
Achilles and the Tortoise climbing up the hyper-arithmetical

hierarchy

Olivier Bournez∗

obournez@lip.ens-lyon.fr

Abstract

In this paper, we characterize the computational power of dynamical systems with piecewise constant
derivatives (PCD) considered as computational machines working on a continuous real space with a con-
tinuous real time: we prove that piecewise constant derivative systems recognize precisely the languages

of the ωkth
(respectively: ωk + 1

th
) level of the hyper-arithmetical hierarchy in dimension d = 2k + 3

(respectively: d = 2k + 4), k ≥ 0.
Hence we prove that the reachability problem for PCD systems of dimension d = 2k + 3 (resp.

d = 2k + 4), k ≥ 1, is hyper-arithmetical and is Σωk -complete (resp. Σωk+1-complete).

1 Introduction

There has been recently an increasing interest in the fields of control theory and computer science about
hybrid systems. A hybrid system is a system that combines discrete and continuous dynamics. Several
models have been proposed in literature. In particular, in [2, 3, 4], the authors introduce Piecewise
Constant Derivative systems (PCD systems), a sub-class of the so-called linear hybrid automata of [1]:
such systems consist in partitioning the Euclidean space into a finite number of convex polyhedra such
that the derivative within any region is constant.

Hybrid systems can be considered either as computational machines working on a continuous space
with a discrete time or as machines working on a continuous space with a continuous time: see [2, 3, 4,
9, 10].

Several theoretical computational models of machines working on a continuous space with a discrete
time are known: in particular, in [5], Blum, Shub and Smale introduce the real Turing machine (see [13]
for an up-to-date survey). When PCD systems are considered as machines working on a continuous space
with a discrete time their computational power is known: it is proved in [2, 3, 9] that PCD systems of
dimension d ≥ 3 are equivalent to Turing machines or to a restriction of real Turing machines.

The study of machines working on a continuous space with a continuous time is only beginning.
In [14], Moore proposes a recursion theory for computations on the reals in continuous time. When
PCD systems are considered as machines working on continuous space with a continuous time no precise
characterization of their computational power was known: recently, Asarin and Maler [3] showed using
Zeno’s paradox, that every set of the arithmetical hierarchy can be recognized by a PCD system of finite
dimension. We gave in [7, 8] a characterization of the computational power of a restricted class of PCD
systems: the purely rational PCD systems. But no characterization was given for the general class of
PCD systems.

In this paper, we provide such a characterization: we prove that the languages recognized by PCD
systems in dimension d = 2k + 3 (respectively: d = 2k + 4), k ≥ 0, in finite continuous time are precisely

the languages of the ωkth
(resp. ωk + 1

th
) level of the hyper-arithmetical hierarchy. In other words, the

reachability problem for PCD systems of dimension d = 2k + 3 (resp. d = 2k + 4) is not decidable and is
Σωk -complete (resp. Σωk+1-complete). In particular, that means that the reachability problem for PCD
systems of dimension greater than 5 is hyper-arithmetical but is not analytic.

∗Support by Esprit Project 8556. NeuroColt is acknowledged.

1

In section 2 we introduce PCD systems and the hyper–arithmetical hierarchy. In section 3, we
introduce Real Continuous Time (RCT) machines: we prove that RCT machines can recognize some
hyper–arithmetical sets. In section 4, we show that RCT machines can be simulated by PCD systems
and we deduce that PCD systems can also recognize some hyper–arithmetical sets. In section 5, we prove
that the bounds given in section 4 are optimal: the languages recognized by PCD systems in dimension
d = 2k + 3 (respectively: d = 2k + 4), k ≥ 0 in finite continuous time are precisely the languages of the

ωkth
(resp. ωk + 1

th
) level of the hyper-arithmetical hierarchy.

2 Definitions

2.1 PCD systems

A convex polyhedron of Rd is a finite intersection of open or closed half spaces of Rd. A polyhedron of
Rd is a finite union of convex polyhedral of Rd. In particular, a polyhedron may be unbounded or flat.

Definition 2.1 (PCD system) A piecewise constant derivative (PCD) system [3, 4] is a dynamical
system H = (X, f) where X = Rd for some d is the state space and f is a function from X to X such
that the range of f is a finite set of vectors C ⊂ X, and for every c ∈ C f−1(c) is a polyhedron, and
d+x
dt

= f(x) is the differential equation governing the evolution of x: a trajectory of H starting at some
x0 ∈ X is Φ : R+ → X such that Φ is a maximal solution of the equation with initial condition x = x0,
i.e Φ(0) = x0, and for every t, f(Φ(t)) is defined and is equal to the right derivative of Φ(t).

In other words a PCD system consists in partitioning the space into convex polyhedral sets, called
regions, and assigning a constant derivative c, called slope to all the points sharing the same region.
The trajectories of such systems are broken lines with the breakpoints occurring on the boundaries of
the regions [3]: see figure 1.

 Trajectory

Direction

Figure 1: A PCD system in dimension 2.

A description of a PCD system is simply a list of the regions (expressed as intersections of linear
inequalities) and their corresponding slope vectors. From now on, we assume that all the constants in
the systems’ definitions are rational (we consider only rational PCD systems with the terminology of
[7, 8]).

Given a description of a PCD system H, the reachability problem for H is the following: given
x, x′ ∈ X ∩ Qd, are there a trajectory Φ and t ≥ 0 such that Φ(0) = x and Φ(t) = x′.

We can say some words on the existence of trajectories in a PCD system: let x0 ∈ X. We say that
x0 is trajectory well-defined if there exists a ε > 0 such that f(x) = f(x0) for all x ∈ [x0, x0 + ε ∗ f(x0)].
It is clear that, for any x0 ∈ X, there exists a trajectory starting from x0 iff x0 is trajectory well-defined.
Moreover, it is clear that, given a PCD system H, one can effectively compute the set NoEvolution(H)
of the points of X that are not trajectory well-defined.

2

2.2 Computing with PCD systems

Let Σ be a finite alphabet with at least two letters. Without loss of generality, assume that Σ =
{1, 2, . . . , nΣ}.

We write Σ∗ (respectively: Σω) for the the set of the finite (respectively: finite and infinite) words
over alphabet Σ. We write ε for the empty word. If w ∈ Σ∗, we write length(w) for the length of word
w. We fix a recursive encoding of the integers over the words of Σ∗: for all integer n ∈ N, we denote by
n the word of Σ∗ encoding integer n.

We describe now how to encode a word of Σω into a real of [0, 1]. Denote by bΣ the first power of 2

that is greater than 2nΣ + 2: bΣ = 2b′Σ for some b′Σ ∈ N.

Definition 2.2 (Encoding by J) Let Σ = {1, 2, . . . , nΣ} be the fixed finite alphabet.
We denote by J the mapping from Σω → J ⊂ [0, 1] that maps any word w = a1a2 . . . ai . . ., with

a1, a2, . . . ∈ Σ, to real number

J (w) =
∞

X

j=1

(2aj)

(bΣ)j

We denote by Λ the image of Σ∗ by J : Λ = J (Σ∗).

PCD systems can be considered as machines recognizing some languages L ⊂ Σ∗ as follows:

Definition 2.3 (Computation [3]) • Let H = (X, f) be a PCD system of dimension d. Let x1, x0

be two distinct points of Rd. A computation of system Ĥ = (Rd, f,J , x1, x0) on entry n ∈ Σ∗ is a
trajectory of H = (X, f) starting at (J (n), 0, . . . , 0). The computation is accepting if the trajectory
eventually reaches x1, and refusing if it reaches x0. It is assumed that the derivatives at x1 and x0

are zero.

• Language L ⊂ Σ∗ is semi-recognized by Ĥ if, for every n ∈ Σ∗, there is a computation on entry
n and the computation is accepting iff n ∈ L. L is said to be (fully-)recognized by Ĥ when, in
addition, the computation is refusing iff n 6∈ L.

X
1

X
0

Accepted Input

Rejected Input

Non−accepted Input

Input Port

Accepting Point

Refusing Point

Figure 2: Some examples of computations by a PCD system.

In other words every input is encoded into a rational point of the space, and its membership is
indicated by whether the trajectory starting at this point is settles in an accepting (refusing) point after
a finite amount of time.

2.3 Hyper-arithmetical hierarchy

2.3.1 Presentation

We recall the definition of the hyper-arithmetical hierarchy. The hyper-arithmetical hierarchy is an
extension of the arithmetical hierarchy to constructive ordinal numbers. It consists of the classes of
languages Σ1, Σ2, . . . , Σk, . . . , Σω, Σω+1, Σω+2, . . . , Σω2, Σω2+1, . . . , Σω2 , . . . indexed by the constructive

3

ordinal numbers. It is a strict hierarchy and it satisfies the strict inclusions Σα ⊂ Σβ whenever α < β.
It can be related to the analytical hierarchy by ∆1

1 = ∪βΣβ : see [16].

The idea of the construction of this hierarchy is the following:

• Σ1 is defined as the class of the recursively enumerable sets: that is to say Σ1 is the class of the
languages that are semi-recognized by a Turing machine.

• When k is a constructive ordinal and when the class Σk is defined, Σk+1 is defined as the class of
the languages that are recursively enumerable in a set in Σk: that is to say Σk+1 is the class of the
languages that are semi-recognized by some oracle Turing machine whose oracle is a language in
Σk.

• When k is a constructive limit ordinal, k = lim ki, and when the classes (Σki
)i∈N are defined, Σk is

defined as the class of the languages that are recursively enumerable in some fixed diagonalization
of classes (Σki

)i.

2.3.2 Formal definition

We give here the formal definitions. We use the classical notations of [15, 16]: in particular Wn (respec-
tively: W X

n) denotes the language recognized by the nth Turing machine (resp. by the nth Turing machine
with oracle X); φn (respectively φX

n) denotes the function computed by the nth Turing machine (resp.
by the nth Turing machine with oracle X); <, > denotes a bijective recursive coding of pairs of words.
When X ⊂ Σ∗ is a language, the jump of X, denoted by X ′ is defined by X = {u|u ∈ N ∧ u ∈ W X

u }.
The constructive ordinals are defined as follows:

Definition 2.4 (Constructive ordinals[16]) We define by transfinite induction simultaneously O ⊂
N, mapping | | from 0 to a segment of the ordinal numbers and partial ordering <O on O.

The ordinals in the range of | | are called the constructive ordinals. An ordinal α is said to have
notation x iff x ∈ O and |x| = α.

The transfinite induction is as follows:

• Ordinal 0 receives notation 1: 1 ∈ O, |1| = 0.

• Let γ be an ordinal. Assume that all the ordinals < γ have received a notation, and assume that
<o has been defined on these notations.

– If γ = α + 1 is a successor, γ receives notation 2x, for all notation x of α: for all x ∈ O, if
|x| = α, then 2x ∈ O, |2x| = γ and z <0 2x for all z ∈ O with either z = x or z <0 x.

– If γ is a limit, γ receives notation 3.5y for all y such that {φy(n)}n=∞
n=1 is an increasing sequence

of notations of ordinals of limit γ: for all y ∈ N, if {φy(n)}n=∞
n=1 is a sequence of integers in

O, if {|φy(n)|}n=∞
n=1 is an increasing sequence of ordinals with limit γ such that ∀i∀j i < j ⇒

φy(i) <0 φy(j), then 3.5y ∈ O, |3.5y | = γ and z <0 3.5y for all z for which there exists n such
that z <0 φy(n).

• No other integer y ∈ N is in O.

Function HX that maps constructive ordinals to languages is defined as follows: HX(0) is defined as
X. For all constructive ordinal k, HX(k + 1) is defined as the jump of HX(k). For all constructive limit
ordinal k = lim ki, HX(k) is defined as a fixed diagonalization of the sets (HX(ki))i:

Definition 2.5 Let X ⊂ Σ∗. We define HX as a mapping from O to the subsets of Σ∗ by:

• HX(1) = X.

• HX(2x) = (HX(x))′ = {u|u ∈ N ∧ u ∈ W
HX(x)
u }.

• HX(3.5y) = {< u, v > |v ∈ O ∧ v <0 3.5y ∧ u ∈ HX(v)}.

The hyper-arithmetical hierarchy is defined by (see [16] for a proof that this definition defines unam-
biguously the classes Σα for all constructive ordinals α):

Definition 2.6 (Hyper-arithmetical hierarchy) Let X ⊂ Σ∗.

• For all constructive ordinal 1 ≤ α < ω, and for any y such that α = |2y|: ΣX
α is the class of the

sets that are recursively enumerable in HX(y)

4

• For all constructive ordinal α ≥ ω and for any y such that |y| = α: ΣX
α is the class of the sets that

are recursively enumerable in HX(y)

We denote Σα for Σ∅
α for all constructive ordinal α.

3 RCT machines and the hyper–arithmetical hierarchy

We want to prove that PCD systems can recognize some sets of the hyper-arithmetical hierarchy. Our
proofs are constructive. However, instead of manipulating directly PCD systems and their lists of poly-
hedra and slopes, we prefer dealing with a programming language. This programming language is a
language for machines working with a continuous time.

In this section, we define this language and we determine how powerful it is. In the next section, we
will prove that any program of this language can be translated effectively into a PCD system.

3.1 RCT machines

3.1.1 First example

We present here an informal description of Real Continuous Time (RCT) machines. A formal definition
will be given in next subsection. Keep in mind that this language is in some sense ad-hoc to represent
what can be computed by PCD systems.

We deal with machines that have a finite number of real registers x1, x2, . . . , xd whose values can be
any real of [0, 1]. These machines evolve according to a finite program made of assignments and of tests
between the real registers. Any instruction I (assignment or test), has some associated real function
cI : [0, 1]d → R+ called the cost of the instruction. The execution of instruction I takes a time equal to
its costs: I is executed in time cI (x1, . . . , xd), where x1, . . . , xd are the values of the real registers of the
machine when the instruction is executed.

Take for example the instruction x1 := 2x2 [x3]: this instruction does x1 := 2x2 with cost x3: if this
instruction is executed at date t ∈ R, then the value of the first real register at date t + x3 will be equal
to two times the value of the second real register at date t, where x3 is the value of the third real register
at date t.

Let us consider a first example of program:

Algorithm 1 program ”Hello world”.

x1 := 1 [1]
x2 := 1 [1]
x3 := 0 [1] /*set (x1, x2, x3) = (1, 1, 0) at date 3.*/
while (true) do /*transform (x1, x2, x3) = (1/2n, 1/2n, 1 +

1/2 + . . . 1/2n−1) at date 3 + 3(1 + 1/2 +
. . . 1/2n−1) for some n, to (x1, x2, x3) =
(1/2n+1, 1/2n+1, 1 + 1/2 + . . . 1/2n) at date
3 + 3(1 + 1/2 + . . . 1/2n)*/

x3 := x3 + x1 [x2]
x1 := x1/2 [x2]
x2 := x2/2 [x2]

end while

limit∗: /*here, we have (x1, x2, x3) = (0, 0, 1) at date
9. */

x1 := x3 [1] /*now set, (x1, x2, x3) = (1, 0, 1) at date 10.
*/

Try to simulate the evolution of this program. At time 3, (x1, x2, x3) = (1, 1, 0) and the program
is starting to execute the while loop. At time 3 + 3 the program is starting to execute the loop for
the second time. At time 3 + 3 + 3/2 the program is executing the loop for the third time. At time

5

3 + 3 + 3/2 + 3/22 + . . . + 3/2n−1 , for all n ∈ N, the program is executing the loop for the nth time. And
at time 9 = 3 +

P∞
j=0 3/2j?

This is the role played by the label limit∗: this labels indicates what to do when time becomes “Zeno”:
that is to say when an unbounded number of operations are executed in a finite time. Hence, at time 9,
the program executes the instruction labeled by limit∗ and copies x3 into x1. Check that variables x2

and x1 tend to 0 and that variable x3 tends to 1 during the execution of the infinite while loop. As a
consequence, we consider that at time 9 the value of the first two real registers of the machine is 0 and
that the value of the third real register is 1. Therefore the previous program is a program that always
halts and that stops with x1 = 1, x2 = 0, x3 = 1 at time 10.

In other words, a RCT program is a finite program made of assignments and of tests with a real cost,
with possibly a special label denoted by limit∗ that denotes the instruction to do when time becomes
“Zeno”.

3.1.2 Formal definitions

We define now formally our programming language: see previous section for an example.

Definition 3.1 (Instruction, Test) • An assignment in dimension d is a couple (f, c) where f ,
called the operation, is a partial mapping from [0, 1]d to [0, 1]d and c, called the cost function, is
a partial mapping from [0, 1]d to R+.

• A test in dimension d is a couple (R, c), where R is a partial relation over [0, 1]d, and c, called the
cost function, is a partial mapping from [0, 1]d to R+.

• An instruction of dimension d is either an assignment or a test of dimension d.

For the simplicity of notations, we denote by “xi := g(x1, . . . , xd)[c]”, the assignment (g′, h′) where,
for all x1, . . . , xd ∈ [0, 1], g′ and h′ are defined on (x1, . . . , xd) iff g(x1, . . . , xd) ∈ [0, 1], and when g′

and h′ are defined on (x1, . . . , xd), then g′(x1, . . . , xd) = (x1, . . . , xi−1, g(x1, . . . , xd), xi+1, . . . , xd) and
h′(x1, . . . , xd) = c. We denote by “xi := g(x1, . . . , xd)

′′ the assignment xi := g(x1, . . . , xd) [1]. We
denote by “R? [c]”, where R is a relation, the test (R, c). We denote by “R?′′ the test R? [1].

We will define below the set of the assignments and the set of the tests denoted by Assgnmtd and by
Testd respectively that are admissible in dimension d.

A RCT machine of dimension d is a machine with d real registers that evolves according to its program.
Its program is finite and is made of the assignments of Assgnmtd and of the tests of Testd. The execution
of any instruction takes a time equal to the cost of the instruction. Whenever the time becomes “Zeno”
and the variables converge, the machine enters a special limit state limit∗, and the execution goes on
from this state. Formally:

Definition 3.2 (RCT machine) • A Real Continuous Time machine (RCT machine) M , or a
RCT program of dimension d, is given by P = (Q, q0, q

+
f , q−f , limit∗, δ) where:

– Q is the set of the internal states of M : Q is a finite set. q0, q
+
f , q−f , limit∗ ∈ Q are the initial

state, the accepting, the refusing state and the limit state respectively.

– δ defines the instructions of the program: δ is a mapping from Q to Q×Q×(Assgnmtd∪Testd).

• An instantaneous description (ID) of M is given by (q, x1, . . . , xd, t) ∈ Q × [0, 1]d × R+. q is the
internal state, t is the time and x1, . . . , xd are the values of the real registers of M at time t.

• Let ID1 = (q, x1, . . . , xd, t) and ID2 = (q′, x′
1, . . . , x

′
d, t

′) be two IDs of M . We write ID1 ` ID2 iff

– either the instruction corresponding to ID1 is an assignment and ID2 is the result of the
assignment: δ(q) = (q′, q′′, Assgnmt), with Assgnmt = (f, c) ∈ Assgnmtd, and:

∗ (x1, . . . , xd) is in the domain of function f and of function c.

∗ (x′
1, . . . , x

′
d) = f(x1, . . . , xd).

– or the instruction corresponding to ID1 is a test and ID2 and ID2 is the result of the test:
δ(q) = (q′′, q′′′, T est), with Test = (R, c) ∈ Testd, and:

∗ (x1, . . . , xd) is in the domain of relation R and of function c.

∗ (x′
1, . . . , x

′
d) = (x1, . . . , xd)

∗ (q′ = q′′ and R(x1, . . . , xd)) or (q′ = q′′′ and ¬R(x1, . . . , xd)).

6

• A computation of M starting from (x1, . . . , xd) is a sequence (IDi = (qi, xi
1, . . . , x

i
d, t

i))i≤I of IDs
of M , where I is an ordinal, such that:

– its starts in the initial state: ID0 = (q0, x1, . . . , xd, 0)

– its evolves according to the instructions of the program: for all j ≤ I, if j is a successor ordinal
then IDj−1 ` IDj

– whenever the time becomes Zeno, its goes to label limit∗: for all j ≤ I, if j is a limit ordinal
then

∗ tj = sup{tj′ |j′ < j}

∗ for all 1 ≤ i ≤ d, xj
i = limj′→j,j′<jx

j′

i

∗ qj = limit∗

• The computation is accepting (respectively: refusing) if there exists j0 ≤ I with qj0 = q+
f (respec-

tively: qj0 = q−f) with ∀j < j0, q
j 6∈ {q+

f , q−f }. In that case, tj0 ∈ R is called the time taken by
the computation. Whenever the computation is accepting, we say that M maps (x1, . . . , xd) to
(xj0

1 , . . . , xj0
d) in time tj0 .

RCT machines can naturally be considered as machines recognizing some languages L ⊂ Σ∗ as follows:

Definition 3.3 Let Σ be the fixed finite alphabet.
Language L ⊂ Σ∗ is semi-recognized by RCT machine M if, for all n ∈ Σ∗, there is an accepting

computation of M starting from (J (n), 0, . . . , 0) iff n ∈ L. L is fully-recognized if in addition, for all
n ∈ Σ∗, there is a refusing computation starting from (J (n), 0, . . . , 0) iff n 6∈ L.

The assignment corresponding to the execution of program M is the assignment (f ′, c′) of dimension d
where functions f ′ and c′ are defined on (x1, . . . , xd) ∈ [0, 1]d iff there is an accepting computation starting
from (x1, . . . , xd); when functions f ′ and c′ are defined on (x1, . . . , xd) then f ′(x1, . . . , xd) = (x′

1, . . . , x
′
d),

c′(x1, . . . , xd) = t′ iff M maps (x1, . . . , xd) to (x′
1, . . . , x

′
d) in time t′.

An instruction of dimension d−1 will be considered as an instruction of dimension d straightforwardly:
for example, if (f, c) is an assignment in dimension d − 1, we still denote by (f, c) the assignment
(f ′, c′) of dimension d defined, for all x1, . . . , xd ∈ [0, 1] by f ′(x1, . . . , xd−1, xd) = (f(x1, . . . , xd−1), xd),
c′(x1, . . . , xd−1, xd) = c(x1, . . . , xd−1).

We define now a special transformation on instructions: when I is an instruction of dimension d, we
denote by I/xd+1 the instruction of dimension d + 1 that one gets by making the change of variable xi

becomes xi/xd+1 for all variable xi. This operations can seems unnatural, but keep in mind that we
want a programming language that models what can be computed by PCD systems: we will see in next
section that when one can realize some instruction I by a PCD system of dimension d′, one can realize
the instruction I/xd+1 by some PCD system of dimension d′ +1. This motivates the following definition:

Definition 3.4 (Transformation /xd+1 on instructions) • Let (f, c) be an assignment in dimen-
sion d. (f/xd+1, c/xd+1) is the assignment of dimension d + 1 defined by:

– f/xd+1 and c/xd+1 are defined on (x1, . . . , xd+1) iff all the following conditions hold:

∗ xd+1 > 0

∗ (x1/xd+1, . . . , xd/xd+1) ∈ [0, 1]d

∗ function f and c are defined on value (x1/xd+1, . . . , xd/xd+1)

– when f/xd+1 and c/xd+1 are defined on (x1, . . . , xd),

f/xd+1(x1, . . . , xd+1) = xd+1f(x1/xd+1, . . . , xd/xd+1)
c/xd+1(x1, . . . , xd+1) = xd+1c(x1/xd+1, . . . , xd/xd+1)

• Let (R, c) be a test in dimension d. (R/xd+1, c/xd+1) is the test of dimension d + 1 defined by:

– R/xd+1 and c/xd+1 are defined on (x1, . . . , xd+1) iff all the following conditions hold:

∗ xd+1 > 0,

∗ (x1/xd+1, . . . , xd/xd+1) ∈ [0, 1]d

∗ R and c are defined on value (x1/xd+1, . . . , xd/xd+1).

7

– when R/xd+1 and c/xd+1 are defined on (x1, . . . , xd+1),

R/xd+1(x1, . . . , xd+1) = R(x1/xd+1, . . . , xd/xd+1)
c/xd+1(x1, . . . , xd+1) = xd+1c(x1/xd+1, . . . , xd/xd+1)

Let us take an example: let us consider the instruction I defined by x1 := x1 + λ [1] where λ ∈ Q.
When x3 > 0 and x1/x3 ∈ [0, 1], I/x3 is equivalent to instruction x1 := x1 + λx3[x3].

We are ready to define the admissible instructions in dim d: this is done inductively (keep in mind
that we want the instructions to correspond to what can be implemented by PCD systems):

Definition 3.5 (Admissible operations in dim d) We define inductively the set of the assignments
denoted by Assgnmtd (respectively: the set of the tests denoted by Testd) that are admissible in dimension
d:

For all d, for all i, j, k ∈ {1, 2, . . . , d}, for all λ ∈ Q, for all λ+ ∈ Q+, for all # ∈ {>,≥, <,≤,=, 6=}:

• “Linear machines instructions”

– “xi := xi + xk [1]” ∈ Assgnmtd

– “xi := xj [1]” ∈ Assgnmtd.

– “xi := λ+xi [1]” ∈ Assgnmtd.

– “xi := λ [1]” ∈ Assgnmtd.

– “xi := xi + λ [1]” ∈ Assgnmtd.

– “xi#λ+? [1]” ∈ Testd.

• “Special instructions”

– “xd := xd/2 [xd]” ∈ Assgnmtd, if d > 2.

– “xd := 2xd [xd]” ∈ Assgnmtd, if d > 2.

– “xd := xd + λxk [xk]” ∈ Assgnmtd, if 2 < k < d

• “Subprograms”

– If P is a program of dimension d, then (f, c + 1) ∈ Assgnmtd, where (f, c) is the assignment
corresponding to the execution of P .

• “Assgnmtd−1 ⊂ Assgnmtd”, “Testd−1 ⊂ Testd”

– If (f, c) ∈ Assgnmtd−1 then (f, c) ∈ Assgnmtd.

– If (R, c) ∈ Testd−1 then (R, c) ∈ Testd.

• “Zeno instructions”

– If (f, c) ∈ Assgnmtd−1 and d > 2 then (f/xd, c/xd) ∈ Assgnmtd.

– If (R, c) ∈ Testd−1 and d > 2 then (R/xd, c/xd) ∈ Testd.

3.2 RCT machines simulate two-stack pushdown automata and Turing

machines

We recall first what a two-stack pushdown automaton is (see [11]): assume alphabet Σ = {1, 2, . . . , nΣ}
is fixed. A stack is a word of Σω. The functions PUSH : Σ × Σω → Σω and POP : Σω → Σ × Σω are
defined by PUSH(v,w) = vw, POP (vw) = (v, w). Two-stack pushdown automata are defined by:

Definition 3.6 (2PDA) • A deterministic two-stack pushdown automaton (2PDA) M is given by
(Q, δ, q0) where

– Q is the set of the internal states of M : Q is a finite set. q0 ∈ Q is the initial state.

– δ defines the instructions of the program: δ maps each internal state q ∈ Q to an instruction
of one of the two forms:

qi : wα := PUSH(v,wα) qi : (v, wα) = POP (wα)
Goto qj If v = 1 Goto qi1

If v = 2 Goto qi2

. . .
If v = nΣ Goto qnΣ

8

Acronym RCT machine instructions

Pushi(j), i ∈ {1, 2}, j ∈ Σ xi := xi/bΣ + (2 ∗ j)/bΣ [1]
Popi(j), i ∈ {1, 2}, j ∈ Σ x1 := bΣ ∗ (x1 − (2 ∗ j)/bΣ) [1]

Topi(ε)?, i ∈ {1, 2} xi = 0? [1]
Topi(j)?, i ∈ {1, 2}, j ∈ Σ ((xi ≥ (2 ∗ j)/bΣ)? [1]

and (xi ≤ (2 ∗ j + 1)/bΣ)? [1])

Figure 3: Correspondence between 2PDA instructions and RCT instructions.

where α ∈ {1, 2}, v ∈ Σ.

• An instantaneous description (ID) of M is given by (q, w1, w2) ∈ Q × Σω × Σω. q is the internal
state, w1 and w2 are the stacks of M .

• We write ID1 ` ID2, if, when the 2PDA is in the state given by ID1 = (q, w1, w2), if the 2PDA
executes the instruction δ(q) (whose semantic was described above) then the 2PDA is in the state
given by ID2.

• A computation of M starting with stacks w1, w2 is a sequence of IDs (IDi)i∈N such that ID0 =
(q0, w1, w2) and such that for all i ∈ N IDi ` IDi+1.

It is well known that linear machines can simulate 2PDA (see [12]). In our context:

Lemma 3.1 ([12]) Any two-stack pushdown automaton M can be simulated by a RCT machine M ′ of
dimension 2 whose program is made only of linear machine instructions.

Proof: Given any 2PDA M , M is simulated by a RCT program M ′ that uses the following convention:
whenever the stacks of M are w1 ∈ Σω , w2 ∈ Σω, the real registers of M ′ are x1 = J (w1), x2 = J (w2).
The program of M ′ is made such that each step of M is simulated by some instructions of M ′ that keeps
this fact true.

More concretely, the program of M ′ is obtained by taking the program P of M , and replacing the
instructions of P by some RCT instructions using the following correspondence:

Instruction of type RCT instructions

qi : wα := PUSH(v, wα)
Goto qj

qi: Pushv(α)
Goto qj

qi : (v, wα) = POP (wα)
If v = 1 Goto qi1

If v = 2 Goto qi2

. . .
If v = nΣ Goto qnΣ

If Top1(α) then Pop1(α); Goto qi1

If Top2(α) then Pop2(α); Goto qi2

. . .
If TopnΣ(α) then PopnΣ(α); Goto qnΣ

Where RCT instructions Topi(j)? Popi(j), Pushi(j), i ∈ Σ, j ∈ {1, 2}, are defined in figure 3 (and
have the purpose of testing if the top of stack j is letter i, popping letter i from stack j and pushing
letter i onto stack j respectively).

2

By the well-known equivalence between two-stack pushdown automata and Turing machines (see [11])
we get:

Theorem 3.1 Let S be a discrete language.

• Assume that S is recursively enumerable. Then S is semi-recognized by a RCT machine of dimension
2

• Assume that S is recursive. Then S is fully-recognized by a RCT machine of dimension 2.

We use the following convention:

9

Convention 3.1 We write
2

4

(w1, w2)
7→ (w′

1, w
′
2)

where “conditions”

3

5

for a RCT program M ′ that, for all w1, w2 verifying “conditions”, maps real registers x1 = J (w1),
x2 = J (w2) to x1 = J (w′

1), x2 = J (w′
2): to obtain M ′, consider any 2PDA M such that, for all

w1 ∈ Σω , w2 ∈ Σω verifying “conditions”, if M is started with stacks (w1, w2) then M halts with stacks
(w′

1, w
′
2) (recall that 2PDAs are equivalent to Turing machines). Now apply lemma 3.1 on M to get RCT

machine M ′.

As an example, we write

2

4

(w, w′)
7→ (ww, ε)
where w, w′ ∈ Σ∗, w = w′

3

5 for a RCT program that, for all w, w′ ∈ Σ∗

such that w = w′, maps (J (w),J (w′)) to (J (ww), 0).

3.3 RCT machines and the arithmetical hierarchy

We prove in this subsection that every arithmetical set is recognized by some RCT program: we are
adapting the arguments of [3] to RCT machines.

3.3.1 From semi-recognition to recognition

In definition 3.4, we defined the transformation /xd+1 on instructions: the transformation /xd+1 on
programs is obtained by transforming one after the other the instructions of the programs. In other
words, the transformation /xd+1 on programs is equivalent to making in the programs the change of
variable xi becomes xi/xd+1 for all variable xi.

Definition 3.7 (Transformation /xd+1 on RCT programs) Let P be a RCT program of dimension
d: P = (Q, q0, q

+
f , q−f , limit∗, δ).

We denote by P/xd+1 the RCT program of dimension d + 1 defined by

P/xd+1 = (Q, q0, q
+
f , q−f , limit∗, δ′)

where for all q, q′, q′′ and Instr ∈ Testd ∪ Assgnmtd,

δ(q) = (q′, q′′, Instr) ⇔ δ′(q) = (q′, q′′, Instr/xd+1)

The interest of this transformation is the following: assume that we have a program P of dimension
d that does some work on its real registers x1, . . . , xd: for example started with real registers (x1, . . . , xd)
P halts with real registers f(x1, . . . , xd) for some function f : Rd → Rd.

Consider P ′ = P/xd+1. Assume xd+1 ∈ (0, 1]. For all i ≤ d, define x′
i as xi/xd+1. The first fundamen-

tal observation is to see that, since P ′ is obtained by making the change of variable xi becomes xi/xd+1,
the work performed by P ′ on x′

1, . . . , x
′
d is equivalent to the work performed by P on x1, . . . , xd: in the

example, started with real registers (x′
1, . . . , x

′
d, xd+1) P ′ halts with real registers (f(x′

1, . . . , x
′
d), xd+1).

The second observation is to see that there is a big difference: P ′ does it faster than P : since whenever
P does some instruction I at cost c, P ′ does equivalent instruction I/xd+1 at cost cxd+1, P ′ goes 1/xd+1

times faster than P . When xd+1 = 1, that makes no difference. But when xd+1 = 1/2 for example, P ′

goes two times faster than P . When xd+1 = 1/2n, P ′ goes 2n times faster . . .
Hence, when one has a program P that does something, one can build a program P ′ that does

something equivalent but faster !
In fact we can improve this argument to go further: one can transform any program that semi-

recognizes a set to a higher dimensional program that fully recognizes it.
Before proving so, we start by defining the following program, for d ≥ 2:

Algorithm 2 Program Div2d+1

x1 := x1/2 [xd+1]
x2 := x2/2 [xd+1]

10

. . .
xd−1 := xd−1/2 [xd+1]
xd := xd/2 [xd+1]
xd+1 := xd+1/2 [xd+1]

And the following program:

Algorithm 3 Program Mul2d+1

x1 := 2x1 [xd+1]
x2 := 2x2 [xd+1]
. . .
xd−1 := 2xd−1 [xd+1]
xd := 2xd [xd+1]
xd+1 := 2xd+1 [xd+1]

A program P will be said to be clocked, if some instructions of P are marked such that they can
be used as the tops of a clock: there exists some ∆ > 0, such that in every execution (computation) of
program P , in every time interval of length greater than ∆, at least one of the marked instructions is
executed, and only a finite number of them is executed. In that case, ∆ is called the period of P .

In particular, in a clocked program, the fact that a finite number of marked instructions is executed
iff the program halts is guaranteed.

When P is a clocked program , and Q is a sub-program that always halts, write P ∗Q for the program
obtained by inserting a copy of program Q at each marked instruction of program P : the execution of
program P ∗ Q corresponds to executing P , but making in addition an execution of subprogram Q for
every marked instruction.

We are ready to give the idea on how one one can transform a program that semi-recognizes a set to
a higher dimensional program that fully recognizes it: assume P semi-recognizes a set S: for all w ∈ Σ∗,
on input x1 = J (w), P performs some computations and eventually halts iff w ∈ S. Assume that P is
clocked.

Consider P ′ defined by:

Algorithm 4 P ′

xd+1 := 1 [1]
(P/xd+1) ∗ (Div2d+1)
limit∗: Refuse

The execution of any copy of the Div2 subprograms keeps x′
1, . . . , x

′
d unchanged. As a consequence,

for all w ∈ Σ∗, on input x1 = J (w), P ′ simulates P : when w ∈ S, P ′ simulates P and eventually halts
at some finite time like P . When w 6∈ S, P ′ simulates all the instructions of the infinite non-accepting
computation C of P on J (w) with the difference that P ′ does it faster, and that a Div2 subprogram is
executed for each marked instruction of C. Check that every execution of a Div2 subprogram multiply
the speed of the simulation by 2. Since w 6∈ S, C contains an unbounded number of marked instructions:
that implies that P ′ must do an unbounded number of executions of subprogram Div2. That means that
P ′ is necessarily Zeno, and that P ′ eventually executes label limit∗ that tells it to refuse.

In other words, from a program P that semi-recognizes S, one can construct a program P ′ of higher
dimension that fully-recognizes S. Formally we have the following theorem:

Theorem 3.2 Assume that S is semi-recognized by some clocked program P in dimension d. Then there
exists a program of dimension d + 1 that fully recognizes S: this program is the program P ′ of algorithm
4.

The proof is immediate from the following lemma:

11

Lemma 3.2 Let P be a clocked RCT program of dimension d with period ∆. For all λ ∈ (0, 1], for all
x1, x2, . . . , xd ∈ [0, 1], (P/xd+1) ∗ Div2d+1 started with real registers (λx1, λx2, . . . ,λxd, λ) simulates the
evolution of P on (x1, . . . , xk) but the whole simulation of P by P/xd+1 is made in a finite bounded time
upper bounded by 2λ(∆ + d + 1).

Moreover, whenever P accepts, (P/xd+1)∗Div2d+1 accepts. Whenever P does not accept, (P/xd+1)∗
Div2d+1 converges to its limit state with all its real registers set to 0.

Proof: Let λ ∈ (0, 1] and x1, . . . , xd ∈ [0, 1] be fixed.
Denote by (qj , xj

1, . . . , x
j
d, tj)j∈J the computation of P starting from (x1, . . . , xd). Let Q0 ⊂ Q gives

the marked instructions of P .
Denote by (q

′j′ , x
′j′

1 , . . . , x
′j′

d , t
′j′)j′∈J′ the computation of (P/xd+1) ∗ Div2d+1 starting from (λx1,

. . . , λxd, λ).
Denote by j1 < j2 < . . . ∈ J the sequence of the indexes corresponding to the execution of the marked

instructions of P : for all j ∈ J , either qj ∈ Q0 and j = jk for some k or qj 6∈ Q0.
For j ∈ J , let nj denote the number of marked instructions of P executed between time 0 and time

tj : nj is the cardinality of set {k|tjk < tj}.

It is easy to prove by transfinite induction on j ∈ J that, for all j ∈ J ′, one has j ∈ J , q
′j+nj(d+1) =

qj , x
′j+nj(d+1)

i = λxj
i/2

nj for all 1 ≤ i ≤ d, x
′j+nj(d+1)

d+1 = λ/2nj , t
′j+nj(d+1) = λ

Pnj

k=1(t
jk − tjk−1 + d +

1)/2k−1 + λ(tj − t
jnj)/2nj with t0 = 0, and that for all k and l ≤ d + 1, q

′tjk +(k−1)(d+1)+l corresponds
to an instruction of program Div2d+1.

This means that (P/xd+1) ∗ Div2d+1 simulates P : if P accepts then (P/xd+1) ∗ Div2d+1 accepts:

qj0 = q+
f for some j0 ∈ J implies q

′j0+nj0
(d+1) = q+

f . For all k ∈ N, we have tjk − tjk−1 ≤ ∆. As a

consequence, for all j ∈ J , tj ≤ 2λ(∆ + d + 1). Hence, (P/xd+1) ∗ Div2d+1 accepts at some finite time
bounded above by 2λ(∆ + d + 1).

If P does not accept its input, since P is assumed to be clocked, a non finite number of Div2d+1 are
executed. As a consequence, for all 1 ≤ i ≤ d + 1, the sequence (xj

i)j∈J converge to 0. One has have
supj∈Jtj ≤ 2λ(∆ + d + 1). That means that (P/xd+1) ∗ Div2d+1 reaches the ID (limit∗, 0, . . . , 0, t∗) at

finite time t∗ = supj∈Jt
′j , with t∗ ≤ 2λ(∆ + d + 1).

2

Theorem 3.2 can be improved slightly: one can assume in addition that the program that fully-
recognizes S returns its input when it accepts. this is the following technical lemma whose proof is
detailed in the technical report [6]:

Lemma 3.3 Let S be a discrete language. Assume that S is semi-recognized by a clocked program P in
dimension d. Then

S is fully-recognized in dimension d + 1 by some clocked program P̃ with the following property: for
all w ∈ Σ∗

• if w 6∈ S, P̃ refuses input J (w) and stops with all its real registers set to 0.

• if w ∈ S, P̃ accepts input J (w) and stops with its first real register set to J (w) and all its other
real registers set to 0.

3.3.2 Climbing up the arithmetical hierarchy

The natural consequence of the transformation from semi-recognition to full-recognition proved in the
previous section is the possibility of climbing up the arithmetical hierarchy: going from semi-recognition
to full recognition allows to climb one level of the arithmetical hierarchy, and by recurrent application of
this principle, allows to recognize all sets of the arithmetical hierarchy:

Theorem 3.3 Let S be a discrete language. Assume S ∈ Σk, k ≥ 1. Then S is semi-recognized by a
clocked RCT program of dimension 1 + k.

The proof is immediate from theorem 3.1 and from the following lemma with B = ∅:

Lemma 3.4 Assume that B is a discrete language such that all the languages of ΣB
1 are semi-recognized

by some clocked RCT program in dimension d′ ≥ 2.
Let S be a discrete language with S ∈ ΣB

k , k ∈ N, k ≥ 1. Then S is semi-recognized by a clocked RCT
program in dimension d′ + k − 1.

12

Proof: We prove the assertion by induction over k. Case k = 1 is true by hypothesis.
Assume k ≥ 2 and the hypothesis at rank k − 1. Let S ∈ ΣB

k . There exists S′ ∈ ΣB
k−1 such that

x ∈ S ⇔ ∃n ∈ N < n, x >6∈ S′: see [16]. By induction hypothesis S′ is semi-recognized in dimension
k + d′ − 2 by a clocked RCT program Pk−1. Let ˜Pk−1 be the marked program that one gets by applying
lemma 3.3 on program Pk−1.

S is semi-recognized by the following RCT program Pk:

Algorithm 5 Program Pk

(w, w′)
7→ (< 0, w >, w′)
where w, w′ ∈ Σ∗

while (˜Pk−1 accepts)

(< n, w >, w′)
7→ (< n + 1, w >, w′)
where w, w′ ∈ Σ∗, n ∈ N

end while

Accept

2

3.4 RCT machines and the hyper-arithmetical hierarchy

Now we prove that RCT machines can recognize some hyper-arithmetical sets: the idea is to build more
and more powerful machines that write digit by digit one of their real register.

In next subsection, we start by showing a technical lemma. In the next subsection, we show how
to write some digit of a real register. In the following subsection, we prove that, whenever one can
enumerate a set, one can build a machine that outputs a real encoding the set. Finally, in subsection
3.4.4, we use this principle to build machines that recognize some hyper-arithmetical sets in higher and
higher levels of the hyper-arithmetical hierarchy.

3.4.1 Realizing any 2PDA program in time kxd+1

Let M be a two-stack pushdown automaton. Assume that M always halts. By lemma 3.1, one can
build a RCT program P that simulates M . By the discussion of the previous section, P ′ defined by
(P/xd+1) ∗ Div2 simulates P (and M).

We want a program P ′′ equivalent to P ′ but where we have the guarantee that when P ′′ halts the
value of xd+1 is equal to its original value. This is the following technical lemma whose proof can be
found in the technical report [6] and consists in adding to P ′ some instructions that undo the Div2
subprograms before accepting:

Lemma 3.5 Let d ≥ 2. Let M be an 2PDA. Assume that, for all w1 ∈ Σω, w2 ∈ Σ∗, M maps (w1, w2)
to (f1(w1, w2), f2(w1, w2)) ∈ Σω ×Σ∗: that is to say, when M is started with stacks w1, w2, M eventually
halts with stacks f1(w1, w2), f2(w1, w2).

There exists some kM ∈ R+ and a RCT machine M ′ of dimension d+1 that, for all w1 ∈ Σω, w2 ∈ Σ∗,
for all y3, . . . , yd ∈ [0, 1], for all n ∈ N, maps

(J (w1)/2
n,J (w2)/2

n, y3/2
n, . . . , yd/2n, 1/2n)

to
(J (f1(w1, w2))/2

n,J (f2(w1, w2))/2
n, y3/2

n, . . . , yd/2n, 1/2n)

in a time bounded above by kM/2n.

We use the following convention:

13

Convention 3.2 We denote by

0

@

(w1, w2)
7→ (w′

1, w
′
2)

where “conditions”

1

A |xd+1

a RCT program of dimension d + 1 given by lemma 3.5 that for all w1, w
′
1 ∈ Σω, w2, w

′
2 ∈ Σ∗ verify-

ing “conditions”, and for all y3, . . . , yd ∈ [0, 1], for all n ∈ N, maps (J (w1)/2
n,J (w2)/2

n, y3/2
n, . . . ,

yd/2n, 1/2n) to (J (w′
1)/2

n,J (w′
2)/2

n, y3/2
n, . . . , yd/2n, 1/2n) in a time bounded by k/2n for some k.

3.4.2 Setting the mth digit of a real in time k/2m for some k

Now, we show that one can write some particular digit of a real register: we show that one can build
a RCT machine of dimension d + 2 that, on input m ∈ N, add 1/2m to real register xd+2 in a time
proportional to maximum(1/2m, xd+1):

Lemma 3.6 Let #, $ ∈ Σ be two distinct letters of Σ used as delimiters.
For all d ≥ 2, there exists some k ∈ R+ and a RCT machine WriteDigitd+2 of dimension d+ 2 that,

for all y3, . . . , yd, yd+2 ∈ [0, 1], m, n ∈ N, w ∈ Σω, w′ ∈ Σ∗, maps

(J (#nm$w)/2n,J (w′)/2n, y3/2
n . . . , yd/2n, 1/2n, yd+2)

to

(J (#nm$w)/2n,J (w′)/2n, y3/2
n, . . . , yd/2n, 1/2n, yd+2 + 1/2m)

in a time upper bounded by k1/2minimum(m,n) .

Proof: The general idea is to do some Mul2d+1/Div2d+1 instructions in order to get xd+1 = 1/2m,
then to do a xd+2 := xd+2 +xd+1 [xd+1] instruction, and then to do some Div2d+1/Mul2d+1 instructions
to come back to xd+1 = 1/2n.

Assume without loss of generality that one can find two distinct letters ↑ and ↓ in Σ different from
letter $ and from letter #.

WriteDigitd+2 is the following program, where RCT instructions Topi(j)? Popi(j), Pushi(j) are
defined in figure 3:

Algorithm 6 WriteDigitd+2

(#nm$w, w′)
7→ (move1$move2$w′$#nm$w, ε)

where

w ∈ Σω, w′ ∈ Σ∗, m, n ∈ N

move1, move2 ∈ Σ∗

(move1, move2) =

(↓m−n, ↑m−n) if m > n
(↑n−m, ↓n−m) if m < n
(ε, ε) if m = n

|xd+1

/* Map

x1 = J (#nm$w)/2n

x2 = J (w′)/2n

xd+1 = 1/2n

to

x1 = J (move1$move2$w′$#nm$w)
/2n

xd+1 = 1/2n

in a time bounded by k11/2n for some k1: see
lemma 3.2.*/

GoUpOrDown /*Call some Mul2d+1/Div2d+1 instructions
to get xd+1 = 1/2m*/

14

xd+2 := xd+2 + xd+1 [xd+1] /* Add 1/2m to xd+2*/

GoUpOrDown /*Call some Div2d+1/Mul2d+1 instructions to
get xd+1 = 1/2n*/

(w′$#nm$w, ε)
7→ (#nm$w, w′)
where w ∈ Σω, w′ ∈ Σ∗, m, n ∈ N

 |xd+1

/*Set x1 = J (#nm$w)/2n, x2 = J (w′)/2n in
time bounded by k21/2n for some k2. */

where program GoUpOrDown is the following RCT program:

Algorithm 7 program GoUpOrDown

if (Top1(↑))/xd+1

then

while ((Top1(↑))/xd+1) do

(Pop1(↑))/xd+1

Mul2d+1

end while

end if

if (Top1(↓))/xd+1

then

while ((Top1(↓))/xd+1) do

(Pop1(↓))/xd+1

Div2d+1

end while

end if

(Pop1($))/xd+1

The execution of the calls to program GoUpOrDown are done in a time upper bounded by
k31/2minimum(m,n) for some k3. As a consequence, there exists some k ∈ R+ such that the time of
execution of program WriteDigitd+2 is bounded above by k1/2minimum(m,n) .

2

3.4.3 Outputting reals encoding languages

We will encode languages into real numbers of [0, 1] as follows:

Definition 3.8 (Encoding by L) Let Σ = {0, 1, . . . , nΣ} be the fixed alphabet. Assume an enumeration
of the words of Σ∗ is fixed. Let α and β be two letters of Σ with α 6= β.

• Let L ⊂ Σ∗ be a language. We denote by wL the infinite word a0a1a2 . . . ai . . . such that, for all
i ∈ N, ai = α (respectively: ai = β) iff the ith word of Σ∗ is in L (respectively: is not in L)

• Denote by P(Σ∗) the class of the languages: P(Σ∗) = {L|L ⊂ Σ∗}.

We denote by L : P(Σ∗) → [0, 1] the mapping that maps L to L(L) = J (wL) for all L.

A RCT machine Mf is said to enumerate language L(w) on inputs L ⊂ Σ∗, w ∈ Σ∗, if Mf computes
some function f : N × Σ∗ × Σω → Σ∗ in the following sense: for all n ∈ N, w ∈ Σ∗, y2 ∈ Λ, L ⊂ Σ∗, Mf

maps
(J (#nwwL)/2n, y2/2

n, ., . . . , ., 1/2n)

to
(J (f(n, w, wL)$wL)/2n, y2/2

n, ., . . . , ., 1/2n)

15

and such that the image of f is L(w) in the following sense:

L(w) = {w′|w′ ∈ Σ∗ ∧ ∃n ∈ N f(n, w, wL) = w′}

We prove that if one has a machine Mf of dimension d+1 that enumerates a language L(w) on inputs
L, w, then one can build a RCT machine of dimension d + 2 that, on inputs w and wL, outputs w and
wL(w): in other words, if one has a machine of dimension d + 1 that enumerates some language L(w) on
inputs L, w, then one can build a machine of dimension d + 2 that maps w and an encoding of L to w
and an encoding of L(w) (the idea is to use the previous subsection to build a machine that writes a real
number digit by digit in finite time):

Lemma 3.7 Let d ≥ 2. Let $, # be two letters of Σ used as delimiters.
Assume that some machine Mf enumerates L(w) on inputs L, w in time 1/2n: there exists a function

f : N × Σ∗ × Σω → Σ∗, a constant kf ∈ R+ and a RCT machine Mf of dimension d + 1 that, for all
n ∈ N, w ∈ Σ∗, L ⊂ Σ∗, y2 ∈ Λ, maps

(J (#nwwL)/2n, y2/2
n, ., . . . , ., 1/2n)

to
(J (f(n, w, wL)$wL)/2n, y2/2

n, ., . . . , ., 1/2n)

in a time bounded above by kf1/2n where L(w) = {w′|w′ ∈ Σ∗ ∧ ∃n ∈ N f(n, w, wL) = w′}.
Then there exists a RCT machine M ′

f of dimension d + 2 that for all discrete language L ⊂ Σ∗, for
all word w ∈ Σ∗ and real y2 ∈ Λ, maps (J (w$wL), y2,) to (J (w$wL(w)), y2, 0, . . . , 0) in a bounded
time.

Proof: The general idea is to write a program that, on inputs x1 = J (w$wL), x2 = I(w′), using
lemma 3.6, writes digit by digit onto its real register xd+2 the real value of J (w$w′$wL(w)).

Denote by number : Σ∗ → N the function that maps any word w ∈ Σ∗ onto its number in the fixed
enumeration of the words of Σ∗. For k ∈ N, w ∈ Σ∗, denote lttr(w, k) for kth letter of word w. We
assume fixed a recursive enumeration of the finite subsets of Σ∗ similar to the one of [16]: for any integer
n ∈ N, Dn denotes the nth finite subset of Σ∗.

M ′
f is given by the following algorithm, where RCT instructions Topi(j), Popi(j),Pushi(j) are defined

in figure 3 and integer b′Σ is defined page 3:

Algorithm 8 Program M ′
f

(w$wL, w′)
7→ (wL, ww′$u0)

where
wL ∈ Σω, w, w′ ∈ Σ∗

u0 ∈ N, Du0 = ∅

/*Initialize the computation: set n = 0*/
xd+1 := 1 /*Set initial speed to 1*/
xd+2 := 0 /*Set xd+2 to 0*/
while (true) do /*While (true)*/

(#nwL, ww′$un)

7→ (#nb′Σ ∗ n − 2anwL, ww′$un)

where

wL ∈ Σω, w, w′ ∈ Σ∗,
n, un ∈ N, an ∈ Σ

an =

{

α if n > length(w$w′$)
lttr(w$w’$,n) if n ≤ length(w$w′$)

|xd+1

WriteDigitd+2 /*Set the nth digit of xd+2 to default value
an*/

(#nmwL, ww′$un)
7→ (#nwwL, #nww′$un)
where wL ∈ Σω, w, w′ ∈ Σ∗, n, un ∈ N

 |xd+1

16

Mf /*Get w′′ the nth word of the enumeration
given by Mf*/

(w′′$wL, #n$w$w′$un)
7→ (#nm$wL, alreadyin$w$w′$un+1)

where

w, w′, w′′ ∈ Σ∗, wL ∈ Σω,
n, un, un+1 ∈ N, alreadyin ∈ Σ
m = b′Σ ∗ (number(w) + length(w$w′$) + 1)
−2(β − α)
if w′′ ∈ Dun

then
alreadyin = #, un+1 = un

else
alreadyin = $,Dun+1 = Dun

∪ {w′′}

|xd+1

if ((Top2($))/xd+1) then /*If word w′′ has not been yet output*/
(Pop2($))/xd+1

WriteDigitd+2 /*Then change the digit of real register xd+2

corresponding to w′′ from value α to value β.
*/

else

(Pop2(#))/xd+1 /*Else do nothing*/
end if

(#nm$wL, ww′$un+1)
7→ (#n+1wL, ww′$un+1)
where wL ∈ Σω, w, w′ ∈ Σ∗, un+1, n, m ∈ N

 |xd+1

/*Do n := n + 1*/
Div2d+1

end while

limit∗ :
x1 := xd+2 /*Copy the result into x1*/
xd+2 := 0 /*Set xd+2 to 0*/

(w$w′$wL, ε)
7→ (w$wL, w′)
where wL ∈ Σω, w, w′ ∈ Σ∗

/*Put back the result in the good form*/

2

3.4.4 Climbing up the hyper–arithmetical hierarchy

In this subsection, we apply recurrently lemma 3.7 to reach higher and higher levels of the hyper–
arithmetical hiearchy: we produce machines that output L(L) for some discrete languages L ∈ Σ∗ in
higher and higher levels of the hyper-arithmetical hierarchy.

We define ω0 as 1. We denote by +o the addition between constructive ordinal numbers: +O is a
recursive function that verifies z +O z′ ∈ O and |z +0 z′| = |z| + |z′| for all z, z′ ∈ O: see [16].

We prove by induction that for all k ≥ 0 one can find a constructive ordinal zk ∈ O with |zk| = ωk

and a machine that, for all constructive ordinal z, enumerates language H(z +o zk) on inputs H(z), z:

Lemma 3.8 Let k ≥ 0.
There exists a constructive ordinal zk ∈ O with |zk| = ωk, and a machine that for all constructive

ordinal z enumerates language H(z +0 zk) on inputs H(z), z: there exists fk : N × Σ∗ × Σω → Σ∗,
there exists some fixed constant Ck ∈ R+ and a RCT machine M ′

k of dimension 2k + 3 that, for all

17

n ∈ N, w ∈ Σ∗, L ⊂ Σ∗, y2 ∈ Λ maps

(J (#nwwL)/2n, y2/2
n, ., . . . , ., 1/2n)

to
(J (fk(n, w, wL)$wL), y2/2

n, ., . . . , ., 1/2n)

in a time bounded above by Ck/2n, where for all z ∈ O, H(z +0 zk) = {w′|w′ ∈ Σ∗ ∧ ∃n ∈
N f(n, z, wH(z)) = w′},

Furthermore, f is also computed by a RCT machine Mk of dimension 2k + 2 in the following sense:
for all n ∈ N, w ∈ Σ∗, L ⊂ Σ∗, y2 ∈ Λ, Mk maps

(J (#nwwL), y2, ., . . . , .)

to
(J (fk(n, w, wL)$wL), y2, ., . . . , .)

Proof: It is known that there exists a recursive g such that for all L ∈ Σ∗, m ∈ N, the range of
function φL

g(m) is is W L
m [16]. Let Muniv be a 2PDA such that on input #n$m, Muniv simulates ML

g(m)

on input n, answering the queries of ML
g(m) on any word w′ to its oracle L by comparing the digit of wL

corresponding to w′ to letter α. Muniv is a 2PDA that for all n ∈ N, m ∈ N, w′ ∈ Σ∗, L ⊂ Σ∗, maps
(#nmwL, w′) to (wm

n $wL, w′), where wm
n = φL

g(m)(n). Denote by Puniv the RCT machine given by

lemma 3.1 that simulates Muniv . Using lemma 3.5, for all d ≥ 2 one can build a RCT machine P
′d+1
univ

of dimension d + 1 that, for all n ∈ N, m ∈ N, y2 ∈ Λ, L ⊂ Σ∗, maps (J (#nmwL)/2n, y2/2
n, ., . . . , .

, 1/2n) to (J (wn
m$wL) /2n, y2/2

n, ., . . . , ., 1/2n) in time k/2n for some fixed k ∈ R+. Apply lemma 3.7
on this machine: one gets a RCT machine of dimension d + 2 that, for all L ⊂ Σ∗, m ∈ N, y2 ∈ Λ, maps
(J (m$wL), y2, ., . . . , .) to (J (m$wW L

m
), y2, 0, . . . , 0) in finite time. Denote this RCT machine by P

′′d+2
univ .

Now, we are ready to prove the assertions of the lemma by induction over k:
Assume k = 0: it is known that there exists m0 ∈ N, such that for all L ⊂ Σ∗, L′ = HL(1) = W L

m0

[16]. Consider M as the 2PDA that on input (#nwwL, w′) calls Muniv with input (#n$m0$wL, w′).
M0 is the RCT machine of dimension 2 given by lemma 3.1 that simulates M , and M ′

0 is the RCT
machine of dimension 3 given by lemma 3.5 that simulates M .

Assume now k ≥ 1: denote by Π1, Π2, Π3 : N → N some recursive functions such that

n 7→ (Π1(n), Π2(n), Π3(n))

is a bijective recursive function from N to N×N×N. Denote by f and l the recursive functions of lemma
3.9.

Lemma 3.7 can be applied on machine M ′
k−1: one gets a RCT machine M ′′

k−1 of dimension 2k + 2
that for all z′ ∈ O, for all y2 ∈ Λ maps (J (z′$wH(z′)), y2, ., . . . , .) to J (z′$wH(z′+zk−1), y2, 0, . . . , 0) in a
bounded time. Set zk = 3.5nk where φnk

(0) = 1 and φnk
(n + 1) = φnk

(n) +0 zk−1 for all n ∈ N.
Mk is given by the following program, where RCT instructions Topi(j), Popi(j),Pushi(j) are defined

in figure 3:

Algorithm 9 Program Mk

(#nzwL, w′)
7→ (z$wL, #$#nzw′)
where wL ∈ Σω, w′ ∈ Σ∗, z ∈ O, n ∈ N

while (Top2(#)?) do /*Call Π1(n) times program M ′′

k−1 */
M ′′

k−1

(zp$wL, #$#nzw′)
7→ (zp+1$wL, continue$#nzw′)

where

wL ∈ Σω, w′ ∈ Σ∗, zp, zp+1 ∈ O, n ∈ N

zp+1 = zp +0 yk−1

if zp+1 ≤o φnk
(Π1(n))

then continue = #
else continue = $

18

end while /*Here, if the initial input was #nzwH(z),
z ∈ O, we have x1 = J (zp$wH(zp)) where zp =
φnk

(Π1(n)) */

(zp$wL, $$#nzw′)
7→ (#Π2(n)mwL, #nzw′$z′′$zp)

where

wL ∈ Σω, w′ ∈ Σ∗, z ∈ O, m, n ∈ N

z′′ = φf(zp)(Π3(n)) (we have z′ ≤0 zp)

m = l(z′′, zp) is the integer such that W
H(zp)
m = H(z′′)

Puniv /* Compute z′′ = φf(zp)(Π3(n)). We have

z′′ ≤o zp. Get w′′ the Π2(n)th word of H(z′′)*/

(w′′$wL, #n$z$w′$z′′$zp)
7→ (m$wL, #n$w′′$z′′$w′)

where
wL ∈ Σω, w′, w′′ ∈ Σ∗, z, z′′, zp ∈ O, m, n ∈ N

m = l(z, zp) is the integer such that W
H(zp)
m = H(z)

P
′′2k+2
univ /*Put back in x1 the value of wH(z)*/

(m$wL, #n$w′′$z′′$w′)
7→ (< w′′, z′′ > $wL, w′)
where wL ∈ Σω, w′, w′′ ∈ Σ∗, z′′ ∈ O, n ∈ N

/*Output < w′′, z′′ > $wH(z) */

M ′
k is easy to obtained from the program of Mk: add the instruction x2k+3 := 1[1] at the beginning

of program Mk, replace

2

4

(m$wL, #n$w′′$z′′$w′)
7→ (< w′′, z′′ > $wL, w′)
where wL ∈ Σω, w′, w′′ ∈ Σ∗, z′′ ∈ O, n ∈ N

3

5

by
0

@

(m$wL, #n$w′′$z′′$w′)

7→ (< w′′, z′′ > $wL, ↑Π1(n) $w′)
where wL ∈ Σω , w′, w′′ ∈ Σ∗, z′′ ∈ O, n ∈ N

1

A |xd+1

replace in program Mk all the other instructions of type

2

4

(w1, w2)
7→ (w′

1, w
′
2)

where conditions

3

5

by
0

@

(w1, w2)
7→ (w′

1, w
′
2)

where conditions

1

A |xd+1

replace Puniv by P
′2k+3
univ , P

′′2k+2
univ by P

′′2k+2
univ /x2k+3, and replace the call to M ′′

k−1 by the instructions
M ′′

k−1; Div22k+3, and add the program GoUpOrDown defined page 15 at the end of the program.
2

Where lemma 3.9 is the following and is proved in [6]:

Lemma 3.9 • For all y ∈ O, {x|x ∈ O ∧ x <0 y} is recursively enumerable uniformly in y: there
exists a recursive f : N → N such that for all y ∈ O, the range of φf(y) is {x|x <0 y}

• Given x, y ∈ O with x ≤o y or y ≤0 as input, a Turing machine can effectively tell if x = y, if
x <0 y or if y <0 x.

19

• There exists a recursive l such that, for all z1, z2 with z1 ≤0 z2, H(z1) = W
H(z2)
l(z1,z2)

By lemma 3.8 we have a program that, for all z ∈ O, enumerates H(z +0 zk) when it gets H(z), z
as input. By feeding to this program H(1) = ∅ and 1 as input one can enumerate H(zk) = H(1 +0 zk).
Since Σωk is the class of the languages that are recursively enumerable in H(zk), all the sets of Σwk can
be recognized by some RCT program of dimension 2k + 2: this is the following lemma.

Lemma 3.10 Let k ≥ 1. Any language of Σωk can be semi-recognized by a RCT machine of dimension
2k + 2.

Proof: Consider the machine Mk and the integer zk ∈ O of lemma 3.8. Mk is of dimension 2k + 2,
and |zk| = ωk. Let L be a language of Σωk . L is recursively enumerable in H(zk) by some Turing
machine MH(zk) with oracle H(zk).

See that there exists a recursive g such that, for all u ∈ Σ∗, v ∈ O, u 6∈ H(v) ⇔ g(u) ∈ H(2v): see
[16].

L is semi-recognized by the RCT machine of dimension 2k+2 that simulates MH(zk), simulating every
query of MH(zk) of type < u, v >∈ H(zk)? by a subprogram that runs Mk on input x1 = J (#n1w∅)
for n = 1, 2, . . . , until either x1 = J (< u, v > $w∅) or x1 = J (< g(u), 2v > $w∅) is output.

2

We already now by theorem 3.3 some lower bounds for the computational power of PCD systems of
dimensions 2 and 3. The previous lemma gives some lower bounds for PCD systems of even dimensions
greater than 4. Using lemma 3.4 with B = H(ωk), one can easily get some lower bounds for all dimensions
that can be summarized by:

Theorem 3.4 Let k ≥ 0.

• Any language of Σωk can be semi-recognized by a RCT machine of dimension 2k + 2.

• Any language of Σωk+1 can be semi-recognized by a RCT machine of dimension 2k + 3.

4 PCD systems can simulate RCT Machines

In this section, we prove that PCD systems can simulate RCT machines: more detailed proofs can be
found in [6].

4.1 Basic constructions

Let d be an integer. A k-dimensional box of Rd, k < d, is given by (P, B) where P is a polyhedral subset
of Rd of dimension k, and B is a affine basis (O, e1, e2, . . . , ed) of Rd, O ∈ P , such that (O, e1, . . . , ek) is
an affine basis1 of P .

The point of coordinates (x1, . . . , xk) on (P, B) denotes the point of P of coordinates (x1, . . . , xk, 0, . . . , 0)
in basis B.

Let H be a PCD system of dimension d and d′ be an integer with d′ < d. Let I = (f, c) be an
assignment2 of dimension d′. H is said to realize assignment I via input port In and output port Out if
there exist some d′-dimensional boxes In and Out of Rd, such that, for all x ∈ [0, 1]d

′

, the trajectory of

H starting from the point of coordinates x ∈ [0, 1]d
′

on In at time 0 reaches Out in point of coordinates
f(x) on Out at time c(x): see figure 4 and figure 5 for some examples of assignments realized by some
PCD systems.

For all d′ ∈ N, denote by Idd′ the identity function of [0, 1]d
′

. Let I = (R, c) be a test of dimension
d′. H is said to realize test I if there exist three d′-dimensional boxes In, Out+,Out− of Rd such that
for all x such that R(x) is true, H realizes assignment (Idd′ , c) via input port In and output port Out+,
and for all x such that R(x) is false, H realizes assignment (Idd′ , c) via input port In and output port
Out−: see figure 4 for the example of test y > λ? [1].

All the linear machine instructions can be realized by some PCD systems:

1That is to say B is an affine basis of V , where V is the minimal affine variety such that P ⊂ V .
2We do not assume here that I is necessarily an admissible assignment.

20

(0,1)

y

(1,lambda)(1,lambda-1)

(0,0)

lambda y

(1,0)

(1,0)

(0,1)

y

(1,lambda)(1,lambda-1)

(0,0)

lambda y

(1,0)

(1,0)

y

lambda

(1,0)

(1,1)(0,1)

(0,0)

(1,-2)

(1,0)

(1,2)

(0,1)

(0,0)

(1/2,lambda)

(1,0)

(1,1/2) y>lambda

y<=lambda

y

(1,-1/2)

Figure 4: PCD systems realizing instructions y := λy [1], y := y +λ [1],y := λ [1] and y > λ? [1] respectively
in dimension 2.

(0,2,1)

(x,y)

(x,x)(0,0,1)

(1,0,0)

(0,0,1)

(0,0,0)

(0,1,0)

(0,-2,1) (0,2,1)

(x,y)

(x,x)(0,0,1)

(1,0,0)

(0,0,1)

(0,0,0)

(0,1,0)

(0,-2,1)

Figure 5: PCD systems realizing y := x [1] and y := y + x [1] in dimension 3.

21

Lemma 4.1 (Basic linear machine instructions) Let d ∈ N. Let d′ ≥ d + 1.
Let I = (f, c) ∈ Assgnmtd be an admissible assignment (respectively: Let I = (R, c) ∈ Testd be an

admissible test) of dimension d. Assume that I is one of the “linear machine instructions” of definition
3.5.

For all µ ∈ R+, one can build a PCD system of dimension d′ that realizes assignment I = (f, µc)
(resp. that realizes test I = (R, µc)).

The proof is easy: for µ = 1, generalize the PCD systems of figure 4 and figure 5 to higher dimensions;
for µ 6= 1, multiply in addition all the slopes by 1/µ.

One can artificially slow down a trajectory: by taking some big enough k, k′ ∈ R and by constructing
a PCD system like the one of figure 6 one gets:

Lemma 4.2 (Delay) Let d ∈ N. Let d′ ≥ d + 1 be an integer.
For any affine function c : [0, 1]d → R+, one can build in dimension d′ a delay of time c plus some

constant: one can build a PCD system of dimension d′ that realizes assignment (Idd, c + λ) for some
λ ∈ R+.

(0,1,0)

(0,0,0)

(1,0,0)
(x,y) (x,y)

(0,0,k’)

(0,0,1/2)

(0,0,1)

hyperplane of
equation z=c(x,y)+k

Figure 6: A PCD system realizing delay c(x, y) plus some constant in dimension 3, where c : R2 → R is an
affine function.

One can build some “paths” using the regions of PCD systems:

Lemma 4.3 (Paths) Let d ∈ N. Let d′ ≥ d + 1 be an integer. Let In and Out be two d-dimensional
boxes of Rd.

For all µ ∈ R+, one can build in dimension d′ a path of time µ between In and Out: one can build
a PCD system of dimension d′ that realizes the assignment (Idd, µ) via input port In and via output port
Out.

Proof: Using “angles” and “straight parts” it is easy build some regions that bring any point of
coordinates x on In to point of coordinates x on Out as in figure 7. The time taken by a trajectory to go
from point of coordinates x on In to point of coordinates x on Out through these regions is some affine
function t : Rd → R+ of x. Using lemma 4.2, insert in one of the regions some regions that realize a
delay of time −t(x) plus some constant. In the obtained PCD system, the time required by a trajectory
to go from In to Out is now a constant k independent of x ∈ In. Multiply all the slopes by µ/k to set
this constant to time µ: see figure 7.

2

4.2 PCD systems can simulate RCT machines

We need to prove that all the non-linear RCT machines instructions can be implemented by PCD systems.
In particular, we must prove that one can realize the “Zeno instructions”.

22

Out

In

Delay

Figure 7: A path between 1-dimensional port In and 1-dimensional port Out.

Definition 4.1 (Homogenization,Translation) Let R′ be a region of a PCD system of dimension d′:

that is to say R′ is a polyhedral subset of Rd′

with some associated slope s′ = (s′1, . . . , s
′
d′) ∈ Rd′

.
We define the translation and the homogenization of region R′:

• The translation of region R′ is the region R whose equation in the canonical basis of Rd′+1 is:

R = {(x1, . . . , xd′+1)|0 ≤ xd′+1 ≤ 1 ∧ (x1, . . . , xd′) ∈ R′}

and whose slope is s = (s′1, . . . , s
′
d′ , 0).

• If I ′ = (P ′, B′) is a d-dimensional box of Rd′

, the translation of I is the d + 1-dimensional box
defined by I = (P, B), P is the translation of P ′, B = (O, e1, . . . , ed′+1) where B′ = (0, e1, . . . , ed′)

and ed′+1 is the vector of coordinates (0, . . . , 0, 1) in the canonical basis of Rd′+1.

• The homogenization of region R′ is the region R whose equation in the canonical basis of Rd′+1 is:

R = {(x1, . . . , xd′+1)|0 < xd′+1 ≤ 1 ∧ (x1/xd′+1, . . . , xd′/xd′+1) ∈ R′}

and whose slope is s = (s′1, . . . , s
′
d′ , 0).

• If I ′ = (P ′, B′) is a d-dimensional box of Rd′

, the homogenization of I is the d + 1-dimensional
box defined by I = (P, B), P is the homogenization of P ′, B = (0, e1, . . . , ed′+1) where B′ =
(0′, e1, . . . , ed′), point O and vector ed′+1 have coordinates (0, . . . , 0) and (o1, o2, . . . , od′ , 1) respec-

tively in the canonical basis of Rd′+1 where (o1, o2, . . . , od′) are the coordinates of O′ in the canonical

basis of Rd′

.

We show now that translations correspond to embedding instructions into higher dimensions, and
homogenizations correspond to transforming instructions I into instructions I/xd+1:

Lemma 4.4 Let H′ be a PCD system of dimension d′ realizing assignment (f, c) (respectively: test
(R, c)) of dimension d via input port In and via output port Out (resp. via output ports Out+, Out−).

• Let H be the PCD system of dimension d′ + 1 whose regions are the translations of the regions of
H′.

H realizes assignment (f, c) (respectively: test (R, c)) considered as an instruction of dimension
d + 1 via input port the translation of In and via output port the translation of Out (resp. via
output ports the translations of Out+ and of Out−).

• Let H be the PCD system of dimension d′ + 1 whose regions are the homogenizations of the regions
of H′.

H realizes assignment (f/xd+1, c/xd+1) (respectively: test (R/xd+1, c/xd+1)) via input port the
homogenization of In and via output port the homogenization of Out (resp. via output ports the
homogenizations of Out+ and of Out−).

23

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

y

y+lambda

(1,lambda)
(0,0)

(0,1) (1,1)

(1,0)

(1,lambda)

(0,0,0)

(1,1,1)

(1,0,1)

(0,1,1)

Input
Port

Output

Port

(y,z)
(y + lambda z,z)

Output
port

Input
Port

(0,0,1)

Figure 8: A PCD system realizing instruction I defined by y := y + λ [1] in dimension 2 (on left) and its
homogenization realizing instruction I/z in dimension 3 (I/z is y := y+λ [z] whenever z ∈ (0, 1], y/z ∈ [0, 1]).

Proof: Immediate from the definitions: see figure 8 for an example.
2

Here is the main theorem of the section: one can simulate a RCT machine3 by a PCD system:

Theorem 4.1 Let M be a RCT machine4 of dimension d.
One can build a PCD system H of dimension d + 1 that simulates M .

Proof: Assume M is of dimension d. Denote M = (Q, q0, q
+
f , q−f , limit∗, δ). For all q ∈ Q, denote

δ(q) = (q+, q−, Instrq).
We prove the theorem by induction over the dimension d and by structural induction over the program

of M : we prove that for all RCT machine M of dimension d one can build a PCD system H of dimension
d + 1: to each state q ∈ Q one can associate a d-dimensional box Iq and some regions of H such that H
realizes the assignment (respectively: the test) Instrq via input port Iq and via output port Iq+ (resp.
via output ports Iq+ and Iq−) using these regions. Moreover, H has a box I∗ corresponding to the limit
state.

Denote Q′ ⊂ Q for the subset of the states of M such that q ∈ Q′ iff Instrq is either a special
instruction, or a Zeno instruction, or obtained from an instruction of dimension d − 1 which is not a
linear machine instruction nor a subprogram of dimension d − 1.

See that Q′ is empty if d ≤ 2: if d ≤ 2 skip the five following paragraphs.
Consider M ′ = (Q, q′0, q

+
f , q−f , limit∗, δ′) as a program of dimension d − 1 where, for all q ∈ Q,

δ′(q) = (q′, q′′, Instr′) iff q+, q− ∈ Q′, q′ = q+, q′′ = q−, and Instr′ = (f, c) if Instrq = (f/xd, c/xd),
Instr′ = (R, c) if Instrq = (R/xd, c/xd), Instr′ = (Idd−1, 1) if Instrq is a special instruction of type
xd := xd/2 [xd] or of type xd := 2xd[xd], Instr′ = (x1 := x1 [xk]) if Instrq is a special instruction of type
xd := xd + λxk, 2 < k < d, Instr′ = (f, c) if Instrq is obtained from the instruction (f, c) of dimension
d − 1, and Instr′ = (R, c) if Instrq is obtained from the test (R, c) of dimension d − 1.

By induction hypothesis one can build a PCD system H′ of dimension d that simulates M ′. To each
state q′ ∈ Q′ of M ′ corresponds a d − 1-dimensional port I ′

q′ . Moreover, some d − 1 dimensional box I ′
∗

corresponds to the limit state.
Consider H as the PCD system built as follows: for all q ∈ Q′, for all region R′ ⊂ Rd of PCD system

H′ associated to q:

• if Instrq corresponds to a special instruction of type xd := xd/2 [xd] or xd := 2xd[xd], or to a Zeno
instruction, then add to H the homogenization of region R′ and take Iq as the homogenization of
I ′

q.

3 For the clarity of the exposure and for the concision of this paper, we omit intentionally to state that the RCT machine
of dimension d must actually have some special properties in order to be simulated in dimension d + 1 (these special properties
allow to avoid some connection problems between d-dimensional paths in dimension d + 1 that we intentionally do not mention
in the proof). See technical report [6] for a complete proof.

4see footnote 3.

24

• if Instrq corresponds to an instruction obtained from an instruction of dimension d− 1 or a special
instruction of type xd := xd + λxk, 2 < k < d then add to H the translation of region R′ and take
Iq as the translation of I ′

q.

For each state q ∈ Q′ such that Instrq is a “special instruction” modify H as follows: if Instrq is
of type xd := xd/2 [xd] or of type xd := 2xd [xd] we can assume without loss of generality that one
region already constructed R of slope s of H corresponding to state q is the homogenization of a region
R′ of H′ of slope s′ and that R′ is of type R′ = A′ + [0, 1]d for some point A′ ∈ Rd, where s′ is of type
s′ = (v, 0, . . . , 0), for some v ∈ R+. In that case, replace the slope s of R by s = (v, 0, . . . , 0,−v/2)
if Instrq is of type xd := xd/2 [xd] and by s = (v, 0, . . . , 0, v) if Instrq is of type xd := 2xd [xd]. If
Instrq is of type xd := xd + λxk, 2 < k < d, we can assume without loss of generality that one region
already constructed R of slope s of H corresponding to state q is the translation of the translation of the
translation of the . . . translation of the homogenization of some region R′′ of Rk with slope s′′ and that
R′′ is of type R′′ = A′′ + [0, 1]k for some point A′′ ∈ Rk, where s′′ is of type s′′ = (v, 0, . . . , 0), for some
v ∈ R+. In that case, replace the slope s of R by s = (v, 0, . . . , 0, v).

All the ports Iq constructed up to know are either the homogenization of I ′
q or the translation of I ′

q.
By lemma 4.4, for all q ∈ Q′, it is true that H realizes the assignment (respectively: the test) Instrq via
d-dimensional input port Iq and via d-dimensional output port I+

q (resp. via output ports I+
q , I−

q).
Now, for all q ∈ Q, q 6∈ Q′ does the following: choose any arbitrary d-dimensional port Iq of Rd+1 not

containing the point of coordinates (0, . . . , 0). See that Instrq corresponds to an instruction Instrq that
is either equivalent to a linear machine instruction or either a subprogram of dimension d or d − 1.

• If Instrq corresponds to a subprogram of dimension d (respectively: d−1), by induction hypothesis,
one can build some regions of a PCD system Hinstrq of dimension d + 1 (resp. d) that realizes
Instrq. Add to H the regions of Hinstrq (resp. the translation of the regions of Hinstrq) and a path
of time 1/2 between the d-dimensional port Iq of H and the input port of Hinstrq (resp. and the
translation of the input port of Hinstrq) and a path of time 1/2 between the output port of Hinstrq

(resp. between the translation of the output port of Hinstrq) and the d-dimensional port Iq+ of H.

• If Instrq corresponds to a linear machine assignment (f, c) (respectively: to a test (R, c)), by lemma
4.1, build a PCD system Hinstrq of dimension d + 1 that realizes (f, c/3) (resp. (R, c/3)). Add to
H the regions of Hinstrq and a path of time 1/3 between the d + 1-dimensional port Iq of H and
the input port of Hinstrq and a path (respectively: and two paths) of time 1/3 between the output
port of Hinstr and the d-dimensional port Iq+ of H (resp. and the d-dimensional ports Iq+ and
Iq−).

Define I∗ as {(x1, . . . , xd+1)|0 ≤ xd+1 ≤ 1 ∧ (x1, . . . , xd) ∈ I ′
∗}: I∗ is the translation of I ′

∗. Add a
path from port I∗ to the port Ilimit∗ .

One gets a PCD system H that simulates M : H realizes the assignment corresponding to the execution
of M via input port Iq0 and via output port I

q
+
f

. This proves the assertion for dimension d from the

assertion in dimension d − 1.
2

As a consequence, we get immediately from theorem 4.1 and from theorem 3.4:

Theorem 4.2 Let k′ ≥ 0.

• Any language of Σ
ωk′ can be semi-recognized by a PCD system of dimension 2k′ + 3 in finite

continuous time.

• Any language of Σ
ωk′

+1 can be semi-recognized by a PCD system of dimension 2k′ + 4 in finite
continuous time.

5 Upper bounds on the computational power of PCD sys-

tems

In this section, we give some upper bounds on the computational power of PCD systems.
To get these upper bounds we need to prove that if a PCD system recognizes a language S then S

is in the hyper–arithmetical hierarchy and we need to characterize in which level of the hierarchy S is:
assume language S is semi-recognized by PCD system Ĥ = (Rd, f,J , x1, x0). S is the set of the words

25

w such that the trajectory Φw starting at (J (w), 0, . . . , 0) reaches x1. Our idea used to get the upper
bounds is to prove that one can build some machines, with appropriate oracles in the hyper–arithmetical
hierarchy, that on input w ∈ Σ∗, simulate trajectory Φw and tell if Φw reaches or not x1. The existence
of these machines will prove that S is in the hyper–arithmetical hierarchy and will give a level of the
hyper-arithmetical hierarchy containing S.

In subsection 5.1, we define a way to represent real points and parameterized sequences of real points.
Then we introduce the notion of sampling of a PCD system: the idea is that a sampling gives for any
trajectory a sequence of couples date position reached by the trajectory. We define what a Zeno sampling
is and we show that a Zeno sampling is necessarily converging. We also show how one can build effectively
a sampling of a PCD system.

In subsection 5.2, we have some geometrical considerations: first we associate to any point of the
space of any PCD system H of dimension d an integer d′ that we call its local dimension. We prove
a first property and we show that the limit of a sequence of points of some fixed local dimension is
necessarily of higher local dimension. Then we show that the effective sampling constructed at the end
of subsection 5.1 can be improved in order to get a sampling up to local dimension 3.

In subsection 5.3 we show how one can build some samplings of higher local dimension using oracles
in the hyper–arithmetical hierarchy: we start by giving the general idea of the method. We recall some
general properties of the hyper–arithmetical hierarchy. Then we define the hyper-jump operation on
samplings and discuss its properties. Next, we define the cycle-free operation on samplings and its
properties. Finally, using these transformations recurrently, we get upper-bounds on the computational
power of PCD systems and we reach a full characterization of the computational power of PCD systems.

5.1 Sampling trajectories

In this section we start by giving a way to represent real points of the space and parameterized sequences
of real points of the space as languages over alphabet Σ. We define the sampling of a trajectory and we
show that a Zeno sampling is necessarily converging. Finally, we show how to build effectively a sampling
of a PCD system.

5.1.1 Representing reals by languages

Even if a trajectory starts from some rational point, the trajectory Φ can reach some intermediate points
with real coordinates: we need to find a way to represent such real points of the space: we represent
every point x of the space Rd, d ∈ N by a language: a rational polyhedron is any polyhedron whose
coefficients are rational numbers: that is to say such that it can be expressed as an union of intersections
of linear inequalities with rational coefficients. Denote by P ⊂ Σ∗ the set of the rational polyhedral of
Rd. We assume that a representation of the elements of P as words of Σ∗ is fixed.

Definition 5.1 (Encoding reals by languages) Let d ∈ N. Let x ∈ Rd. dxe is the language defined
as the set of the words w ∈ Σ∗ that encodes a rational polyhedron P of Rd such that x ∈ P . dxe is called
the language associated to x.

In a similar way, we need to encode parameterized sequences of real points: for us a parameterized
sequence of real points is a function f from N × Σ∗ × Rd to Rd for some integer d: when parameters x
and w are fixed, it corresponds to the sequence of points (f(n, w, x))n∈N of Rd.

Definition 5.2 (Encoding parameterized sequences) • A parameterized sequence is a func-
tion h from N × Σ∗ × Rd to Rd for some integers d.

• For all x ∈ Rd, the relation associated to h at real parameter x is the language Rh(x) ⊂ Σ∗ defined
by Rh = {< n, w, P > |n ∈ N, w ∈ Σ∗, P ∈ P and P ∈ dh(n, w, x)e}.

• For all k ∈ N, x ∈ Rd, the relation associated to h at real parameter x up to rank k is the language
R<k

h (x) ⊂ Σ∗ defined by Rh = {< n, w, P > |n ∈ N, n < k, w ∈ Σ∗, P ∈ P and P ∈ dh(n, w, x)e}.

5.1.2 Sampling PCD systems

We define now the samplings of a PCD system: the idea is that a sampling gives for any trajectory of
the PCD system a sequence of couples date position reached by the trajectory. More precisely, given x
and t, and a polyhedron Q, a sampling g gives a sequence (g(k,Q, t, x))k∈N of couples (tk, xk)k∈N such

26

that the trajectory Φ of H starting at x at time t is at time tk in point xk, with in addition the following
properties: the sequence (tk)k∈N is increasing and if tsup denotes supk(tk), then either Φ reaches Q before
time tsup and we have tsup = tk for some k, or Φ does not reach Q before time tsup and sequence (tk)k∈N

is strictly increasing. When (tk)k∈N is strictly increasing and tsup is finite the sampling is said to be
Zeno.

Here are the formal definitions:

Definition 5.3 (Sampling of a PCD system) Assume a PCD system H = (X, f) of dimension d is
fixed.

• A sampling of H is a mapping g from N×P×Rd+1 → Rd+1 with the following properties: assume
Q ∈ P, t ∈ R, x ∈ Rd are fixed. Denote by Φ the trajectory of H starting from x at time t.

– For all k ∈ N, g(k, Q, t, x) = (tk, xk), for some tk ∈ R, xk ∈ Rd with Φ(tk) = xk.

– t0 = t, x0 = x.

– tk+1 ≥ tk for all k ∈ N.

– Only one of two following cases hold:

∗ there is some k0 ∈ N with xk0 ∈ Q ∪ NoEvolution(H), and for all k ≥ k0, xk = xk0 , tk =
tk0 .

∗ tk < tk+1 for all k ∈ N and Φ does not reach Q ∪ NoEvolution(H) at some time t <
supk∈Ntk.

• If tk < tk+1 for all k ∈ N and if supk∈N tk is finite, then g is said to be Zeno at parameters Q, t
and x.

See that a sampling is a parameterized real sequence. We see now that a sampling that is Zeno is
necessarily converging to some point of the space:

Lemma 5.1 (A Zeno sampling converges to some point) Assume a sampling g is Zeno at some
parameters Q, t, x. Take the notations of definition 5.3. Denote tsup = supk tk. Then necessarily

• Trajectory Φ reaches some point xsup at time tsup: Φ(tsup) = xsup for some xsup.

• This point is the limit of the sampling: tsup = limk∈N tk, xsup = limk∈N xk.

Proof: By a well-known result of analysis, since Φ is a continuous function and has a bounded right
derivative, Φ can always be extended to a continuous function defined at time tsup. Hence, one can
always assume that Φ is defined at time tsup.

Now, since Φ is a continuous function, and since tsup = limk tk, we must have xsup = Φ(tsup) =
limk Φ(tk) = limk xk.

2

5.1.3 Sampling effectively a PCD system

For all PCD system H, one can effectively compute a sampling of H:

Proposition 5.1 Let H be a PCD system.
There exists a Turing machine that computes a sampling of H: there exists a Turing machine M with

oracle and a sampling g : N × P × Rd+1 → Rd+1 of H such that, for all t ∈ R, for all x ∈ Rd, when M
has oracle d(t, x)e it computes the relation Rg(t, x) associated to g at real parameter (t, x).

Proof: Assume a PCD system H is fixed. Assume we want to produce effectively a sampling g of
H: the most natural algorithm is the following: on inputs t, x,Q and k, simulate k discrete steps (that
is to say k region crossing) of the trajectory Φ starting at x at time t. If Q is reached by the trajectory
at some discrete step k′ ≤ k, return the date and position of the intersection. Otherwise return (tk, xk)
where tk and xk are the date and the position of Φ at the end of this k discrete steps simulation.

This natural algorithm computes a sampling g of H.
This algorithm is not directly a Turing machine algorithm since it requires to manipulate some real

points of the space. But by using symbolically the representation of real points by their associated
languages defined in 5.1 it can be transformed into a Turing machine algorithm that computes the
relation associated to g.

2

27

x*

x*

x*

Figure 9: From left to right: x∗ is of local dimension 1, 2, 3 in a PCD system of dimension 3.

5.2 Geometrical considerations

We now have some geometrical considerations: first we associate to any point of the space of a PCD
system H of dimension d an integer d′ (1 ≤ d′ ≤ d) that we call its local dimension. Then we show a
technical property and we show that the limit of a sequence of points of some fixed local dimension is
necessarily of higher local dimension. Then we see that one can build effectively a sampling of any PCD
system up to local dimension 3.

5.2.1 Local dimension

We define the local dimension of any point as follows:

Definition 5.4 (Local dimension) Let H = (X, f) be a PCD system in dimension d. Let x∗ be a
point of X. Let ∆ be a polyhedral subset ∆ ⊂ X of maximal dimension d − d′ (1 ≤ d′ ≤ d) such that
there exists an open convex polyhedron V ⊂ X, with x∗ ∈ ∆ ∩ V , ∆ ⊂ V , and such that, for any region
F of H, F ∩ V 6= ∅ implies ∆ ⊂ F (F is the topological closure of F).

x∗ is said to be of local dimension d′: see figure 9.

Note that given a rational PCD system H = (X, f) and an integer d′ one can effectively compute
LocDim(H, d′) defined as the set of the points x ∈ X that have a local dimension equal to d′.

5.2.2 First property

The idea behind the definition of the local dimension is given by the next proposition: if a point x∗ is of
local dimension d′ in a PCD of dimension d, to study the trajectories in a neighborhood of x∗, one can
restrict the attention to a PCD system of dimension d′.

x*

P

P

x*

Figure 10: Proposition 5.2: if x∗ is of local dimension 2 in a PCD H of dimension 3, the projections on P of
the trajectories of H in a neighborhood V of x∗ are the trajectories of a PCD system Hx∗ of dimension 2.

28

Proposition 5.2 Let H = (X, f) be a PCD system in dimension d. Let x∗ be a point of local dimension
d′ with d′ < d. Call P the affine variety of dimension d′ which is the orthogonal of ∆ in x∗. It is possible
to construct a PCD system H′ = (X ′ = Rd′

, f ′) in dimension d′ such that the trajectories of H′ are the
orthogonal projections on P of the trajectories of H in V .

Proof: Choose an affine basis of Rd of the form (x∗, e1, e2, . . . , ed′ , . . . , ed) with (x∗, e1, e2, . . . , ed′)

taken as a basis of P and (x∗, ed′+1, . . . , ed) taken as a basis of ∆. Call p : Rd → Rd′

the projec-
tion that sends (x1, x2, . . . , xd) to (x1, . . . , xd′). By hypothesis, in V the regions are organized as a
‘pencil of regions’: therefore speed in point (x1, x2, . . . , xd′ , . . . , xd) ∈ V does not depend on the coor-

dinates xd′+1, xd′+2, . . . , xd. The reader can check that H′ = (X ′ = Rd′

, f ′) where f ′(x1, x2, . . . , xd′) =
p(f(x1, x2, . . . , xd′ , 0, . . . , 0)) is a solution. See figure 10.

2

For any point x∗, the corresponding open convex polyhedron V is denoted by Vx∗ . See that when
the local dimension of x∗ is the dimension of the space (d′ = d) one can always assume Vx∗ small enough
such that x∗ is the only point of local dimension d′ in Vx∗ . H′, ∆ are respectively denoted by Hx∗ and
∆x∗ . If d′ < d we denote by px∗ and qx∗ the functions that map all point x ∈ X onto its orthogonal
projection on P and onto its orthogonal projection on ∆ respectively. If d′ = d, we define px∗ and qx∗

as respectively the identity function and the null function.

5.2.3 Local dimension of a limit of a sequence of points

We show that the limit of a sequence of real points of some fixed local dimension is necessarily of higher
local dimension:

Lemma 5.2 Let H = (X, f) be a PCD system of dimension d. Let d′ be an integer. Let Φ be a trajectory
of H.

Assume that (ti)i∈N ∈ R+ is a bounded increasing sequence . Assume that for all i ∈ N, Φ(ti) is of
local dimension d′. Denote tsup = supi∈N ti and xsup = Φ(tsup).

Then necessarily xsup = Φ(tsup) is of local dimension > d′.

Proof: Denote by d′′ the local dimension of xsup. By continuity of Φ, there exists i0 ∈ N such that
for all i ≥ i0, Φ(ti) ∈ Vxsup . For all i ≥ i0, point Φ(ti) is of local dimension d′ and is in Vxsup . By
considering the dimension of affine subspace ∆Φ(ti), for any i ≥ i0, one gets d′′ ≥ d′.

Assume d′′ = d′: it is easy to see that xsup is necessarily the only point of local dimension d′ in
pxsup(Vxsup). As a consequence, for all i ≥ i0, Φ(ti) ∈ ∆xsup . Denote by tfirst the first point of local
dimension d′ = d′′ reached by Φ after time ti0 : tfirst = inf{t|t ∈ R ∧ t > ti0 ∧ Φ(t) ∈ LocDim(H, d′)}.
By lemma 5.2, Φ′ = pxsup(Φ) must be a trajectory of Hxsup . Φ does not reach any point of local
dimension d′ at any time t with ti0 < t < tfirst. One has Φ′(ti0) = Φ′(tfirst). As a consequence, for all
n ∈ N, Φ′(ti0 + n(t − ti0)) = Φ′(ti0) and all the points of local dimension d′ reached by Φ at some time
t > ti0 must necessarily be reached at some time t of type t = ti0 +n(t−ti0) for some n ∈ N. In particular,
sequence (ti)i∈N must be a subsequence of sequence (ti0 + i(t− ti0))i∈N. We reach a contradiction, since
(ti)i∈N is assumed to be a bounded sequence. Hence, it is not possible that d′′ = d′ and necessarily
d′′ > d′.

2

The following corollary is an easy consequence:

Corollary 5.1 Let H = (X, f) be a PCD system of dimension d. Let d′ be an integer. Let Φ be a
trajectory of H.

Assume that (ti)i∈N ∈ R+ is a bounded increasing sequence . Assume that for all i ∈ N, Φ(ti) is of
local dimension ≥ d′. Denote tsup = supi∈N ti and xsup = Φ(tsup).

Then

• necessarily xsup = Φ(tsup) is of local dimension > d′.

• if d′′ denotes the local dimension of xsup, all but a finite number of the xi = Φ(ti), i ∈ N are of local
dimension ≤ (d′′ − 1).

29

5.2.4 Sampling effectively a PCD system up to local dimension 3

We start by the following definition:

Definition 5.5 (Sampling up to some local dimension) A sampling g is said to be a sampling up
to local dimension d′, where d′ is an integer, if for all Q ∈ P, t ∈ R, x ∈ Rd, whenever g is Zeno at
parameters Q, t, x, its limit (that is to say the point reached at time tsup = supk∈N tk by the trajectory
starting at x at time t that exists by lemma 5.1) is necessarily of local dimension > d′.

Of course we can say that the effective samplings obtained in subsection 5.1.3 are samplings up to
local dimension 1: but this says nothing!

Actually, one can slightly modify the algorithm described in subsection 5.1.3 to get more powerful
samplings: using a lemma proved in [8] that shows that a trajectory converging toward some point of
local dimension ≤ 3 has necessarily a cyclic signature and the fact that one can effectively decide if the
signature of a trajectory is cyclic, we prove in [6] that the method of subsection 5.1.3 can be extended
to provide samplings up to local dimension 3: this is the next proposition.

Proposition 5.3 ([6]) Let H be a PCD system.
There exists a Turing machine that computes a sampling of H up to local dimension 3: there exists

a Turing machine M with oracle and a sampling g : N × P × Rd+1 → Rd+1 of H up to local dimension
3 such that, for all t ∈ R, for all x ∈ Rd, when M has oracle d(t, x)e it computes the relation Rg(t, x)
associated to g at real parameter (t, x).

5.3 Building samplings up to higher local dimensions

In this subsection, we show that by using oracles in the hyper–arithmetical hierarchy one can get some
samplings up to higher local dimensions. We start by giving the general idea of the method. Then
we recall some results about the hyper–arithmetical hierarchy: we recall the well-known equivalence
between logical definitions of sets and their levels in the arithmetical hierarchy. We prove that if a set
is hyper-arithmetical in another hyper-arithmetical set, it is hyper-arithmetical of level the sum of the
two levels: one can compose oracles by adding their levels. Then we define the hyper-jump operation on
samplings. In the following two subsections, we show that the hyper-jump operation can be extended to
the more powerful cycle-free operation. Finally, we use this transformation to get some upper bounds
on the computational power of PCD systems.

5.3.1 General idea

Assume a PCD system H is fixed.
Using proposition 5.3, one can build a sampling g of H up to local dimension 3 that is computable

by a Turing machine: as a consequence, given as input a starting date t and a starting point x, a Turing
machine M can simulate the trajectory Φ of H starting at x at time t and give a list of couples date
position (tk, xk) reached by Φ.

However, this simulation simulates Φ only up to time tsup = supk∈N tk. If tsup = +∞, that is to
say, if g is non-Zeno this is not restrictive: Turing machine M simulates completely trajectory Φ for all
positive time.

But if tsup < +∞, that is to say if g is Zeno, Turing machine M simulates Φ only on time interval
[t, tsup). However, we know by lemma 5.1 that Φ reaches some point xsup at time tsup. But the simulation
given by Turing machine M does not give this point nor the evolution of Φ after time tsup.

We want to build a machine that computes a more powerful sampling: the idea is to use an oracle
in the hyper-arithmetical hierarchy that, for all Q, t, x, tells whether sampling g is Zeno at parameters
Q, t, x and when it is the case, that tells the value of the limit. We build a machine M ′ with this oracle
that computes a sampling g′ that extends sampling g as follows: M ′ simulates any trajectory Φ starting
from some point x at time t by the following method: M ′ tests if the simulation given by g of the
trajectory starting at x at time t is Zeno: that is to say, tests if g is Zeno at parameters Q, t, x. If it is
so, M ′ computes (t′, x′) the limit of g and starts again the process from position x′ at date t′: M ′ tests
if the simulation given by g of the trajectory starting at x′ at time t′ is Zeno: that is to say, tests if g is
Zeno at parameters Q, t′, x′. If it is so , it computes (t′′, x′′) the limit of g and starts again the process
at position x′′ and time t′′: it tests if the simulation given by g of the trajectory starting at x′′ at time

30

t′′ is Zeno and if it is so computes the limit and starts again the process . . . and so on . . . If at some
moment of this process, g is not Zeno at some tested parameters Q, t(k), x(k) then M ′ uses g to simulate
the trajectory after time t ≥ t(k).

The point is to see that one gets effectively a machine that computes a sampling g′ that extends g
and that by lemma 5.2 g′ is a sampling up to a higher local dimension than g.

Hence, from a sampling g computed by some machine M , one can build a machine M ′ computing a
sampling g′ up to some higher local dimension. We call g′ the hyper-jump of sampling g.

By applying this hyper-jump operation recurrently one can get samplings up to higher and higher
local dimensions: take the hyper-jump of the hyper-jump of g and so on. This is the idea behind what
we do in the next subsections to get more and more powerful samplings.

In fact, we will not use directly the hyper-jump transformation but a slight improvement of it, that we
call the cycle-free transformation. Using this transformation instead of using the hyper-jump operation
will give us directly optimal upper bounds.

5.3.2 Languages first order definable

We recall the well-known Tarski-Kuratowski equivalence between sets defined by a first order logical
formula and arithmetical sets: we will not distinguish the relations on Σ∗ from the languages over Σ∗ :
a relation R of arity k over Σ∗ is considered as the language {< n1, n2, . . . , nk > |R(n1, . . . , nk)} ⊂ Σ∗.

Recall what a first order definition of a set is:

Definition 5.6 (First order definition [16]) Let Fa1 . . . an a first–order logic expression with free
variables a1 . . . an: that is to say Fa1 . . . an is built up from quantifiers ∃, ∀, =, sentential connectives
∧,∨,⇒,¬ and relation symbols R1, R2, . . . , Rk

Let the relation symbols R1, R2, . . . , Rk be interpreted as certain fixed relations T1, . . . , Tk ⊂ Σ∗.
Then the relation R = {< x1, . . . , xn > |Fa1 . . . an is true over domain Σ∗ when a1, . . . , an are inter-

preted as x1, . . . , xn ∈ Σ∗ respectively and R1, R2, . . . , Rk are interpreted as T1, . . . , Tk ⊂ Σ∗ respectively
} ⊂ Σ∗ is said to be definable by first order formula F from relations T1, . . . , Tk.

Hence in a first–order logic expression, the quantifications over functions are not allowed. All the
quantifications are on variables and here, the variables are interpreted as words of Σ∗. As an example, if
T ⊂ Σ∗ is some binary relation, then {n ∈ Σ∗|∃t ∈ Σ∗ T (n, t) is true} is first order definable by formula
∃t R(n, t) from relation T .

Assume that X ⊂ Σ∗ is a recursively enumerable set (respectively: is a recursive set, is a Y -recursively
enumerable set, is a Y -recursive set (Y ⊂ Σ∗)): X = Wn (resp. X = W Y

n) for some n ∈ N. n is called a
recursively enumerable index (resp: recursive index, Y -recursively enumerable index, Y -recursive index)
of X.

The well-known Tarski-Kuratowski equivalence states that a set that is first order definable is neces-
sarily in the arithmetical hierarchy and that the first order formula gives uniformly a level of the hierarchy
containing the set:

Proposition 5.4 (Tarski-Kuratowski algorithm [16]) • Let F be a first order formula. F can
always be transformed into a first order formula in prenex form logically equivalent to F beginning
with a quantifier ∃.

• Assume F is a first order formula in prenex form beginning with a quantifier ∃. Let n ∈ N be the
number of quantifier alternations5 in formula F .

– Let R ⊂ Σ∗ be a language defined by formula F from some recursive relations T1, . . . , Tk

(respectively: defined by formula F from some A-recursive relations T1, . . . , Tk).
Then R is in the arithmetical hierarchy (resp. in the A-arithmetical hierarchy): R ∈ Σn+1

(resp. R ∈ ΣA
n+1).

– The dependence of R on relations T1, . . . , Tk is uniform: assume first order formula F is fixed.
There exists a recursive gF , such that, for all n1, . . . , nk ∈ N (resp. for all n1, . . . , nk ∈ N,
for all A ⊂ Σ∗), if n1, . . . , nk are recursive (respectively: A-recursive) indexes of relations
T1, . . . , Tk respectively, then gF (n1, . . . , nk) is an H(y)-recursively enumerable index (resp. is
an HA(y)-recursively enumerable index) of language R defined by formula F from relations
T1, . . . , Tk.

5The number of alternations is the number of pairs of adjacent but unlike quantifiers in the prefix of the prenex formula:
see [16].

31

5.3.3 Compositions of oracles

We prove that if a set is hyper-arithmetical in another hyper-arithmetical set, then it is hyper-arithmetical
of level the sum of the two levels: in other words we can compose oracles by adding their levels: see [16]
or [6] for a proof.

Lemma 5.3 (Composition) Let X ⊂ Σ∗.

• There exists a recursive g such that, for all x, y ∈ O, HHX(x)(y) ≤m HX(x +0 y) via Φg(x,y).

• This holds effectively on indexes: there exists a recursive h (resp. a recursive h′) such that, for
all m, n ∈ N, x, y ∈ O, if m is some HX(x)-recursively enumerable index of some set S ⊂ Σ∗,
and if n is some HS(y)-recursively enumerable index of some set S ′ ⊂ Σ∗, then h(x, y,m, n) is an
HX(x +0 y)-recursively enumerable index (resp. HX(x +0 y +0 2)-recursive index) of S′.

5.3.4 HyperJump operation

We define now formally what the hyper-jump transformation on samplings is:

Definition 5.7 (HyperJump operation) Assume we have a sampling g of H.
We define HyperJump[g] : N×P×Rd+1 → Rd+1 as follows: assume parameters Q ∈ P, t ∈ R, x ∈ Rd

are fixed.

• Set HyperJump[g](0,Q, t, x) = (t, x)

• Let k ≥ 1. Denote HyperJump[g](k − 1, Q, t, x) = (tk−1, xk−1), tk−1 ∈ R, xk−1 ∈ Rd.

– If g is Zeno at parameters Q, tk−1, xk−1 or if there exists some k0 ∈ N such that x′
k0

∈ Q ∪
NoEvolution(H) where g(k0, Q, tk−1, xk−1) = (t′k0

, x′
k0

), then set HyperJump[g](k,Q, t, x) as
the limit of the sequence (g(k′, Q, tk−1, xk−1))k′∈N

– Otherwise, set HyperJump[g](k,Q, t, x) = g(k,Q, tk−1, xk−1)

Its properties are summarized in the following lemma:

Lemma 5.4 Assume we have a sampling g of H up to local dimension d′ for some integer d′.
Then:

• HyperJump[g] is a sampling of H up to local dimension (d′ + 1).

• Assume HyperJump[g] is Zeno at some parameters Q ∈ P, t ∈ R, x ∈ Rd. Denote for all k ∈ N,
HyperJump[g] (k, Q, t, x) = (tk, xk), tk ∈ R, xk ∈ Rd. For all k ∈ N, xk is of local dimension
≥ (d′ + 1).

• For all t ∈ R, for all x ∈ Rd, denote by Rg(t, x) the relation associated to real sequence g at real
parameter (t, x).

There exists a fixed first order formula F such that for all k ∈ N, Q ∈ P, t ∈ R, x ∈ Rd,
dHyperJump[g](k + 1, Q, t, x)e is definable by formula F from some recursive relations and from
relation Rg(HyperJump[g](k,Q, t, x)).

Proof: See that there exists a fixed first order formula F such that, for all t ∈ R, x ∈ Rd, the language
{Q|g is Zeno for Q, t, x} is first order definable by formula F from relation Rg(t, x): this formula F is
∃tsup ∈ Q ∀k ∈ N tk ≤ tsup ∧∀k xk 6∈ Q∪NoEvolution(H). In a similar way, there exists a fixed first order

formula G such that for all real sequence (g′(k′, Q, x))k′∈N converging to some g
′∗(Q, x) ∈ Rd, dg

′∗(Q, x)e
is definable by formula G from relation Rg′(t, x). As a consequence, definition 5.7 can be translated
directly into a fixed first order formula F that, for all k, Q, t, x, defines dHyperJump[g](k + 1, Q, t, x)e
from some recursive relations and from relation Rg(HyperJump[g](k,Q, t, x)). The last assertion of the
lemma is then immediate using lemma 5.4.

We prove now that HyperJump[g] is a sampling of H up to local dimension (d′ + 1). Assume
parameters Q ∈ P, t ∈ R, x ∈ Rd are fixed. Denote HyperJump[g](k,Q, t, x) = (tk, xk), tk ∈ R, xk ∈ Rd,
for all k ∈ N. Let Φ be the trajectory of H starting from x at time t. From the fact that g is a sampling
it is easy to show by induction over k that for all k ∈ N Φ(tk) = xk. Now, if there is some k0 with
xk0 ∈ Q∪NoEvolution(H), since g is a sampling, it is clear than xk = xk0 , tk = tk0 for all k ≥ k0. If for
all k, xk 6∈ Q ∪ NoEvolution(H), it is easy to see that tk+1 > tk for all k ∈ N. Hence HyperJump[g] is
a sampling.

32

Assume that HyperJump[g] is Zeno at some parameters Q, t, x. For all k ∈ N, g must be Zeno at
parameters Q, tk−1, xk−1: hence, (tk, xk) is the limit of (g(k′, Q, tk−1, xk−1))k′∈N. Since g is a sampling
up to local dimension (d′), the local dimension of xk must be > (d′) for all k ∈ N. This proves the second
assertion.

Denote tsup = supk∈N tk and xsup = Φ(tsup). By corollary 5.1, the local dimension of xsup must be
> (d′ + 1). This proves the first assertion.

2

5.3.5 Trajectories that make some cycles

Lemma 5.4 shows that the hyper-jump transformation allows to increase the local dimension of a sampling
by 1: when g is a sampling up to local dimension d′, HyperJump(g) is a sampling up to local dimension
d′ + 1. By applying recurrently the transformation hyper-jump on the effective sampling of proposition
5.3, we could get directly some upper bounds on the computational power of PCD systems.

However, one can get some better upper bounds by introducing a new transformation on samplings:
the cycle-free operation: this transformation extends the hyper-jump transformation and consists in
detecting whenever a trajectory is making a cycle converging toward a computable limit.

The purpose of this section and of the following is to introduce the cycle-free transformation.
We start by characterizing geometrically the case where a trajectory is making an infinite cycle

converging to some point. In order to do so, we define the relation Cycle: we will show that when this
relation is true, the trajectory makes an infinite cycle converging to some point.

Definition 5.8 (Relation Cycle) Let d be an integer. Let H be a PCD system of dimension d. Let
z1, z2, x

∗ be three points of Rd. Let Q be a polyhedron.
We say that Cycle(z1, z2,H, Q, x∗) is true iff all the following conditions hold simultaneously (see

figure 11):

• Q ⊂ Vx∗ , Q is a open convex polyhedron and z1, z2 ∈ Q.

• z1 6= z2, z1, z2 6∈ ∆x∗ and the line (z1, z2) defined by z1 and z2 intersects ∆x∗ in some point z∗.

• z∗ ∈ Q, where Q is the topological closure of polyhedron Q.

• d(px∗(z2), px∗(x∗)) < d(px∗(z1), px∗(x∗)) (d is the distance of the maximum).

A positive instance of relation Cycle implies that the trajectory is cycling and converging to some
point: see figure 11.

z1

z2

X*

x*

z*

Vx*

Hx*

x*p (z1)

p (z2)x*

p (z*)x*

p (V)
x* x*

Figure 11: If predicate Cycle(z1, z2,H, Q, x∗) is true for some polyhedron Q and some point x∗ ∈ Rd, if
the trajectory reaches z1 and z2 and does not leave Q between z1 and z2, then the trajectory is ultimately
cycling and converging to z∗.

Lemma 5.5 Let H be a PCD system of dimension d. Let Φ be a trajectory of H. Let z1, z2 ∈ Rd be two
points reached by Φ at time t1, t2 ∈ R+ respectively with t1 < t2. Let x∗ ∈ Rd. Let Q be a polyhedron.

33

Trajectory
L

z2
z1

x*’

Figure 12: Proof of lemma 5.6: here d = d′ = 3. I is the set of the one dimensional regions that intersect
pxsup

(Vxsup
). I is made of a finite number of segments. Every time the trajectory reaches a point of local

dimension 2 , it reaches I. If the trajectory reaches two times I in a same segment at point z1 and at point
z2 then predicate Cycle(z1, z2,H, Vxsup

, x∗
′

) is true for all point x∗
′

∈ ∆xsup
(here d = d′ = 3 implies that

∆xsup
is a singleton made of only one point).

Assume Cycle(z1, z2,H, Q, x∗) is true and that the trajectory stays in Q between time t1 and time t2:
∀t ∈ [t1, t2], Φ(t) ∈ Q.

Then trajectory Φ is cycling and reaches the point z∗ of definition 5.8 at time t∗ = t1 +
P∞

j=0 λj(t2 −
t1) = t1 + (t2 − t1)1/(1 − λ), where λ ∈ (0, 1) is such that d(px∗(z2), px∗(x∗)) = λd(px∗(z1), px∗(x∗)).

Moreover the trajectory stays in Q between time t1 and time t∗: for all t ∈ [t1, t
∗), Φ(t) ∈ Q.

We denote Cycle∗((t1, z1), (t2, z2),H, Q, x∗) for (t∗, z∗) ∈ Rd+1, with the t∗ ∈ R and the z∗ ∈ Rd

defined in the lemma.
Proof: Denote Hx∗ = (X ′, f ′). By lemma 5.2, Φ′ = px∗(Φ) must be a trajectory of Hx∗ . Fix the

origin in x∗. Cycle(z1, z2,H, Q, x∗) implies that there exists some real 0 < λ < 1 with px∗(z2) = λpx∗(z1):
see figure 11.

By definition of Vx∗ all the regions of Hx∗ intersecting px∗(Vx∗) contain px∗(x∗) in their topological
closure. Hence we have f ′(x) = f ′(µx), for all x ∈ px∗(Vx∗), µ ∈ (0, 1]. If Φ′(t) is solution to differential
equation ẋd = f ′(x), then Ψ′(t) = λΦ′(t/λ) is also solution. As a consequence, for all n ≥ 2 ∈ N,
trajectory Φ′ must reach the point λn−1px∗(z1) at time t1 + (t2 − t1)

Pn−2
j=0 λj : see figure 11.

From the definition of Hx∗ this implies that, for all n ≥ 2 ∈ N, Φ reaches the point zn defined by
px∗(zn) = λn−1px∗(z1) and qx∗(zn) = qx∗(z1)+(qx∗(z2)−qx∗(z1))

Pn−2
j=0 λj at time t1+(t2−t1)

Pn−2
j=0 λj .

Hence, trajectory Φ must reach z∗ at time t∗: see figure 11. By convexity of Q, Φ must stay in Q between
time t1 and time t∗.

2

One can extend lemma 5.2 by showing that whenever the limit of a sequence of points of some fixed
local dimension d′ is of local dimension d′ + 1, then necessarily relation Cycle must be true for some
points of the sequence:

Lemma 5.6 Assume the hypotheses of lemma 5.2 hold. Take the notations of lemma 5.2.
If xsup is of local dimension (d′ + 1), then there must exists i1 < i2 ∈ N, x∗′ ∈ Qd, a rational

polyhedron Q such that trajectory Φ stays in Q between time ti1 and time ti2 and such that pred-

icate Cycle(Φ(ti1), Φ(ti2),H, Q, x∗′) is true: that is to say, the hypotheses of lemma 5.5 hold with

z1 = Φ(ti1), z2 = Φ(ti2), Q, x∗′ .
Moreover, if t∗ ∈ R, x∗ ∈ Rd denote (t∗, x∗) = Cycle∗((ti1 , Φ(ti1)), (ti2 , Φ(ti2)),H, Q, xsup) then the

local dimension of x∗ is ≥ (d′ + 1).

Proof: We use the notations of the proof of lemma 5.2: assume d′′ = (d′ + 1). The image I of
LocDim(H, d′) by pxsup is a finite set of one-dimensional segments: see figure 12. Since (Φ′(ti))i≥i0

is an infinite sequence, there must exists some i1 < i2 ∈ N, z1 = Φ(ti1), z2 = Φ(ti2) such that
pxsup(z1) and pxsup(z2) belong to a same segment of I, and such that d(pxsup(xsup), pxsup(z2)) <

34

d(pxsup(xsup), pxsup(z1)): see figure 12 or figure 11. Take Q = Vxsup . Check that predicate

Cycle(z1, z2,H, Q, x∗′) is true for any point x∗′ ∈ Qd ∩ ∆xsup :
Denote (t∗, x∗) = Cycle∗((ti1 , z1), (ti2 , z2)),H, Q, xsup). By lemma 5.5, Φ must be converging to x∗

at time t∗. By lemma 5.2, x∗ must be of local dimension ≥ (d′ + 1).
2

5.3.6 CycleFree operation

From now, we assume that a PCD system H of dimension d is fixed.
We are ready to define the cycle-free operation on samplings: the idea is to extend the hyper-jump

operation by detecting if trajectories are making some infinite cycles converging to some computable
limit point: in that case, one can jump directly to the limit point:

Definition 5.9 (Cycle Free operation) Assume we have a sampling g of H.
We define CycleFree[g] : N ×P × Rd+1 → Rd+1 as follows: assume Q ∈ P, t ∈ R, x ∈ Rd are fixed.

• Set CycleFree[g](0,Q, t, x) = (t, x)

• Let k ≥ 1. Denote CycleFree[g] (k − 1, Q, t, x) = (tk−1, xk−1), tk−1 ∈ R, xk−1 ∈ Rd.

– Either there exists k2 ∈ N, k2 < k, some x∗ ∈ Qd, a rational polyhedron F not intersecting
Q, such that Cycle(xk−1, z2,H, F, x∗) is true, xk−1 6∈ Q, z2 6∈ Q, z2 6∈ F c, where F c is the
complement of polyhedron F on Rd and HyperJump[g](k2, Q ∪ F c, tk−1, xk−1) = (t2, z2):
set CycleFree[g](k,Q, t, x) = Cycle∗((tk−1, xk−1), (t2, z2),H, F, x∗)

– or this is false:
Set CycleFree[g](k,Q, t, x) = HyperJump[g](k,Q, tk−1, xk−1)

The properties of the cycle-free transformation on samplings are summarized in the following lemma:

Lemma 5.7 Assume g is a sampling of H up to local dimension d′ for some integer d′ ∈ N.
Then:

• CycleFree[g] is a sampling of H up to local dimension (d′ + 2).

• For all k ∈ N, t ∈ R, x ∈ Rd, denote by R<k
HyperJump[g](t, x) the relation associated to real sequence

HyperJump[g] at real parameter (t, x) up to rank k.

There exists a fixed first order formula F such that for all k ∈ N, Q ∈ P, t ∈ R, x ∈ Rd,
dCycleFree[g](k + 1, Q, t, x)e is definable by formula F from some recursive relations and from
relation R<k

HyperJump[g](CycleFree[g](k,Q, t, x)).

Proof: It is easy to see that there exists a fixed first order formula G such that, for all z1, z2 ∈ Rd,
{< Q, x∗ > |Q ∈ P, x∗ ∈ Qd, Cycle(z1, z2,H, Q, x∗) is true } is definable by formula G from relations
dz1e, dz2e and from some recursive relations. Now, see that there also exists a fixed first order formula H
such that dCycle∗((t1, z1), (t2, z2),H, Q, x∗)e is defined by formula H from relations d(t1, z1)e, d(t2, z2)e
and from some recursive relations. As a consequence, definition 5.6 can be translated directly into a
fixed first order formula F such that, for all k ∈ N, Q ∈ P, t ∈ R, x ∈ Rd, dCycleFree[g](k + 1, Q, t, x)e
is definable by formula F from relation R<k

HyperJump[g](CycleFree[g](k,Q, t, x)) and from some recursive
relations. The second assertion is immediate by using lemma 5.4.

We prove now that CycleFree[g] is a sampling of H up to local dimension (d′ + 2). Assume Q ∈
P, t ∈ R, x ∈ Rd are fixed. Denote CycleFree[g](k,Q, t, x) = (tk, xk), tk ∈ R, xk ∈ Rd, for all k ∈ N. Let
Φ be the trajectory of H starting from x at time t.

Using lemma 5.4 and lemma 5.5, it is easy to show by induction over k that for all k, Φ(tk) = xk. If
there is some k0 with xk0 ∈ Q ∪ NoEvolution(H), since HyperJump[g] is a sampling, it is clear than
xk = xk0 , tk = tk0 for all k ≥ k0. If for all k ∈ N, xk 6∈ Q ∪ NoEvolution(H), it is easy to see that
tk+1 > tk for all k ∈ N. Hence CycleFree[g] is a sampling.

Assume that CycleFree[g] is Zeno at parameters Q, t, x. Denote tsup = supk∈Ntk and xsup = Φ(tsup).
If xsup is of local dimension > (d′ + 2) the lemma is proved. Assume now that the the local dimension
of xsup is ≤ (d′ + 2).

For all k ∈ N, HyperJump[g] must be Zeno at parameters Q, tk−1, xk−1. As a consequence, by lemma
5.4 and by lemma 5.6, all the xk, k ∈ N must be of local dimension ≥ (d′ + 1). By corollary 5.1, only a
finite number of the xk, k ∈ N must be of local dimension ≥ (d′ + 2), and only a a finite number of the

35

xk, k ∈ N must be of local dimension (d′ + 1). Hence, there must exists some k0 ∈ N such that for all
k ≥ k0 xk is of local dimension (d′ + 1).

Apply lemma 5.6 on the subsequence (xk)k≥k0 : There musts exists k0 ≤ i1 < i2 ∈ N, xsup ∈ Qd an a
rational polyhedron F such that Cycle(xi1 , xi2 ,H, Q, xsup) is true and such that the trajectory does not
leave F between time ti1 , ti2 . Take i1 and i2 as the least integers such that the previous property hold and
such that i2 − i1 < i1. By definition 5.6 we have (ti2+1, xi2+1) = Cycle∗((ti1 , xi1), (ti2 , xi2),H, F, xsup).
This is impossible since by lemma 5.6 this would imply that the local dimension of xi2+1 is ≥ (d′ + 2).

2

Hence, by using the cycle-free operation instead of the hyper-jump operation we get more powerful
samplings : when g is a sampling up to local dimension d′, CycleFree(g) is a sampling up to local
dimension d′ + 2 (in comparison HyperJump(g) is a sampling only up to local dimension d′ + 1).

5.3.7 Outputting a maximal sampling

We are ready to prove that one can build maximal samplings of H that are computable by some Turing
machines with some hyper-arithmetical oracles: the idea is to apply recurrently the cycle-free operation
on the effective sampling given by proposition 5.3 in order to get samplings up to higher and higher local
dimensions:

Lemma 5.8 For all k ≥ 0,

• one can construct a sampling gk : N ×P × Rd+1 → Rd+1 up to local dimension (3 + 2k).

• The sampling is computable by some Turing machine with an hyper–arithmetical oracle: for all
t ∈ R, x ∈ Rd, denote by Rgk

(t, x) the relation associated to gk at real parameter (t, x).

There exists some nk ∈ N, zk ∈ O, |zk| = ωk if k ≥ 1, |zk| = 0 if k = 0, such that, for all

t ∈ R, x ∈ Rd, W
Hd(t,x)e(zk)
nk

= Rgk
(t, x)

Proof: We prove the assertions by induction over k ∈ N .
The case k = 0 is corollary 5.3.
Assume k ≥ 1. Consider gk = CycleFree[gk−1]. By lemma 5.7 and by induction hypothesis gk is a

sampling up to local dimension (3 + 2k). By induction hypothesis, n′
k−1 is a Hd(t,x)e(zk−1)-recursively

enumerable index of Rgk−1 (t, x) for all t, x.

Let n ∈ N, Q ∈ P, t ∈ R, x ∈ Rd be fixed. Assume we have H(y)d(t,x)e-recursively enumer-
able index m of HyperJump[gk−1](n, Q, t, x), where m ∈ N, y ∈ O. By lemma 5.3, there exists a
recursive r that maps m to r(m) where r(m) is an an H(y +0 zk−1 +0 1)d(t,x)e-recursive index of
Rgk−1 (HyperJump[gk−1](n, Q, t, x)). By lemma 5.4, there exists a fixed first order formula F such

that for all n ∈ N, Q ∈ P, t ∈ R, x ∈ Rd, dHyperJump[gk−1](n + 1, Q, t, x)e is definable by formula
F from relation Rgk−1 (HyperJump[gk−1] (n, Q, t, x)) and from some recursive relations. By lemma
5.4, there exists yF ∈ O, |yF | < ω and a recursive g that maps r(m) to g(r(m)), where g(r(m)) is an

H
Rgk−1

(HyperJump[gk−1](n,Q,t,x))
(yF)-recursively enumerable index of dHyperJump[gk−1](n + 1, Q, t, x)e.

By lemma 5.3, there exists a recursive r′ that maps g(r(m)) to r′(g(r(m))), where r′(g(r(m))) is an
H(y +0 zk−1 +0 1 +o yF)d(t,x)e-recursively enumerable index of HyperJump[gk−1](n + 1, Q, t, x).

Denote by h : N → O the recursive mapping such that r(0) = 1, r(n + 1) = r(n) +0 zk−1 +0 1 +o yF

for all n ∈ N.
As a consequence, for all n ∈ N, R<n

HyperJump[gk−1] is semi-recognized by the machine with oracle

Hd(t,x)e(h(n−1)) that on input < n, Q,P >, compute for i = 1, . . . , n−1 an Hd(t,x)e(h(i−1))-recursively
enumerable index mi of HyperJump[gk−1] (i, Q, t, x) from the Hd(t,x)e(h(i − 2))-recursively enumerable
index mi−1 of HyperJump[gk−1](i − 1, Q, t, x) by the formula mi = r′(g(r(mi−1))) and then simulate
the machine with oracle of number mn−1. This machine has a fixed number independent of t, x.

Let n ∈ N, Q ∈ P, t ∈ R, x ∈ Rd be fixed. Assume we have H(y)d(t,x)e-recursively enumerable index
m of CycleFree[gk−1](n, Q, t, x), where m ∈ N, y ∈ O. By lemma 5.3, there exists a recursive r that
maps m to r(m) where r(m) is an H(y +0 h(n − 1) +0 1)d(t,x)e-recursive index of R<n

HyperJump[gk−1]

(CycleFree[gk−1](n, Q, t, x)). By lemma 5.7, there exists a fixed first order formula G such that for
all k ∈ N, Q ∈ P, t ∈ R, x ∈ Rd, dCycleFree[gk−1](n + 1, Q, t, x)e is definable by G from relation
R<n

HyperJump[gk−1] (CycleFree[gk−1](n, Q, t, x)) and from some recursive relations. As before, by lemma

5.4, and by lemma 5.3, there exists some recursive g and r′ that maps m to r′(g(r(m))) an H(y +0

36

h(n− 1)+0 1+o yG)d(t,x)e-recursively enumerable index of CycleFree[gk−1](n+1, Q, t, x), for some fixed
yG ∈ O, |yG| < ω.

Denote by l : N → O the recursive mapping such that l(0) = 1, l(n + 1) = r(n)+0 h(n− 1) +0 1 +o yG

for all n ∈ N. Take zk = 3.5p where p ∈ N is the number of recursive function l.
RCycleFree[gk−1] is semi-recognized by the machine with oracle Hd(t,x)e(zk) that on input < n, Q,P >,

compute for i = 0, 1, . . . , n an Hd(t,x)e(l(i))-recursively enumerable index mi of CycleFree[gk−1](i, Q, t, x)
from the Hd(t,x)e(l(i − 1))-recursively enumerable index mi−1 of CycleFree[gk−1](i − 1, Q, t, x) (mi =
r′(g(r(mi−1)))) and then transform Hd(t,x)e(l(n))-recursively enumerable index mn of CycleFree[gk−1]
(n, Q, t, x) into a Hd(t,x)e(zk) index m of CycleFree[gk−1](n, Q, t, x) using lemma 5.9, and then simulate
the machine with oracle of number m. This machine has a fixed number nk. independent of t, x.

One has |zk| = ωk.
2

where lemma 5.9 is the following technical lemma proved in [6, 16]:

Lemma 5.9 There exists a recursive function g such that, for all y, z ∈ O, for all m ∈ N, if m is
an H(y)-recursively enumerable index of some set S ⊂ Σ∗ and if y ≤o z, then g(y,m, z) is an H(z)-
recursively enumerable index of S.

5.3.8 Conclusion

Using the maximal samplings given by the previous subsection, we can prove the main result of this
paper: theorem 3.4 is optimal.

Proposition 5.5 Let k ≥ 1.

• If a language L is semi-recognized by a PCD system of dimension 2k + 3 in finite continuous time
then L ∈ Σωk .

• If a language L is semi-recognized by a PCD system of dimension 2k + 4 in finite continuous time
then L ∈ Σωk+1.

Proof: It is clear that for all x ∈ Qd, dxe is recursive with a recursive index computable from x.
Let k ≥ 1. By lemma 5.8, one can build a sampling gk up to local dimension (3+2k) and there exists

some fixed nk, and some fixed zk, zk ∈ O, |zk| = ωk such that, for all t ∈ R, x ∈ Rd, W
Hd(t,x)e(zk)
nk

=
Rgk

(t, x).
Let H = (Rd, f,J , x1, x0) be a PCD system of dimension d recognizing language L.
Assume d = 2k + 3: all the points of H have a local dimension ≤ (2k + 3). As a consequence gk

can not be Zeno at any parameters Q, t, x. L is semi-recognized by the machine with oracle H(zk) that
on input n ∈ Σ∗, compute the H(zk)-recursively enumerable index m of S = Rgk

(0,J (n), 0, . . . , 0), and

then by simulating M
H(zk)
m , tests for i = 0, 1, . . . ,∞ if < i, x1, x1 >∈ S. It there is such an i, the machine

accepts. If no i is found, the machine continues for ever.
Assume d = 2k + 4. It is easy to see that any point of local dimension equal to the dimension of

the space is necessarily a rational point. Denote Reach = {< x, y, i > |x, y ∈ Qd i ∈ N < i, y, y >∈
Rgk

(0, x)}. Reach is H(zk)-recursively enumerable by the machine that on input < x, y, i > computes

the H(zk)-recursively enumerable index m of Rgk
(0, x), and then simulates M

H(zk)
m on input < i, y, y >.

As a consequence, there exists a first order formula H with a quantifier ∃ and 0 alternation such that
Reach is definable from formula H from some H(zk)-recursive relations: see [16].

Define the following relation OneStep = {< x, x1 > |x ∈ Qd, x1 is a point of local dimension d and
the trajectory starting from x reaches x1} ⊂ Σ∗. We claim that OneStep is definable by some first order
formula F from relation Reach: write F as the formula that says that x1 is in LocDim(H, d′ + 1) and
that either there exists some i ∈ N such that < x, x1, i >∈ Reach, or gk is Zeno at parameters x1, 0, x
and there exist some i0 and some open polyhedron x′ with < x,x′, i >∈ Reach, x′ ⊂ Vx1 and for all
i ≥ i0, not < x,V c

x1 , i >∈ Reach, where V c
x1 is the complement of polyhedron Vx1 in Rd.

If < x, x1 >∈ OneStep, it is clear that the formula must be true. Assume now that the formula
is true: if there exists some i ∈ N such that < x, x1, i >∈ Reach, we are done: < x,x1 >∈ OneStep.
Assume now that the second clause of the disjunction is true: we know that the trajectory starting from
x is Zeno. Hence (gk(i, x1, 0, x) = (ti, xi))i∈N is a converging sequence converging to some point x∗ at
time t∗ = supi∈Nti. Since gk is a sampling up to local dimension (3 + 2k), x∗ must be of local dimension

37

d. Since Φ is Lipschitz, since Vx1 is an open polyhedron, we know that for some big enough i1, for all
ti1 ≤ t < t∗, Φ(t) ∈ Vx1 . Hence, we must have x∗ ∈ Vx1 , where Vx1 is the topological closure of Vx1 .
But, x1 is the only point of local dimension d in Vx1 . Hence x∗ = x1.

See that formula F starts by a quantifier ∃ and has 1 alternation.
Now, see that L is definable by some first order formula G from relation Reach, from relation OneStep

and from some recursive relations: write that n ∈ L iff there exists m ∈ N, and an integer encoding
m rational points x1, x2, . . . , xm, such that for all 1 ≤ i < m < xi, xi+1 >∈ OneStep, and x0 =
(J (\), 0, . . . , 0), and there exists some i ∈ N, with < xm, x1, i >∈ Reach.

Substitute every occurrence of relation OneStep in formula G by formula F and every occurrence
of formula Reach by formula H. One gets a resulting formula defining L from some H(zk) recursive

relations starting with a quantifier ∃ and with 1 alternation. By lemma 5.4, L ∈ Σ
H(zk)
2 = Σωk+1.

2

We get immediately from theorem 4.2 and from proposition 5.5 for k ≥ 1 and [6, 7, 8] for k = 0:

Theorem 5.1 Let k′ ≥ 0.

• The languages that are semi-recognized by a PCD system of dimension 2k′ + 3 in finite continuous
time are precisely the languages of Σ

ωk′ .

• The languages that are semi-recognized by a PCD system of dimension 2k′ + 4 in finite continuous
time are precisely the languages of Σ

ωk′
+1

In other words, we obtain a full characterization of the computational power of PCD systems.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science,
138:3–34, 1995.

[2] Eugene Asarin and Oded Maler. On some Relations between Dynamical Systems and Transition
Systems. In Proceedings of ICALP, pages 59–72, 1994. Lecture Notes in Computer Science, 820.

[3] Eugene Asarin and Oded Maler. Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy.
In Proceedings of FSTTCS, pages 471–483, 1995. Lecture Notes in Computer Science, 1026.

[4] Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science, 138:33–65, 1995.

[5] Lenore Blum, Mike Shub, and Steve Smale. On a Theory of Computation and Complexity over
the Real Numbers: NP-completeness, Recursive Functions and Universal Machines. Bulletin of the
American Mathematical Society, 21(1):1–46, July 1989.

[6] Olivier Bournez. Achilles and the tortoise climbing up the hyperarithmetical hierachy. Technical
report, LIP ENS-Lyon, 1997.

[7] Olivier Bournez. Some bounds on the computational power of piecewise constant derivative systems.
In Proceeding of ICALP’97, pages 143–153, 1997. Lecture Notes in Computer Science, 1256.

[8] Olivier Bournez. Some bounds on the computational power of purely rational piecewise constant
derivative systems. Technical report, LIP ENS-Lyon, 1997.

[9] Olivier Bournez and Michel Cosnard. On the computational power of hybrid and dynamical systems.
Theoretical Computer Science, 168(2):417–459, 1996.

[10] Michael S. Branicky. Universal computation and other capabilities of hybrid and continuous dy-
namical systems. Theoretical Computer Science, 138:67–100, 1995.

[11] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory Languages and Computation.
Addison-Wesley, 1979.

[12] P. Koiran. Computing over the reals with addition and order. Theoretical Computer Science,
133:35–47, 1994.

[13] K. Meer and C. Michaux. A Survey on real Structural Complexity Theory. To be published in
Bulletin of the Belgian Mathematical Society - Simon Stevin.

38

[14] Cristopher Moore. Recursion theory on the reals and continuous-time computation. Theoretical
Computer Science, 162:23–44, 1996.

[15] P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the foundations of
mathematics. Elsevier, 1992.

[16] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.

39

