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1 Introduction

This paper studies problems such as: given a discrete time dynamical system
of the form x(t + 1) = f(x(t)) where f : Rn → Rn is a (possibly discontinu-
ous) piecewise affine function, decide whether all trajectories converge to 0. We
show in our main theorem (Theorem 2) that this Attractivity Problem is unde-
cidable as soon as n ≥ 2. The same is true of two related problems: Stability (is
the dynamical system globally asymptotically stable?) and Mortality (decide
whether all trajectories go through 0). In section 4 we show that Attractivity
and Stability become decidable in dimension 1 for continuous functions, and
these two notions become in fact equivalent. One can show with similar tech-
niques that Mortality is also decidable for piecewise affine continuous functions
of one variable.

It is well-known that Turing machines can be simulated by various types of
dynamical systems, including hybrid systems and the piecewise affine dynamical
systems studied in this paper. As an immediate corollary, one obtains the
undecidability of problems such as the following: “given a particular initial state,

∗This research was partly carried out while Blondel was visiting Tsitsiklis at MIT (Cam-
bridge) and Koiran at ENS (Lyon). This research was supported by the ARO under grant
DAAL-03-92-G-0115, by the NATO under grant CRG-961115 and by the European Commis-
sion under the TMR (Alapedes) network contract ERBFMRXCT960074.
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does the resulting trajectory of the dynamical system ever reach (or converge
to) the origin?” In a typical proof that such a simulation is possible, one usually
associates a machine configuration to an element of the dynamical system’s state
space. The configurations of the Turing machine are mapped to a countable (and
typically, nondense) subset of the state space. A correct simulation is obtained
provided that the dynamics of the dynamical system are properly defined on
this subset.

We now compare with the problems considered and the results obtained in
this paper. We deal with global stability-like questions such as “do all trajec-
tories converge to the origin?”. This is similar in spirit to the question “does
a Turing machine halt for every initial configuration?”. The latter problem
is known to be undecidable [8], and the proof is significantly more involved
than the proof of undecidability of the halting problem. This suggests that
establishing undecidability of stability problems is qualitatively different, and
possibly much harder, than the usual simulation results. An additional com-
plication is the following: unlike the problem of simulating a Turing machine
with a dynamical system, it now becomes important to define the dynamics of
the dynamical system on the entire state space, while ensuring certain desired
properties. To this effect, we introduce an encoding that associates a legitimate
machine configuration to all points in the state space (Lemma 1).

We finally note that while our main result could be established by using
the undecidability [8] of a corresponding Turing machine problem, we take a
parallel route, based on 2-counter machines. The advantages are that the paper
becomes self-contained (the rather difficult proof in [8] is replaced by a much
simpler argument, provided in Theorem 1, which establishes the undecidability
of the corresponding problem for counter machines), and that the simulation is
easier to describe.

This work was motivated by a question of Sontag [18]: is global asymptotic
stability decidable for saturated linear systems? These are dynamical systems
of the form x(t + 1) = σ(Ax(t) + b) where x(t) lives in the state space Rn and
σ denotes componentwise application of the saturated linear function σ : R →
[−1, 1] defined as follows: σ(x) = x for |x| ≤ 1, σ(x) = 1 for x ≥ 1, σ(x) = −1
for x ≤ −1. Saturated linear system therefore fall within the class of piecewise
affine systems studied in this paper. They are however much more restricted.
Note in particular that the corresponding transition function f : Rn → Rn is
continuous since σ is continuous. We plan to publish undecidability results for a
particular class of continuous piecewise affine systems in a future paper; see [3].
Note that discontinuous piecewise affine functions occur naturally as models of
simple hybrid systems; see [19] and [4] for discrete time examples and [2] for
an example in continuous time. Surveys of decidability and complexity results
available for hybrid and nonlinear systems are given in [1], [7], [18] and [4].
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2 Basic definitions

In the sequel X denotes a metric space and 0 some arbitrary point of X which
is chosen as origin (when X ⊆ Rn, we assume that 0 is the usual origin of Rn).

Definition 1 Let f : X → X be an arbitrary map on a metric space X.
f is globally convergent if for every initial point x0 ∈ X the trajectory xt+1 =

f(xt) converges to 0.
f is mortal if for every initial point x0 ∈ X there exists t ≥ 0 such that

f t(x0) = 0.
f is locally asymptotically stable if for any neighborhood U of 0 there is an-

other neighborhood V of 0 such that for every initial point x0 ∈ V the trajectory
xt+1 = f(xt) converges to 0 without leaving U (i.e., xt ∈ U for all t ≥ 0 and
limt→+∞ xt = 0).

f is globally asymptotically stable if f is globally convergent and locally
asymptotically stable.

A map f : X → X which is not mortal is called immortal. Asymptotic stability
is discussed for instance in [17], where in particular dynamical systems with
inputs (“control systems”) are studied.

Next we define what we mean by a piecewise affine function. Define the sign
function by

sgn(x) =

{

1 when x ≥ 0
0 when x < 0

and consider the natural extension of this function to Rm by applying the
function componentwise. Let n, m ≥ 1 and consider Ω ⊆ Rn and {0, 1}m =
{e1, e2, . . . , e2m}. Let C ∈ Qm×n and d ∈ Qm. For any given ei the set
Hi = {x ∈ Ω : sgn(Cx + d) = ei} is a subset of Ω defined by an intersec-
tion of finitely many halfspaces. The sets Hi (i = 1, . . . , 2m) form a partition
of Ω, i.e., Ω = ∪2

m

i=1Hi and Hi ∩ Hj = ∅ whenever i 6= j. A piecewise affine
function on Ω is a function given by

f : Ω → Ω : x 7→ Aix + bi when x ∈ Hi

for some Ai ∈ Qn and bi ∈ Qn.

Observe that the composition of two piecewise affine functions is still a piece-
wise affine function.

3 Stability and mortality for discontinuous piece-

wise affine functions

In this section we prove that mortality, attractivity and stability for discon-
tinuous piecewise affine functions are undecidable. The proof consists in first
showing that mortality for 2-counters machines is undecidable, then in proving
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that piecewise affine functions are able to simulate 2-counters machine in a sense
strong enough to deduce the undecidability of all three properties for piecewise
affine functions.

use the immortality problem

3.1 The mortality problem for 2-counter machines

d’immortalite parce
We consider counter machines: a n-counter machine is an abstract, syn-

chronous, deterministic computing machine with a finite number of internal
states Q = {0, 1, 2, . . . , m − 1}. It operates on a finite number of nonnegative
integer registers R1, . . . , Rn. Depending upon its internal state and whether the
registers are equal to 0 it can perform one of the following operations: leave the
registers unchanged, increase some register Rj by 1, or decrease some register
Rj by 1 (assuming Rj 6= 0).

increment
The instructions for the counter machines are tuples

[i, b1, . . . , bn, j, D, k]

where i ∈ Q represents the present state, bj ∈ {true, false} represents whether
register Rj is null, j the register which is modified by the instruction, D ∈
{Increment, Decrement, NoChange} the operation, and k ∈ Q the new inter-
nal state. For consistency, no two tuples begin with the same n + 1 symbols.
This definition of a counter machine is slightly different from that given in [9]
but is easily seen equivalent in terms of computational power.

j’utilise dans
The value of the registers with the internal state of the machine constitutes a

configuration of the machine. If a configuration has a corresponding instruction,
the result of applying it is another configuration, a successor of the original. A
configuration for which there is no tuple is said to be a halting configuration.

There is no loss of generality to assume that the only halting configuration
is the one where the internal state is 0 and where the registers have value 0.

Extending the relation of successor to its transitive completion, each config-
uration with a halting successor can be termed mortal, the others that do not
lead to halting configurations but rather run for ever are termed immortal.

The configuration space of n-counters machines P can be considered as C =
Nn×Q. n-counters machines are special cases of dynamical systems over C: P =
(C, fP ) where fP : C → C is the function that maps non-halting configurations
to their successors, and the halting configuration (0, 0) to itself.

We will use the following result, which is an analog of the result proved in
[8] for Turing machines. Let us note that our result here is not a corollary of
the result in [8]: the fact that counter machines can simulate Turing machines
does not readily imply that the immortality problem for counter machines is as
hard as for Turing machines.
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Theorem 1 The problem of determining if a given n-counters machine halts on
all possible configurations (the machine is then said to be mortal) is undecidable.
This assertion remains true when n = 2.

Proof:
The proof is by reduction from the classical halting problem for counter

machines; see [9]. Consider a counter machine M with m internal states labeled
q1, q2, . . . , qm, n registers R1, . . . , Rn and let s = (r1, r2, . . . , rn, ql) be a given
configuration of M . Instructions of M have the form [qi, b1, b2, . . . , bn, j, D, qk].

To establish the first part of the result we describe how to construct effec-
tively a counter machine M ′ on n + 2 registers R1, . . . , Rn, V, W such that M ′

halts on all possible configurations if and only if M halts on s.
The machine M ′ has a special state denoted q0. Each time that M ′ enters

state q0, it executes a sequence of instructions whose effect is to store ri in Ri,
2 max(1, V ) in W and 0 in V . After having done this, it moves into state ql.

Then the machine starts a simulation of the machine M . The simulation
is such that, before performing any of the instructions of M , the machine first
increases the register’s content of V by 1, decreases that of W by 1 and per-
forms the instruction of the machine M only if W is not equal to 0. If W = 0
it returns to the special state q0.

Thus, the instructions of the machine M

[qi, b1, b2, . . . , bn, j, D, qk]

are all changed into sixteen instructions for M ′;

[qi, b1, b2, . . . , bn, b∗n+1, b
∗
n+2, n + 1, Increment, q′i]

[q′i, b1, b2, . . . , bn, b∗n+1, b
∗
n+2, n + 2, Decrement, q′′i ]

[q′′i , b1, b2, . . . , bn, b∗n+1, T rue, n + 2, NoChange, q0]

[q′′i , b1, b2, . . . , bn, b∗n+1, False, j, D, qk]

where b∗n+1 and b∗n+2 range over all four possible combinations b∗n+1, b
∗
n+2 ∈

{True, False}.
We claim that M ′ halts on all possible configurations if and only if M halts

on s.

One of the implications is clear. If M ′ halts on all possible configurations, it
must halt on the configuration (r1, . . . , rn, v, 0, q0) for all possible v ≥ 0. When
started on (r1, . . . , rn, v, 0, q0), the machine M ′ simulates 2 max(1, V ) steps of
M in starting state ql before returning to state q0. Thus, if M ′ halts on all
possible configurations, M must halt on (r1, . . . , rn, ql).

Assume now that M halts on (r1, r2, . . . , rn, ql) and let k be the number of
steps after which it halts. We need to show that M ′ halts on all possible con-
figurations. Let s′ = (r1, . . . , rn, v, w, qr) be an arbitrary configuration of M ′.
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The register W is regularly decremented when executing instructions of M ′. It
is therefore clear that, whatever w, the machine M ′ will halt on s′ or W will
reach 0 after finitely many steps. In the latter case, the machine will restart
a simulation of M with an increased register content for W . After sufficiently
many returns to q0, the register W will eventually contain a value larger than
k + 1 and the machine M ′ will then halt since it will simulate k steps of M on
(r1, r2, . . . , rn, ql).

It remains to show how to reduce the number or registers to two. Let M ′

be a counter machine on n registers R1, R2, . . . , Rn. We construct a machine
M ′′on two registers S and T such that M ′′ halts on all possible configura-
tions if and only if M ′ does. The content of the registers Ri of M ′ are stored
in the register S of M ′′ by the classical prime number encoding. The non-
negative integers r1, r2, . . . , rn are encoded into the nonnegative integer s by
s = 2r13r25r3 . . . π(n)rn where π(n) is the (n + 1)th prime number. Incremen-
tation (respectively, decrementation) of the register Ri can then be obtained by
multiplying (respectively, dividing) s by π(i). These incrementing and decre-
menting operations can be performed on M ′′ with the help of the register T .
The register T can also be used to test divisibility of s by π(i) and hence equal-
ity to zero of the registers Ri can be checked with the machine M ′′. Finally one
can verify that this construction preserves mortality of counter machines and
so mortality is undecidable for 2-counter machines.

register 2

3.2 Simulating a n-counters machine by a piecewise affine

function

In traditional simulations of counter machines or Turing machines by dynamical
systems, a machine configuration is encoded by a single point of the dynamical
system’s state space [11, 16, 15, 14, 10, 6, 2]. Since we are interested in this
section in the global behavior of dynamical system on R2, we will instead assign
the same machine configuration to all points in a subbox of a certain box N ∗ ⊆
R2.

Lemma 1 Given a 2-counter m-state machine P with transition function fP :
C → C, one can construct a piecewise affine function gP : N ∗ → N ∗ and an
encoding function ν′ : N ∗ → C such that the following conditions hold.

(i) N ∗ = [0, m[×[0, 1[ and ν′(N ∗) = C.

(ii) ν′(x) is equal to the halting configuration (0, 0, 0) of P if and only if x ∈
[0, 1/2[2, and in this case gP (x) = 0.
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(iii) The following diagram commutes:

C
fP

−−−−→ C

ν′

x





x



ν′

N ∗ gP

−−−−→ N ∗

i.e., for all x ∈ N ∗, fP (ν′(x)) = ν′(gP (x)).

Proof: We first define ν′. This encoding maps a point (x1, x2) ∈ N ∗ to the
unique configuration (w1, w2, q) such that x2 ∈ [1 − 1/2w2 , 1 − 1/2w2+1[ and
x1 − q ∈ [1 − 1/2w1 , 1 − 1/2w1+1[. Note that ν′(N ∗) = C as required, and
x2 (respectively, x1) encodes an empty counter if and only if x2 ∈ [0, 1/2[
(respectively, x1 − q ∈ [0, 1/2[).

The piecewise affine function gP will be affine on each box B of the form
[q+α, q+α+1/2[×[β, β +1/2[ subbox. suffit pas. where q ∈ {0, . . . , m−1} and
α, β ∈ {0, 1/2}. By definition of ν ′ all points in this box encode a configuration
in state q and the emptiness status of each counter is also uniquely defined (by
the values of α and β). The next state q′ and the operations to be applied to
the counters are therefore the same for all configurations in ν ′(B).

In the box [0, 1/2[2 corresponding to the halting configuration (0, 0, 0) of P
we set gP (x1, x2) = (0, 0). In other boxes we proceed as follows. For (x1, x2) ∈
B, we take gP (x1, x2) = (x′

1, x
′
2) where 1 − x′

2 = a(1 − x2) and 1 − (x′
1 − q′) =

b(1 − (x1 − q)). Each constant a and b is set to 2 if the corresponding counter
is decremented, to 1/2 if it is incremented, or to 1 if it is unchanged. It is clear
that the map gP : N ∗ → N ∗ thus defined makes the diagram commutative. 2

3.3 Undecidability in two dimensions

Theorem 2 The three problems below are all undecidable.
Let a piecewise affine function g : R2 → R2 be given.

1. Mortality Problem: is g mortal?

2. Attractivity Problem: is g globally convergent?

3. Stability Problem: is g globally asymptotically stable?

Proof: We first show that problem 1 is undecidable by a reduction from the
immortality problem for 2-counter machines. Assume a 2-counter machine P is
given. Let g′

P be the extension to R2 of map gP of Lemma 1 obtained by setting
g′P (x) = 0 for x6∈N ∗. We shall prove that P has an immortal configuration iff
g′P has an immortal trajectory: i.e. iff there exists some sequence xt+1 = g′P (xt)
with xt 6= 0 for all t ≥ 0.

Assume first that such an immortal trajectory exists. Since g′
P is zero outside

N ∗, xt ∈ N ∗ for all t ≥ 0. ¿From the commutative diagram of Lemma 1, we
see that the sequence ct = ν′(xt) is a sequence of successive configurations of P .
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¿From condition (ii) in the same lemma, ct 6= (0, 0, 0) for all t ≥ 0. Configuration
c0 is therefore immortal.

Conversely, assume P to be immortal: there exists an infinite sequence of
configurations ct with ct+1 = fP (ct), ct 6= (0, 0, 0). By condition (i) of Lemma 1,
there exists x0 ∈ N ∗ such that ν′(x0) = c0. We claim that the trajectory
xt+1 = gP (xt) is immortal. Indeed, by the commutative diagram we have
ν′(xt) = ct 6= 0 for all t ≥ 0, hence xt 6= 0 by condition (ii) of Lemma 1.

The undecidability of problems 2 and 3 now follows from a simple obser-
vation. On the one hand, an immortal trajectory of g′

P does not converge to
the origin since it remains in N ∗ \ [0, 1/2[2. On the other hand, any mortal
trajectory of g′

P satisfies xt = 0 for t large enough since 0 is a fixed point of
g′P . That is, for g′

P mortality is equivalent to global convergence and to global
stability. 2

Remarks.

1. It is easily seen that these three problems remain undecidable for piecewise
affine functions g : Rn → Rn whenever n ≥ 2.

2. We do not know if these problems remain undecidable for a fixed number
of partitions.

3. A related problem is the point-to-fixed-point problem, i.e., the problem of
determining, for a given piecewise affine function g : Rn → Rn and initial
point x0 ∈ Rn, if the iterates xt+1 = g(xt) eventually reach a fixed point.
This problem is known to be undecidable for n = 2 and for less than 800
partitions; see [11]. The decidability of the case n = 1 was proposed as
an open problem in [11], and it seems to be open to this date. In fact, we
are not aware of a decision algorithm for the case n = 1 even when there
are only two partitions.

4 Decidability in one dimension

Theorem 3 Let f : R → R be a continuous map from such that f(0) = 0.
Then, the following properties are equivalent:

(a) f is globally convergent.

(b) For every x > 0 we have f(x) < x and f 2(x) < x, and for every x < 0 we
have x < f(x) and x < f2(x).

(c) f is globally asymptotically stable.

Proof: We first prove that (a) implies (b). Suppose that f is globally conver-
gent. Furthermore, suppose, in order to derive a contradiction, that there exists
some x > 0 such that f(x) ≥ x. If we have f(y) ≥ y for all y > 0, then the
sequence fk(x) is nondecreasing, which contradicts global convergence. There-
fore, there exists some y > 0 such that f(y) < y. Using continuity, there exists
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some z > 0 such that f(z) = z, which again contradicts global convergence.
This shows that f(x) < x for all x > 0. Since f is globally convergent, it is clear
that f2 is also globally convergent, and the preceding argument also establishes
that f2(x) < x for all x > 0. The conditions for the case where x < 0 are
established by a symmetrical argument.

We now assume that the conditions in (b) hold, and proceed to establish
property (c). For x > 0, we define F−(x) = min0≤z≤x f(z). Since f(0) = 0,
it follows that F−(x) ≤ 0 for any x > 0. We claim that f maps the interval
I = [F−(x), x] into [F−(x), x). Indeed, for any positive z ∈ I , we have F−(x) ≤
f(z) < z ≤ x. If z ∈ I is negative, then F−(x) ≤ z < f(z). Also, using the
continuity of f and the definition of F−(x), a negative z ∈ I must be the image
f(y) of some y ∈ [0, x]. Therefore, f(z) = f 2(y) < y ≤ x, which completes the
proof of the claim.

The property established in the preceding paragraph implies that if f k(x) >
0, then fk+l(x) < fk(x), for all l ≥ 1. Thus, the subsequence of {fk(x)} ob-
tained by restricting to k for which fk(x) is positive, is monotonically decreasing.
It must therefore converge, and the only possible limit is zero, due to the con-
tinuity of f . By an entirely symmetrical argument, we also conclude that the
subsequence obtained by restricting to k for which f k(x) is negative is monoton-
ically increasing. Hence, fk(x) must converge to zero. Furthermore, since the
positive and negative subsequences of {fk(x)} are monotonic, for every initial
x, it is easily seen that there exist arbitrarily small invariant neighborhoods of
0. This establishes global asymptotic stability as well.

The fact that (c) implies (a) is an immediate consequence of the definitions.
2

A decision algorithm follows immediately from Theorem 3. For this algo-
rithmic application we assume that our piecewise affine function f is defined by
equations with rational coefficients (i.e. the endpoints of intervals where f is
affine and the corresponding slopes are rational numbers). A generalization to
a larger class of “finitely representable” coefficients (e.g. algebraic numbers) is
straightforward (and arbitrary real coefficients can be allowed if we work with an
algebraic model of computation). Generalizing to a larger class than piecewise
affine functions (e.g. to piecewise polynomial functions) is also straightforward.

Corollary 1 Let f : E → E be a piecewise affine continuous function, where
E is either R or a compact interval in R that contains 0. There is an algorithm
for deciding the global asymptotic stability of f .

Proof: For the case where E = R, it suffices to test the conditions (b) in
Theorem 3, which is straightforward. For the case where E is an interval of
the form [a, b], we note that Theorem 3 remains valid, and the same decision
procedure applies. Alternatively, we could extend the function f to outside [a, b]
(e.g. by f(x) = f(b) for x > b and f(x) = a for x < a), and note that f and its
extension share the same stability and convergence properties. 2

Without a continuity assumption the situation is quite different. For in-
stance, the map f : [0, 1] → [0, 1] defined by: f(x) = 2x for 0 ≤ x ≤ 1/2,
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f(x) = 0 for 1/2 < x ≤ 1 is globally convergent but it is not globally asymp-
totically stable. We leave it as an open problem whether there is a decision
algorithm for discontinuous piecewise affine functions.
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