, . . . , xn) = xi.

(iii) functions of structure. For any operator (including the constants treated as
operators of arity 0) opi or relation reli of arity ni we have the following



initial functions (the equality relation will be denoted Equal).

Opi(; a1.x1, . . . , ani
.xni

) = (opi(a1, . . . , ani
)).xni

Reli(; a1.x1, . . . , ani
.xni

) =

{

1 if reli(a1, . . . , ani
)

0 otherwise.

(iv) a selector function

Select(;x, y, z) =

{

y if hd(x) = 1

z otherwise.

Definition 3 The set of safe recursive functions over K, denoted by SRK, is
the smallest set of functions f : (K∗)p × (K∗)q → K

∗ containing the basic
safe functions, and closed under the following operations:

(1) Safe composition.g : (K∗)m × (K∗)n → K
∗, h1, . . . , hm : K

∗ × ∅ →
K

∗ and hm+1, . . . , hm+n : K
∗ × K

∗ → K
∗ are given safe recursive

functions. Their safe composition is the function f : K
∗ × K

∗ → K
∗

defined by

f(x; y) = g (h1(x; ), . . . , hm(x; );hm+1(x; y), . . . , hm+n(x; y)) .

(2) Safe recursion. h : K
∗×K

∗ → K
∗ and g : (K∗)2× (K∗)2 → K

∗ are given
functions. f : (K∗)2 ×K

∗ → K
∗ is defined by safe recursion as follows

f(ε, x; y) = h(x; y)

f(a.z, x; y) = g(z, x; f(z, x; y), y).

When Φ is a set and F a complexity class, we denote by F Φ the class F
with oracle Φ. When G is another complexity class, F G denotes the class F
with oracles in G.

Definition 4 Given a function φ : K
∗×∅ → K

∗, the set of safe recursive func-
tions relative to φ over K, denoted by SRK(φ), is the smallest set of functions
f : (K∗)p× (K∗)q → K

∗ containing the basic safe functions and φ, and closed
under safe composition and safe recursion.

Theorem 1 Let Φ ∈ K
∗ be a decision problem over K, and denote by φ :

∅ × K
∗ → {0,1} its characteristic function. Then, a function f : K

∗ → K
∗ is

in the class FPΦ
K of functions computable in polynomial time with oracle Φ if

and only if f : K
∗ × ∅ → K∗ can be defined in SRK(φ).

We consider only decision oracles and not functional oracles in order to
avoid problems related to the output size of these oracles, see [8].



Corollary 1 ([5]) Over any structure K = (K, {opi}i∈I , rel1, . . . , rell,0,1),
a function is computed in polynomial time by a BSS machine if and only if it is
defined as a safe recursive function over K.

We shall now introduce a technical lemma needed further in our proofs.

Lemma 1 Assume f : (K∗)2 × ∅ → K
∗ is in SRK(φ). Moreover, assume

that there exists a polynomial p such that, for all x, y ∈ K
∗, f(x, y; ) can be

evaluated in time bounded by p(|x|). Then, there exists f ′ : K
∗ × K

∗ → K
∗ ∈

SRK(φ) such that f ′(x; y) = f(x, y; ).

Proof. The idea is to follow the proof of Corollary 1: a BSS ma-
chine, on input z, can be simulated by a safe recursive function Eval such
that Eval(0t; z) gives the content of the tape after t computation steps. Its
normal argument 0

t can be seen as a clock for the BSS machine. Assume
M is a BSS-machine computing f(x, y; ) in time p(|x|). Corollary 1 gives
a safe recursive function fp : K

∗ × ∅ → K
∗ such that fp(x; ) = 0

p(|x|).
Consider a safe recursive function Cons such that Cons(x; y) = x.y. Then,
f ′(x; y) = Eval(fp(x);Cons(x; y)).

4 A Characterization of PHK

As in the classical settings, the polynomial hierarchy over a given structure
K can be defined in several equivalent ways, including syntactic descriptions,
or semantic definitions by successive relativizations of non-deterministic poly-
nomial time (see [4]).

Recall some basic complexity classes:

PK is the class of problems over K decided in polynomial time. We
denote by FPK the class of functions over K computed in polynomial
time.

A decision problem A is in NPK if and only if there exists a decision
problem B in PK and a polynomial pB such that x ∈ A if and only if
there exists y ∈ K

∗ with |y| ≤ pB(|x|) satisfying (x, y) ∈ B.

A decision problem A is in coNPK if and only if there exists a decision
problem B in PK and a polynomial pB such that x ∈ A if and only if for
all y ∈ K

∗ with |y| ≤ PB(|x|), (x, y) is in B.

Definition 5 Let Σ0
K = PK and, for i ≥ 1, Σi

K = NP
Σi−1

K

K , Πi
K = coNP

Σi−1

K

K .
The polynomial time hierarchy over K is PHK =

⋃∞
i=0 Σi

K =
⋃∞

i=0 Πi
K. A

function in F∆i
K is a polynomial time function over K which queries Σi

K ora-

cles: F∆i
K = FP

Σi

K

K = FP
Πi

K

K . The functional polynomial time hierarchy over
K is FPHK =

⋃∞
i=0 F∆i

K.



Remark Extending the classical notion of polynomial time reduction between
decision problems, complete problems for every of the Σi

K and Πi
K have been

shown to exist [4].
In the spirit of [2], we now introduce the notion of predicative minimization

(we use the terminology “minimization” taken from [2], even if this might be
considered as not being a true minimization.).

Definition 6 Given h : K
∗ × (K∗)2 → K

∗, we define f : K
∗ × K

∗ → K by
predicative minimization as follows

f(x; a) =

ε

b(h(x; a, b)) =

{

1 if there exists b ∈ K
∗ with h(x; a, b) = 0

0 otherwise.

Remark Predicative minimization applied on functions h for which one can
guarantee the existence of a b of polynomial size in the length of x when there
is one, preserves (non-deterministic) computability. This consideration will
assure computability of functions of our considered classes, in analogy with
the “polychecking-lemma” used in [2] to guarantee computability.

We now introduce new sets of functions.

Definition 7 Let F be a class of BC functions. The set of restricted safe re-
cursive functions relative to F over K, denoted by RSRK(F), is the smallest set
of functions containing the basic safe functions and F, and closed under the
following restricted safe composition scheme

f(x; y) = g (h1(x; ), . . . , hm(x; );hm+1(x; y), . . . , hm+n(x; y)) .

where the hi belong to RSRK(F) and g to SRK, and the following restricted
safe recursion scheme

f(ε, x; y) = h(x; y)

f(a.z, x; y) = g(z, x; f(z, x; y), y)

where h belongs to RSRK(F) and g to SRK. This implies that no function in
F\SRK may be involved in the definition of g.

Definition 8 Assume F is a class of functions: a function f is in

ε

F if it is
defined with one predicative minimization over a function h of F.

We define by induction the following sets:

F0
K = SRK.

Fi+1
K = RSRK(Fi

K

⋃ ε

Fi
K), for i ≥ 0.

We denote by

ε

PHK =
⋃

i∈N
Fi
K the closure of the basic safe functions over

K under the application of restricted safe recursion, predicative minimization
and safe composition.



Lemma 2 This notion of restricted safe recursion ensures that, for any func-
tion f in Fi

K, there are at most i nested predicative minimizations. This bound
does not depend on the arguments of f . In other words, there exists h in SRK

and f1, . . . , fn in Fi−1
K , such that, for all x = (x1, . . . , xl),

f(x; ) = h(x;

ε

z1(f1(x; z1)), . . . ,

ε

zn(fn(x; zn))).

We denote this as a normal form for f .

Lemma 3 Assume f : (K∗)n ×∅ → K
∗ is a function in F∆i

K. Then f can be
defined in Fi

K.

Proof. By induction on i. For i = 0, f is in F∆0
K = FPK and we may

apply Corollary 1. Assume now that the result holds for i > 0.
Let f be a function in F∆i

K. By definition of F∆i
K, there exist a polynomial

time BSS machine Mf and a set Φ in Σi
K such that, for all x ∈ K

∗, f(x) is
computed by Mf with oracle Φ. We are now establishing that the oracle Φ can
be denoted by a function in Fi

K.

Since Φ ∈ Σi
K = NP

Σi−1

K

K there exist a deterministic polynomial-time BSS
machine Mg over K, a polynomial p and a set Ψ ∈ Σi−1

K such that

x ∈ Φ ⇔ ∃y s.t. Mg accepts (x, y) with oracle Ψ and|y| < p(|x|).

Denote by g the characteristic function computed by Mg with oracle Ψ and
let ψ be the characteristic function of Ψ. Then, apply Theorem 1: g be-
longs to SR(ψ)K. Since the evaluation time of Mg on (x, y) is polynomial
in |x|, Lemma 1 gives g′ in SR(ψ)K such that: g′(x; y) = g(x, y; ). Therefore
φ(x; ) =

ε

y(g′(x; y)) decides Φ, and, since Σi−1
K ⊆ F∆i−1

K , we may apply
the induction hypothesis on ψ to deduce that φ belongs to Fi

K and therefore so
does f .

Lemma 4 Assume f : (K∗)n × ∅ → K
∗ is a function in Fi

K. Then it belongs
to F∆i

K.

Proof. By induction on i. For i = 0, the result is a straightforward
consequence of Corollary 1. Assume now that the result holds for i > 0.

Assume f is a function in Fi
K. Then, as in Lemma 2,

f(x; ) = h(x;

ε

z1(f1(x; z1)), . . . ,

ε

zn(fn(x; zn))).

By induction hypothesis, the functions f1, . . . , fn belong to F∆i−1
K . The cor-

responding decision problems f1(x; z1) = 0, . . . , fn(x; zn) = 0 belong to

P
Σi−1

K

K = Σi−1
K . Indeed, they use a polynomial number of queries in Σi−1

K .
If Si−1 denotes a complete problem in Σi−1

K (see Remark 1), we can replace



these different oracles by Si−1 (by making the oracle machine compute the
reductions).

Define gj(x; ) =

ε

zj(fj(x; zj)) for 1 ≤ j ≤ n. Then, gj is the char-
acteristic function of a set in Σi

K. Indeed, if there exists zj ∈ K
∗ such that

fj(x; zj) = 0, since the evaluation time for fj(x; zj) is bounded by pj(|x|)
for some polynomial pj , only the first pj(|x|) elements of zj may possibly be
taken into account. Therefore, there exists z ′j ∈ K

∗ of length pj(|x|) such that

fj(x; z′j) = 0, which proves the claim. Therefore, f can be computed in poly-
nomial time using n oracles in Σi

K. If Si denotes a complete problem in Σi
K,

again, we can replace these n different oracles by Si: f ∈ FP
Σi

K

K = F∆i
K.

This gives our first main characterization.

Theorem 2 A function: (K∗)n × ∅ → K
∗ belongs to F∆i

K if and only if it is
defined in Fi

K.

Example Over the real numbers, an example of NPR-complete problem is
4 − FEAS: does a given polynomial of degree four have a zero? Assume
by Corollary 1 that the safe recursive function p(x; y) evaluates a polynomial
encoded in x on an input encoded in y. 4 − FEAS is then decided on x by
f(x; ) =

ε

y(p(x; y)).

Corollary 2 A decision problem over K belongs to PHK if and only if its char-
acteristic function is defined in

ε
PHK.

5 A Characterization of DPHK

Definition 9 A set S ⊆ K
∗ belongs to DNPK if and only if there exist a

polynomial p and a polynomial time BSS machine M over K such that, for all
x ∈ K

∗,

x ∈ S ⇔ ∃y ∈ {0,1}∗ s.t. |y| ≤ p(|x|) and M accepts (x, y).

Let DΣ0
K = PK and, for i ≥ 1, DΣi

K = DNP
DΣi−1

K

K , DΠi
K = coDNP

DΣi−1

K

K .
The digital polynomial time hierarchy is DPHK =

⋃∞
i=0 DΣi

K =
⋃∞

i=0 DΠi
K.

A function in DF∆i
K is a polynomial time function over K which queries DΣi

K

oracles: DF∆i
K = FP

DΣi

K

K = FP
DΠi

K

K . The functional digital polynomial time
hierarchy is DFPHK =

⋃∞
i=0 DF∆i

K.

In this digital version of the polynomial hierarchy, witnesses for a given
problem are discrete choices among given values, and not arbitrary elements
of the structure. As in the previous section, complete problems have been
shown to exist for every level of this hierarchy [4].

Similarly to the notion of predicative minimization of the previous section,
we introduce the notion of digital predicative minimization.



Definition 10 Given h : K
∗ × (K∗)2 → K

∗, we define f : K
∗ × K

∗ → K by
digital predicative minimization as follows

f(x; a) =

ε

D
b(h(x; a, b)) =

{

1 if there is a b ∈ {0,1}∗ with h(x; a, b) = 0

0 otherwise.

Definition 11 Let F be a class of functions. A function f is in

ε

D
F if it is

defined with one predicative minimization over a function h of F.
We define by induction the following sets:

dF0
K = SRK

dFi+1
K = RSRK(dFi

K

⋃ ε

D
Fi
K), for i ≥ 0.

We denote by

ε

D
PHK the closure of the basic safe functions over K under the

application of projections, restricted safe recursion, digital predicative mini-
mization and safe composition.

The proof of Theorem 2, mutatis mutandis, yields the following results.

Theorem 3 A function: (K∗)n ×∅ → K
∗ belongs to DF∆i

K if and only if it is
defined in dFi

K.

Corollary 3 A decision problem over K belongs to DPHK if and only if its
characteristic function is defined in

ε

D
DPHK.

Example Over the real numbers, a problem in DΣ1
R

is KNAPSACK: given n
objects of weight wi ∈ R and value vi ∈ R, a weight limit W and a mini-
mal value V , can we select a subset of objects of total value greater than V
and of total weight less than W ? Assume by Corollary 1 that the safe recur-
sive function v(x; y) decides whether, for an instance described by x in size
polynomial in n, a choice among the objects described by y ∈ {0,1}n, the
requirements of weight and value are satisfied. KNAPSACK is then decided
on x byf(x; ) =

ε

D
y(v(x; y)). When considering finite structures, this yields

naturally a characterization of the classical polynomial hierarchy alternative to
the one found in [2]:

Corollary 4 A decision problem belongs to PH if and only if its characteristic
function is defined in

ε

D
DPH{0,1}.

6 A Characterization of PATK

Definition 12 A set S ⊆ K
∗ belongs to PATK (polynomial alternating time)

if and only if there exist a polynomial function q : N → N and a polynomial
time BSS machine MS over K such that, for all x ∈ K

∗,

x ∈ S ⇔ ∃a1 ∈ K ∀b1 ∈ K . . . ∃aq(|x|) ∈ K ∀bq(|x|) ∈ K

MS accepts (x, a1.b1 . . . aq(|x|).bq(|x|)).



In addition, we define FPATK = FPPATK

K .

When K is the classical structure {{0, 1},=,0,1}, PATK is PSPACE.
It is important to note that the number of quantifier alternations is not fixed,

but depends on the length of the input and is polynomial in that length. It
follows that PHK ⊆ PATK.

Definition 13 Given h : K
∗ × (K∗)2 → K

∗, we define f : K
∗ × K

∗ → K by
predicative substitution as follows

f(x; a) =

ε[1]c(h(x; a, c)) =

{

1 if there is a c ∈ K with h(x; a, c) = 0

0 otherwise.

Definition 14 Assume h : K
∗ × (K∗)2 → K

∗ and g : (K∗)2 × (K∗)2 → K
∗

are given functions. The function f : (K∗)2 × (K∗)2 → K
∗ is defined by safe

recursion with predicative substitution as follows

f(ε, x;u, y) = h(x;u, y)

f(a.z, x;u, y) = g(z, x;

ε[1]c(f(z, x; c.u, y)), y).

Definition 15 The set

ε[1]PATK of safe recursive functions with predicative
substitutions over K is the closure of the basic safe functions under the appli-
cation of safe composition, safe recursion and safe recursion with predicative
substitutions.

Theorem 4 A function is computed in FPATK if and only if it can be defined
in

ε[1]PATK.

Proof. Let F be a function in FPATK, and denote by G the associated
oracle in PATK. There exists a polynomial time BSS machine M over K, and
a polynomial function q : N → N such that, for all x ∈ K

∗,

x ∈ G ⇔ ∃a1 ∈ K ¬∃b1 ∈ K . . . ∃aq(|x|) ∈ K ¬∃bq(|x|) ∈ K

M accepts (x, a1.b1 . . . aq(|x|).bq(|x|)).

Corollary 1 and Lemma 1 ensure that there exists a safe recursive function
fM over K such that, for any (x, y) ∈ (K∗)2, M accepts on input (x, y) if and
only if fM (x; y) = 1.

Consider now the function FG : (K∗)2 ×K
∗ → K

∗ deciding G. FG(ε, x;u)
simulates M on input x, u. The recurrence parameter a.z in FG(a.z, x;u)
describes the shape of the quantifier sequence. FG is defined with quantified
safe recursion as follows,

FG(ε, x;u) = fM (x;u)

FG(a.z, x;u) = Select(;Equal(; hd(; z),1),

ε[1]c(FG(z, x; c.u)),

Select(;Equal(; hd(; z),0),Select(;

ε[1]c(FG(z, x; c.u)),0,1), fM (x;u))).



In addition, let gq : K
∗ × ∅ → K

∗ such that gq(x; ) = (1.0)q(|x|). Since gq

is computable in polynomial time over K, by Corollary 1, it is safe recursive.
This function gq actually gives the type of the quantifier at every level of the
quantifier alternation for any input x to the problem G.

It is easy to check by induction on |x| that FG(cons(1, gq(x; ); ), x;0) de-
cides whether x belongs to G. Therefore, the characteristic function χG of G
belongs to

ε[1]PATK.
Consider a polynomial time machine M ′ with oracle G computing F . We

apply Theorem 1: F belongs to SRK(FG), i.e., F ∈

ε[1]PATK.
The other direction of the proof is by induction on the definition of f . The

only critical case is when f is defined by safe recursion with predicative sub-
stitution, as in Definition 14. In this case, f(a.z, x;u, y) equals 1 if and only
if

(∃c ∈ K f(z, x; c.u, y) = 0 ∧ g(z, x;1, y) = 1)
∨ (∀c ∈ K f(z, x; c.u, y) 6= 0 ∧ g(z, x;0, y) = 1) .

If g(z, x;1, y) = 1 and g(z, x;0, y) = 1, then f(a.z, x;u, y) = 1 and
there is no need for a recursive call. If g(z, x;1, y) 6= 1 and g(z, x;0, y) 6= 1,
then f(a.z, x;u, y) 6= 1 and there is no need for a recursive call either. If
g(z, x;1, y) = 1 and g(z, x;0, y) 6= 1, then f(a.z, x;u, y) = 1 if and only if

∃c ∈ K f(z, x; c.u, y) = 0.

If g(z, x;1, y) 6= 1 and g(z, x;0, y) = 1, then f(a.z, x;u, y) = 1 if and only
if

∀c ∈ K f(z, x; c.u, y) 6= 0.

Therefore, at every level of the recursion, the choice is determined by the func-
tion g. By induction hypothesis, this can be done in FPATK. When unfolding
the recursion, we get a sequence of quantifiers Q1, . . . , Q|z|+1 and a relation
symbol r ∈ {=, 6=} such that

f(a.z, x;u, y) = 1

iff Q1c1 ∈ K, . . . , Q|z|+1c|z|+1 ∈ K h(x; c1. . . . .c|z|+1.u, y) r 0.

Apply the induction hypothesis on function h. Then, f belongs to
FPATFPATK

K , with an oracle which computes g and gives the quantifier se-
quence. One just needs to note that FPATFPATK

K = FPATK to conclude.

7 A Characterization of DPATK

Class DPATK is similar to PATK but with all quantified variables belonging
to {0,1}. Similarly, we can define DFPATK = FPDPATK

K .
Similarly to the notion of predicative substitution, we define the notion of

digital predicative substitution.



Definition 16 Given h : K
∗ × (K∗)2 → K

∗, we define f : K
∗ × K

∗ → K by
predicative substitution,

f(x; a) =

ε[1]
D
c(h(x; a, c)) =

{

1 if there is c ∈ {0,1} with h(x; a, c) = 0

0 otherwise.

Definition 17 Assume h : K
∗ × (K∗)2 → K

∗ and g : (K∗)2 × (K∗)2 → K
∗

are given functions. The function f : (K∗)2 × (K∗)2 → K
∗ is defined by safe

recursion with digital predicative substitution as follows

f(ε, x;u, y) = h(x;u, y)

f(a.z, x;u, y) = g(z, x;

ε[1]
D
cf(z, x; c.u, y), y).

Definition 18 The set

ε[1]
D

PATK of safe recursive functions with digital pred-
icative substitutions over K is the closure of the basic safe functions under the
application of safe composition, safe recursion and safe recursion with digital
predicative substitution.

Again, the proof of Theorem 4 yields, mutatis mutandis, the following re-
sult.

Theorem 5 A function is computed in DFPATK if and only if it can be defined
in

ε[1]DPATK.

When restricted to finite structures, this yields another characterization of
PSPACE:

Corollary 5 A decision problem is decided in PSPACE if and only if its char-
acteristic function can be defined in

ε[1]DPAT{0,1}.
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