
On the computational power of dynamical

systems and hybrid systems∗

Olivier Bournez and Michel Cosnard

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon

46, Allée d’Italie
F-69364 Lyon Cedex 07, France

e-mail: {obournez | cosnard }@lip.ens-lyon.fr

Abstract

We explore the simulation and computational capabilities of discrete and

continuous dynamical systems. We introduce and compare several notions of

simulation between discrete and continuous systems. We give a general frame-

work that allows discrete and continuous dynamical systems to be considered

as computational machines. We introduce a new discrete model of computa-

tion: the analog automaton model. We characterize the computational power

of this model as P/poly in polynomial time and as unbounded in exponential

time. We prove that many very simple dynamical systems from literature are

able to simulate analog automata. From this results we deduce that many

dynamical systems have intrinsically super-Turing capabilities.

1 Introduction

The computational power of abstract machines which compute over the reals in
unbounded precision in constant time is still an open problem. We refer the reader
to [?] for an up-to date survey. Indeed, a basic model for their computations has
been proposed by Blum Shub and Smale [8] and subsequently modified by Koiran
[16]. When restricted to discrete inputs, such models were proved to compute in ex-
ponential time any boolean functions, and hence to have super-Turing capabilities.
Recently, Siegelmann and Sontag studied the computational power of analog recur-
rent neural networks, with real weights. They proved that analog neural networks
also have super-Turing capabilities [25].

Thus it is possible to get computational machines strictly more powerful than
Turing machines, if the machines are able to compute with unbounded-precision
reals. But, it may be argued that these machines (BSS machines, analog recurrent
neural networks) are purely theoretical machines. The aim of this paper is to show
that, actually, many dynamical systems or hybrid system models as defined in the
literature also have super-Turing capabilities. Hence, we show that machines with
the computational power of the analog recurrent neural networks may be physically
plausible [23, 24]. Note that we will assume in this paper that world is continuous:
space and time is supposed to be a continuous medium. We will not discuss here
this hypothesis. See [24] for a similar assumption.

The models studied in this paper are dynamical systems or hybrid systems.
We call hybrid systems that combine discrete and continuous dynamic. Several

∗Support by Esprit Project 8556, NeuroColt is acknowledged.

1

formal definitions have been proposed in literature: see for example [1, 9, 21]. Some
undecidability results are known [1, 2, 10, 12], but only a small number of papers
have been devoted to the study of hybrid systems as computational models: the
work of Asarin, Maler and Pnueli [3, 4, 5] about Piecewise Constant Derivative
systems and the work of Branicky [9] about simulation capabilities of Ordinary
Differential Equations can however be mentioned. This paper can also be considered
as a generalization of the undecidability results known about hybrid and dynamical
systems. In particular, we extend the results from [3, 5, 9, 19].

In first section we introduce the notions of off-line and on-line computation by
a discrete system . The computational model of analog automaton is defined. We
characterize precisely its computational power as the computational power of analog
recurrent neural networks [25]. Then, several notions of simulation are introduced
and compared. These notions are derived and adapted from [3, 5, 9, 13]. First sec-
tion is ended by a study of the computational power of iterations of piecewise linear
functions: we extend the results of [13, 14, 17] and prove that the computational
power of one to one piecewise linear functions is exactly the computational power
of analog automata.

Section two is devoted to continuous dynamical systems. A general framework is
first given in order to consider continuous systems as computational machines. The
notions of computation, of discretization of a continuous system, and the notions of
simulation of a discrete system by a continuous system are defined. These notions
are briefly compared to the notions in literature, and some of their properties are
stated. We prove then, using arguments similar to [3], that there exist some Turing
machines or some analog automata that cannot be simulated by any continuous
system in dimension 2.

In section three, we prove that every analog automaton can be simulated by a
continuous dynamical system in dimension 3: we prove that many continuous dy-
namical systems (mirror systems, piecewise constant derivative systems, ordinary
differential equations, and hybrid systems) do have at least the computational power
of analog automata. For piecewise constant derivative systems, linear hybrid sys-
tems, and partially for Lipschitz ordinary differential equations, we also prove that
they cannot have much more computational power than analog automata.

2 Discrete machines

2.1 Transition systems without input and discrete computa-

tions

Our aim is to characterize the computational power of dynamical systems. Dynam-
ical systems do not have a straightforward notion of input: we need to define the
notion of transition system without input.

Definition 2.1 (Transition system without input [3]) A transition system
without input (also called “discrete dynamical system”) is a pair A = (Q, δ) where
Q is a set called space, and δ is a subset of Q×Q. If δ is a function from Q to Q,
A is said to be deterministic.

A transition system without input is reversible if its transition function is one to
one. We will call iterations of function f in dimension d a transition system without
input defined by A = (X ⊂ Rd, f). A piecewise linear function in dimension d, is
a function defined on X ⊂ Rd, where X can be partitioned in a finite number of
convex closed polyhedra Xi of non empty interiors, such that f is affine on every
Xi.

2

We now add some inputs to transition systems. We will distinguish the notions
of off-line computations (the input is encoded in the initial configuration) and on-
line computations (the input is given bit after bit, during the evolution of the
system). The definitions in this section and in the following section are derived
from [13, 14, 17].

Definition 2.2 (Off-line system) An off-line system is a 5-tuple

S = (Q, δ, φ,A,R)

where

• (Q, δ) is a transition system without input.

• φ : {0, 1}+ → Q is an encoding function.

• A,R ⊂ Q are subsets of Q, such that A ∩ R = ∅, called the accepting and
rejecting sets.

On an input u ∈ {0, 1}+, a computation of S is a sequence (x(k))k∈N such that
x(0) = φ(u) and (x(k), x(k + 1)) ∈ δ for all k ∈ N.

Call V the subset of the u ∈ {0, 1}+ such that there exists a computation x, and
k ∈ N, such that x(k) ∈ A ∪R.

The computation time is defined on V as

t : V → N

u 7→ min{k|x is a computation on u
and x(k) ∈ A ∪R}

The function computed by S is the partial function F : {0, 1}+ → {0, 1}, defined
on V by, if x is a computation on u such that x(t(u)) ∈ A ∪ R,

• F (u) = 1 if x(t(u)) ∈ A.

• F (u) = 0 if x(t(u)) ∈ R.

The time complexity of the computation is the function T such that

T (n) = max
|u|=n

t(u)

where |u| stands for the length of u.

Thus off-line computing consists in encoding the input into the initial configu-
ration, and then evolving according to a transition system without input. We can
now define the notion of on-line computation:

Definition 2.3 (On-line system) An on-line system is a 5-tuple

S = (Q, δ, δ0, δ1, q0, A,R)

where:

• (Q, δ),(Q, δ0) and (Q, δ1) are transition systems without input.

• A,R ⊂ Q are subsets of Q, such that A ∩ R = ∅, called respectively the
accepting and rejecting sets.

• q0 ∈ Q is called the initial state.

3

On an input u = u0u1 . . . u|u|−1 ∈ {0, 1}+, a computation of S is a sequence
(x(k))k∈N such that x(0) = q0, (x(k), x(k+1)) ∈ δuk

for 0 ≤ k < |u| and (x(k), x(k+
1)) ∈ δ for all k ≥ |u|.

The computation time and the function computed by S are defined exactly as in
definition 2.2

So on-line computing consists in starting from a fixed given state, the initial
state, then evolving first according to the bits of the input, and then according to
a transition system without input.

We will say that a function F : {0, 1}+ → {0, 1} is off-line computable by a class
C of transition systems, if F is computed by an off-line system S = (Q, δ, φ,A,R)
where (Q, δ) ∈ C. We will say that a function F : {0, 1}+ → {0, 1} is on-line
computable by a class C of transition systems, if F is computed by an on-line system
S = (Q, δ, δ0, δ1, q0, A,R) where (Q, δ), (Q, δ0), (Q, δ1) ∈ C.

2.2 Analog automata

We propose a new model of computation: an analog two stack automaton is similar
to a usual two stack automaton with the only difference that it is able to change
the whole content of one of its stack in constant time 1.

Definition 2.4 (Analog automaton) A deterministic analog (two stack) automa-
ton is a system

M = (Q,Σ, δ, q0, F)

where

• Q is a finite set of states.

• Σ is an alphabet.

• q0 ∈ Q is the initial state.

• F ⊂ Q is the set of final states.

• δ is a mapping from Q× (Σ∪ {ε})2 to Q×{Nop, Pop, {Push}×Σ, {Advice}
×Σ#}2 where Σ# = Σ∗ ∪ Σω is the set of words with finite or infinite length.

An instantaneous description (ID) of an analog automaton is a 3-tuple (q, γ1, γ2)
where q ∈ Q is called the state of the automaton, and γ1, γ2 ∈ Σ# are called the
contents of the stacks. We define the following relation ` between IDs:

for q ∈ Q, a1, a2 ∈ Σ, γ1, γ2, γ
′
1, γ

′
2 ∈ Σ#,

with convention that if ai = ε then γi = ε,

(q, a1γ1, a2γ2) ` (q′, γ′1, γ
′
2)

if, for i ∈ {1, 2}, q′ = δ1(q, a1, a2), and

γ′i =

γi if δi+1(q, a1, a2) = Pop
aiγi = Nop
caiγi = (Push, c)
w = (Advice, w)

We define the relation `∗ as the transitive closure of `. We say, when

δi+1(q, a1, a2) = (Advice, w)

4

that M uses w or makes advice w appear on stack i. The language L(M) accepted
by M is defined by

L(M) = {w ∈ {0, 1}+|(q0, w, ε) `∗ (p, γ1, γ2) ∧ p ∈ F}

The notion of non-deterministic two stack automaton is defined in a similar way.
We shall call discrete two stack automaton the usual notion of two stack automaton:
that is, a discrete two stack automaton is an analog automaton which never uses any
advice. Any analog automaton (or discrete two stack automaton) M will also be
considered as a transition system without input as M = (Q×Σ#×Σ#,`). Because
a discrete two stack automaton is an analog two stack automaton, and since discrete
two stack automata can simulate Turing machines [11], analog automata are able to
simulate Turing machines. The exact computational power of analog automata is
given by the following theorem (for the definition of the complexity classes P/poly
and NP/poly, see [6]):

Theorem 2.1 • Every language L ⊂ {0, 1}+ can be recognized by a determin-
istic analog two stack automaton in exponential time.

• The languages L ⊂ {0, 1}+ accepted by deterministic (respectively: non–
deterministic) analog two stack automata in polynomial time are exactly the
languages belonging to the complexity class P/poly (resp: NP/poly).

Proof: We shall only detail the deterministic case:

• Let L ⊂ {0, 1}+ be a language. Let the word γ, of possibly infinite length,
be the concatenation, with delimiters, by increasing word length order, of all
the words of L. Let M be an analog automaton that, on input w ∈ {0, 1}+

on its first stack, makes advice γ appear on its second stack. Then M seeks
in γ if w is present. If it is, M accepts. M stops processing as soon as it
encounters a word of length greater than the length of w. L is recognized by
M in exponential time.

• Let k be the number of different advices that the analog automaton M can
possibly use. In polynomial time p(n), M can at most read the p(n) first
letters of the k advices. So it is possible to simulate M with a Turing machine
M ′, which gets as advice of polynomial size kp(n) the p(n) first letters of each
of the k advices of M , and then simulates M . Hence the computational power
of analog automata in polynomial time is bounded by P/poly.

Let L be a language in P/poly. By definition, L is recognized by a Turing
machine M ′ with an advice function f : N → {0, 1}+ (see [6]). We can
construct a word γ of infinite length as the concatenation, with delimiters, of
f(1), f(2), etc.... In order to recognize L, an analog automaton M , on input
w ∈ {0, 1}+, first makes advice γ appear. Then M seeks in γ the value of
f(|w|). This operation can be done in polynomial time, since there exists a
polynomial p, such that, for all i ∈ N, the size of f(i) is bounded by p(i): so
M has at most to read p(1) + p(2) + · · · + p(|w|) characters, that is at most
a polynomial number of characters. Finally, M simulates Turing machine M ′

on (w, f(|w|)). Hence L is recognized by M in polynomial time.

�

Therefore, we have shown that the computational power of analog automata is
exactly the computational power of recurrent analog neural networks: see [25]. It
is well known [11] that there exist some languages L ⊂ {0, 1}+ which cannot be
recognized by Turing machines. Since, from theorem 2.1, L can be recognized by
an analog automaton, we conclude that the analog two stack automata do have
super-Turing capabilities.

5

2.3 Simulation notions between discrete systems

In this section, we define several notions of simulation between discrete systems.
We shall compare these notions later. The notion of simulation used in [13, 14, 17]
is the following:

Definition 2.5 (K-simulation) Let A1 = (Q1, δ1) and A2 = (Q2, δ2) be two tran-
sition systems without input. Let D ⊂ Q2 be stable by δ2 (that is δ2(D) ⊂ D) and
Φ an onto function from D to Q1. A2 K-simulates A1 via Φ if

∀q1, q2 ∈ D, (q1, q2) ∈ δ2 ⇔ (Φ(q1),Φ(q2)) ∈ δ1

That is, A2 K-simulates A1 if there exists a sub-system of system A2 which is
identical to A1, modulo Φ. We define the notion of trajectory of a transition system
cutting a subset:

Definition 2.6 Let A = (Q, δ) be a transition system without input.

• There is a trajectory T from x to x′ of real length i ∈ N and virtual length
1 cutting Y ⊂ Q, if there exists a i-tuple (x = x0, x1, x2, . . . , xi = x′) such
that

i) ∀0 ≤ j < i, (xj , xj+1) ∈ δ
ii) ∀0 < j < i, xj 6∈ Y
ii) x, x′ ∈ Y

• There is a trajectory T from x to x′ of real length i ∈ N and virtual length
j ∈ N cutting Y if there exists a j-tuple (x = x0, x1, x2, . . . , xj = x′) such
that, for all k ∈ {1, 2, . . . , j}, there exists a trajectory cutting Y of real length
ik and of virtual length 1 from xk−1 to xk where i = i1 + i2 + · · · + ij.

• We will denote lengthreal(T) = 〉 and lengthvirt(T) = |.

That allows us to define the notion of Q-simulation (inspired from [5]): we extend
the notion of K-simulation by the possibility that a transition of system A1 can be
realized by several transitions of system A2.

Definition 2.7 (Q0/Q simulation) • Let A1 = (Q1, δ1) and A2 = (Q2, δ2) be
two transition systems without input. Let Q0 ⊂ Q1.

A2 Q0-simulates A1 via Φ if there exists Y ⊂ Q2 such that Φ is an onto
function from Y to Q0, where, for all x, x′ ∈ Y , there exists a trajectory T ′

from x to x′ in A2 cutting Y if and only if there exists a trajectory T from
Φ(x) to Φ(x′) in A1 cutting Q0.

• When Q0 = Q1, we say that A2 Q-simulates A1 via Φ.

If when lengthvirt(T) = 〉 ∈ N then lengthreal(T ′) = ·〉, for some constant ∆,
we say that the simulation is in real time ∆, or in linear time.

If when lengthvirt(T) = 〉 ∈ N then lengthreal(T ′) = O(√(〉)), for a given

polynomial p, we say that the simulation is in polynomial time.

Hence, K-simulation is identical to Q-simulation in real time 1. In [3], the
authors use a different notion: the notion of abstraction. Let us start by defining
the abstraction of a trajectory σ, via a function ϕ, as the sequence of the images of
the trajectory by ϕ. Formally:

Definition 2.8 ([3]) Let A = (Q, δ) be a transition system without input.

6

• Let q ∈ Q. We denote L(A, q) the set of the trajectories of A starting from q:
that is the sequences (q0, q1, . . . , qk, . . .), with q = q0, such that (qk, qk+1) ∈ δ,
for all k ∈ N.

• Let σ ∈ L(A, q). We denote σ = (q0, q1, q2, . . .). Let ϕ be a function from Q
to a set Q′, onto, possibly partial. In a point x ∈ Q, where ϕ is not defined,
we will write ϕ(x) = ⊥. We say that ϕ is a state abstraction function from
Q to Q′. We denote ϕ(σ) the sequence (q′0, q

′
1, q

′
2, . . .), where q′i = ϕ(qji

),
with for all i ≥ 1, ji = min{j|j > ji−1 ∧ ϕ(qj) 6= ⊥} and j0 = 0.

From these definitions we get the notion of abstraction between transition sys-
tems:

Definition 2.9 (Abstraction [3]) Let A1 = (Q1, δ1) and A2 = (Q2, δ2) be two
transition systems without input. Let ϕ be a state abstraction function from Q2 to
Q1.

We say that A1 is an (ϕ-) abstraction of A2 via ϕ, or A2 ϕ-realizes A1, denoted
by A1 ≤ϕ A2 , if :

∀x ∈ Q1, ∀y ∈ ϕ−1(x), σ ∈ L(A2, y) ⇒ ϕ(σ) ∈ L(A1, x) (1)

∀x ∈ Q1, ∀σ1 ∈ L(A1, x), ∃y ∈ Q2, ∃σ2 ∈ L(A2, y) σ1 = ϕ(σ2) (2)

That means that, A1 is a ϕ-abstraction of A2, if the set of the trajectories of A1 is
exactly the set of the abstractions of the trajectories of A2, for the state abstraction
function ϕ. We define the notion of simulation between classes of systems, for a
given notion of simulation, by:

Definition 2.10 Let C and C ′ be two classes of transition systems without input.
We say that C′ simulates C, if for all system S ∈ C, there exists a system S ′ ∈ C′

such that S ′ simulates S.

2.4 Properties

We study now the links between the different notions of simulation:

Theorem 2.2 • All the previous notions of simulation are reflexive and tran-
sitive

• Let A1 = (Q1, δ1) and A2 = (Q2, δ2) be two transition systems without input.
The following implications are true:

A2 K-simulates A1 via ϕ ⇒ A2 Q-simulates A1 via ϕ ⇒ A1 ≤ϕ A2

• Assume that A2 K-simulates (respectively: Q-simulates) A1, and A2 is deter-
ministic, then A1 is deterministic.

• We have the following relations between the computational models:

– The non-deterministic analog automata K-simulate the deterministic
analog automata and the non–deterministic discrete two stack automata.

– The deterministic analog automata K-simulate the discrete deterministic
two stack automata.

– The non-deterministic discrete two stack automata K-simulate the de-
terministic discrete two stack automata and the non-deterministic finite
state automata.

7

– The deterministic discrete two stack automata ϕ-realize the non–deter-
-ministic finite state automata.

– The non-deterministic finite state automata K-simulate the deterministic
finite state automata.

Proof: All the results are straightforward from the definitions. The only intri-
cate point is that the discrete deterministic two stack automata ϕ-realize the non-
deterministic finite state automata. This fact was already mentioned in [3]: let A =
(Q, δ) be a non-deterministic finite state automaton. Let d = maxq∈Q |{v/(q, v) ∈
δ}| be the maximum of the outgoing degrees of the vertices of the graph G = (Q, δ).
In every state q ∈ Q, we call eq,1, eq,2, . . . , eq,nq

the outgoing edges starting from
q in G. Note that, by definition of d, necessarily, nq ≤ d. We construct A′ =
(Q′ = Q×Σ∗ ×Σ∗, δ′) as a deterministic discrete two stack automaton, with stack
alphabet Σ defined by Σ = {1, 2, . . . , d}. We define the transition function δ′ of A′

such that, in a state q, when A′ reads symbol s ∈ Σ on the top of its first stack, A′

pops s, and makes a transition to state q′, where eq,s = (q, q′). It can be checked
that A′ ϕ-realizes A, via the function ϕ defined on every q′ = (q, γ1, γ2) ∈ Q′ as
ϕ(q′) = q.

�

We can go further and precise the relations between the notions of simulation
by:

Theorem 2.3 • The notion of Q-simulation is strictly more powerful than the
notion of K-simulation.

• The notion of abstraction is strictly more powerful than the other notions.

Proof: It is easy to construct a transition system A2 that simulates every step of
a transition system A1 by two steps. A2 Q-simulates A1 but A2 does not K-simulate
A1. So the first point is straightforward.

The deterministic discrete two stack automata ϕ-realize the non-deterministic
finite state automata from previous theorem, but the deterministic discrete two
stack automata cannot Q-simulate or K-simulate the non-deterministic finite state
automata from theorem 2.2.

�

The proof of the previous theorem shows that the notion of abstraction is very
interesting, because this notion, unlike the other notions, allows non-deterministic
systems to be simulated by deterministic systems. We will need the following result:

Theorem 2.4 Every deterministic (respectively: non-deterministic) analog two stack
automaton M can be Q-simulated in polynomial time by a deterministic (resp: non-
deterministic) reversible analog two stack automaton M ′.

Proof:
We only give a sketch of the proof here. Let Σ be the stack alphabet of M .

We will write every word α ∈ Σ# as an infinite sequence a1a2 . . . an · · · ∈ Σω with
ak = ε, for all k > |α|. Let α0, α1, . . . and αp−1 be p words of Σω. For i ∈ [0, p− 1],
we can write αi = ai,0ai,1ai,2 . . . ai,n · · · ∈ Σω. We define the mix operation as
mix(α0, α1 . . . , αp−1) = b1b2 . . . bn, · · · ∈ Σω, where for all j > 0, bj = aimodp,idivp,
where div is the integer division, and mod is the remainder of the integer division.

Let β1, β2, . . . , βq be the q different advices that analog automaton M can pos-
sibly use in a computation. Call β = mix(β1, β2, . . . , βq). At any time, let γ1 ∈ Σ#

(respectively: γ2 ∈ Σ#) be the content of the first (resp: the second) stack of M .
Call γ = mix(γ1, γ2). M = (QM , δM) is Q-simulated by M ′ = (QM ′ , δM ′) via ϕ,
where M ′ and ϕ are built as follows: at any time M ′ keeps the simulated values

8

of the contents of the two stacks of M by keeping γ in its first stack. That, is
at any time, the state (q′, γ′1, γ

′
2) ∈ QM ′ of M ′ is such that, there exists w ∈ Σ∗

with γ′1 = wγ. Before simulating any step of M , M ′ makes advice β appear on
its empty second stack, and keeps this value in its second stack: that is, at any
time, there exists w′ ∈ Σ∗, such that γ′2 = w′β. M ′ is built by simulating M on
γ = mix(γ1, γ2). It can be checked that M ′ is able to simulate all the operations
of M on γ. If M tries to read a character in one of its advice, M ′ can simulate the
operation by reading the characters of β. The reader can check that it is possible,
using this way, to get an analog automaton M ′ that Q-simulates M in polynomial
time.

Now remark that the advice β appears only in the first step of any simulation
of M by M ′, appears only on the second stack of M ′ and only on an empty stack.
If we except the first step that makes advice β appear, M ′ is a discrete two stack
automaton, that is a Turing machine. Since we know that a Turing machine can
always be simulated, modulo a polynomial time overhead, by a reversible one (see
for example: [7]), we claim that M ′, from second step, can be built reversible. It
can be checked that the first step (the apparition of advice β on the empty second
stack of M ′) is reversible, and that the second step (that is the beginning of the
reversible process of “Turing machine”M ′ on γ and β) is only reachable by the first
step. Thus M ′ is reversible at any step and Q-simulates M in polynomial time.

�

We will also need the following result:

Lemma 2.1 • Let F : {0, 1}+ → {0, 1} be computed in polynomial time by an
off-line system S = (X, f, φ,A, F).

Suppose that:

– X is a compact subset of Rn.

– f ∈ LPd/poly: that is, f is Lipschitz, and f : X → X can be approxi-
mated in polynomial time by a Turing machine with advice: see [13, 14].

– φ is in PEd/poly, that is φ : {0, 1}+ → X can be approximated in
polynomial time by a Turing machine with advice: see [13, 14].

– A,R are convex polyhedra of Rn.

Then F ∈ P/poly.

• Let F : {0, 1}+ → {0, 1} be computed in polynomial time by an on-line system
S = (X, f, f0, f1, q0, A,R).

Suppose that:

– X is a compact subset of Rn.

– f, f0, f1 ∈ LPd/poly.

– A,R are convex polyhedra of Rn.

Then F ∈ P/poly.

Proof: This is an easy generalization of [13, 14].
�

2.5 Computational power of piecewise linear functions

We study now the computational power of iterations of piecewise linear functions.
The results are extensions of [13, 14, 17]. We prove in this section that it is possible
to use one to one functions. First we need the following definition:

9

Definition 2.11 (Disconnected piecewise linear function) A function f is
called disconnected piecewise linear with real coefficients (respectively: rational
coefficients) if, for some n ∈ N,

1. there exist n closed intervals Ii = [ai, bi], with ai, bi ∈ R (resp: ai, bi ∈ Q).

2. f can be written

f : C =
⋃

i,j∈{1,2,...,n}

Ci,j ⊂ [0.1]2 → [0, 1]2

where, for all i, j ∈ {1, 2, . . . , n}, Ci,j is defined as Ci,j = Ii × Ij .

3. all the Ii are at a strictly positive distance: there exists ε such that, for all
i 6= j, x ∈ Ii, y ∈ Ij ⇒ d(x, y) ≥ ε.

4. on each Ci,j , f is affine of type f(x1, x2) = (αi,j,1 + βi,j,1x1, αi,j,2 + βi,j,2x2),
where αi,j,1, αi,j,2, βi,j,1 and βi,j,2 are real (resp: rational) positive constants.

Our main results come as:

Theorem 2.5 • Every deterministic (respectively: reversible) discrete two
stack automaton M can be K-simulated by iterations of a disconnected (resp:
one to one) piecewise linear function f : C ⊂ [0, 1]2 → [0, 1]2 with rational
coefficients.

• Every deterministic (respectively: reversible) analog two stack automaton M
can be K-simulated by iterations of a disconnected (resp: one to one) piecewise
linear function f : C ⊂ [0, 1]2 → [0, 1]2 with real coefficients.

Proof:
We will only detail here the case of an analog automaton M being simulated by

iterations of a disconnected piecewise linear function with real coefficients. To get
the case of a discrete two stack automaton M being simulated by iterations of a
disconnected piecewise linear function with rational coefficients, just consider M as
an analog automaton which does not make any advice appear: the proof gives then
a function with rational coefficients, instead of real coefficients.

We can suppose w.l.o.g. that the state set of M is Q = {1, 3}p1 × {1, 3}p2 , and
that the letters of Σ, the stack alphabet of M , are encoded onto the alphabet {1, 3}.
Let p = dlog2|Σ|e be the number of bits needed to encode each letter of Σ.

Each ID (q, γ1, γ2) of M is encoded in the radix-4 expansion of a point (x1, x2) of
[0, 1]2 where, if q = (q1,1, q1,2, . . . , q1,p1

, q2,1, q2,2, . . . , q2,p2
) ∈ Q = {1, 3}p1 ×{1, 3}p2

and γi ∈ Σ# can be written on alphabet {1, 3} as γi = si,1, si,2, . . . , si,n, . . . ,

xi =

pi
∑

j=1

qi,j
4j

+

∞
∑

j=1

si,j

4pi+j

We will denote abc the real number with radix-4 expansion abc.
Let I1,l1 × I2,l2 be all the sets defined by:

• Ii,li = [li, li + 1/4pi+p] and li = 0.qi,1qi,2, . . . , qi,pi
, si,1, si,2, . . . , si,p

• or Ii,li = {li} and li = 0.qi,1qi,2, . . . , qi,pi

10

for any si,j and qi,j elements of {1, 3}.
The stack is nonempty in the first case, and empty in the second one. In what

follows, we will not make any more this distinction, and we will suppose, in the case
of an empty stack, that si,1, si,2, . . . , si,p = 0.

Let
C =

⋃

l1,l2

I1,l1 × I2,l2

Function f will be defined as piecewise linear on C, and the (Ij,lj)j∈{1,2},lj will play
the role of the (Ii)i∈[1...n] of definition 2.11.

Assume that (x1, x2) ∈ I1,l1 × I2,l2 encodes the ID (q, a1γ1, a2γ2) of M at time
t, where a1, a2 ∈ Σ, γ1, γ2 ∈ Σ# and q ∈ Q.

Call ∆xi = xi − li, for i ∈ {1, 2}.
Write q, a1 and a2 as q = q1,1, . . . , q1,p1

, q2,1, . . . , q2,p2
, a1 = s1,1, . . . , s1,p and

a2 = s2,1, . . . , s2,p.
On I1,l1 × I2,l2 , we define f such that f(x1, x2) = (x′1, x

′
2) with

x′i = 0.q′i,1, . . . , q
′
i,pi

+ ∆x′i

where
q′1,1, q

′
1,2 . . . , q

′
1,p1

q′2,1, q
′
2,2, . . . , q

′
2,p2

= δ1(q, a1, a2)

and ∆x′i defined by:

• ∆x′i = 4p∆xi if δi+1(q, a1, a2) = Pop

• ∆x′i =
si,1

4pi+1 + · · · + si,p

4pi+p + ∆xi if δi+1(q, a1, a2) = Nop

• ∆x′i =
ci,1

4pi+1 + · · · + ci,p

4pi+p +
si,1

4pi+p+1 + · · · + si,p

4pi+2∗p + ∆xi

4p

if δi+1(q, a1, a2) = (Push, c = ci,1, . . . , ci,p)

• ∆x′i = b1
4pi+1 + b2

4pi+2 · · · + bn

4pi+n + . . .

if δi+1(q, a1, a2) = (Advice, γ = b1b2 . . . bn . . .)

It can be checked that, in any case, f is built such that f(x1, x2) encodes the ID
of M at time t+1: that is encodes ID (q′, γ′1, γ

′
2) where (q, a1γ1, a2γ2) ` (q′, γ′1, γ

′
2).

So M is K-simulated by the iterations of function f . Function f is a disconnected
piecewise linear function with real coefficients, and the result for non (necessarily)
reversible analog automata follows.

Suppose now that analog automaton M is reversible: we prove that, in this
case, function f is one to one on C. Assume that there exist x = (x1, x2) ∈ C and
y = (y1, y2) ∈ C such that f(x) = f(y). We want to prove that x = y.

We need to define a Mod operator: let r ∈ N. Let z ∈ [0, 1/4r[. Assume
that z has a finite radix-4 expansion. We can write this unique finite expansion as
z = 4−r0.α1α2α3 . . . αk, where αk 6= 0 and k ∈ N. Suppose that z does not have
any finite expansion: in this case, we write the unique infinite expansion of z as
z = 4−r0.α1α2α3 . . . and we take k = ∞.

In any case, we define the Mod operator on z as Modr(z) = 4−r0.α′
1α

′
2α

′
3 . . .,

where, for all 1 ≤ j ≤ k,

α′
j =

{

1 if αj = 0 or αj = 1
3 if αj = 2 or αj = 3

From now, we will denote by an x exponent the definitions relative to x, and
by an y exponent the definitions relative to y. We will only deal with x in the
definitions. Definitions relative to y are to be understood in a similar way.

11

There exists lx1 , l
x
2 , where lxi = 0.qx

i,1, q
x
i,2, . . . , q

x
i,pi

, sx
i,1, . . . , s

x
i,p, i ∈ {1, 2}, such

that x ∈ Ix = I1,lx
1
× I2,lx

2
.

Let ∆xi = xi − lxi . We have 0 ≤ ∆xi < 1/4pi+p.
Let qx = qx

1,1, q
x
1,2, . . . , q

x
1,p1

, qx
2,1, q

x
2,2, . . . , q

x
2,p2

.
Let sx

i = sx
i,1, s

x
i,2, . . . , s

x
i,p, for i ∈ {1, 2}.

Let f(x) = (x′1, x
′
2).

So, if x is corresponding to a valid encoding of an ID (q, a1γ1, a2γ2) of the
analog automaton M , with q ∈ Q, a1, a2 ∈ Σ, then qx, sx

1 , s
x
2 are respectively such

that qx = q,sx
1 = a1 and sx

2 = a2.
Let q′x = q′x1,1, q

′x
1,2, . . . , q

′x
1,p1

, q′x2,1, q
′x
2,2, . . . , q

′x
2,p2

= δ1(q
x, sx

1 , s
x
2)

and l′xi = 0.q′xi,1, q
′x
i,2, . . . , q

′x
i,pi

.
By the definition of f , we have x′i = l′xi + ∆x′i where 0 ≤ ∆x′i < 1/4pi and

y′i = l′yi + ∆y′i where 0 ≤ ∆y′i < 1/4pi . From f(x) = f(y) we get

l′xi = l′yi (3)

∆x′i = ∆y′i (4)

Define x = (x1, x2) as, for i ∈ {1, 2}, xi = lxi +Modpi+p(∆xi),
Since we do not change any digit of the radix 4 expansion before the p+pi +1th

digit, we have x ∈ Ix. Let f(x) = x′ = (x1
′, x2

′). We know that f is linear on Ix.
By studying the different possibilities, it can be checked that in any case

xi
′ = l′xi +Modpi

(∆x′i) (5)

We define in a similar way y = (y1, y2), where, for i ∈ {1, 2} , yi = lyi +
Modpi+p(∆yi). Let f(y) = y′ = (y1

′, y2
′). We get similarly

yi
′ = l′yi +Modpi

(∆y′i) (6)

From (3),(4),(5) and (6) we get, for i ∈ {1, 2}, xi
′ = yi

′.
So we have f(x) = f(y). Now, it can be seen that x and y are encoding valid IDs.

Call IDx, and IDy the IDs encoded by respectively x and y. Since f K-simulates
M , we get that f(x) encodes ID′, where ID′ is given by IDx ` ID′. Similarly, we
get that f(y) encodes also ID′, with IDy ` ID′. From the fact that M is reversible,
we get IDx = IDy. Thus, we get also necessarily Ix = Iy. Now, f is defined as
a one to one linear function on every I = I1,l1 × I2,l2 . Thus we obtain x = y, and
that f is one to one.

�

Note that,

• a disconnected piecewise linear function f : C → [0, 1]2 with rational (re-
spectively: real) coefficients can be completed for example by triangulation,
to a piecewise linear continuous function f : [0, 1]2 → [0, 1]2 with rational
(respectively: real) coefficients.

• a disconnected one to one piecewise linear function f : C → [0, 1]2 with ratio-
nal (respectively: real) coefficients can be completed to a one to one piecewise
linear function f : [0, 1]2 → [0, 1]2 with rational (resp: real) coefficients.

So in theorem 2.5, all the results can be stated with continuous or one to one
piecewise linear functions on all [0, 1]2 instead of disconnected piecewise linear func-
tions defined only on C ⊂ [0, 1]2.

We now give some technical considerations about the one to one disconnected
piecewise linear functions f given by theorem 2.5, in the case of a reversible analog
(or discrete) two stack automaton M . We use the notations of definition 2.11.

12

From theorem 2.5 we know that f is one to one on C. For i, j ∈ [1 . . . n], call
C ′

i,j = f(Ci,j). Since f is one to one, we have necessarily:

(i, j) 6= (i′, j′) ⇒ C ′
i,j ∩ C ′

i′,j′ = ∅ (7)

Let i, j ∈ [1 . . . n]. We have Ci,j = Ii × Ij , with Ii = [ai, bi] and Ij = [aj , bj].
Call the boundaries as c1, c2, d1, d2 with c1 = ai, c2 = aj , d1 = bi, d2 = bj , such that
Ci,j = [c1, d1] × [c2, d2].

On Ci,j , f can be written f(x1, x2) = (αi,j,1 + βi,j,1x1, αi,j,2 + βi,j,2x2). Let
l ∈ {1, 2}. We know that the constants αi,j,l, βi,j,l are positive. Since f is one to
one on C, we get two possible cases:

• either βi,j,l is strictly positive.

• either βi,j,l = 0 and cl = dl

The interest of these remarks will appear later in this paper.
With Theorem 2.5, we are able to generalize all the results of [13, 14, 17] to one

to one piecewise linear functions. Thus, we get:

Theorem 2.6 Every function F : {0, 1}+ → {0, 1} can be off-line computed by
iterations of a function f : I1 = [0, 1] → I1, one to one, piecewise linear, with real
positive coefficients in dimension 1 in exponential time.

Moreover, the encoding function is computable by Turing Machine (that is in
PE1: see [13, 14]), is one to one, and independent from F . The accepting and re-
jecting sets are also independent of F , and defined as intervals with rational bound-
aries.

Proof: Nothing to do, but say that the functions used in [13, 14] are one to one
functions.

�

We also get:

Theorem 2.7 Every function F : {0, 1}+ → {0, 1} in P (respectively: in P/poly)

• can be off-line computed, in polynomial time, by iterations of an one to one
piecewise linear function, with rational (resp: real) positive coefficients, in
dimension 2.

The encoding function is computable by a Turing machine (that is in PE2:
[13, 14].).

• can be on-line computed, in polynomial time, by iterations of an one to one
piecewise linear function, with rational (resp: real) positive coefficients in di-
mension 2.

The “encoding functions” are one to one, piecewise linear in dimension 2, with
rational positive coefficients.

Proof:

• Let M be a reversible discrete (resp: analog) two stack automaton that recog-
nizes F . From theorem 2.5, we know that M is K-simulated by the iterations
of a piecewise one to one linear function f , via a function Φ. Function F is
computed by the off-line system S = ([0, 1]2, f,Φ, A,R) where A,R are the
subsets of [0, 1]2 that encode respectively the accepting and rejecting config-
urations of M . Moreover, it can be checked that Φ is in PE2: see [13, 14].

13

• LetM0 (respectively: M1) be the reversible discrete two stack automaton that,
on every step, pushes systematically 0 (resp: 1) on its first stack, and leaves
its second stack unchanged. Let M be a reversible discrete (resp: analog)
two stack automaton that recognizes F r, where F r(a1, a2, . . . an) = 1 if and
only if F (an, . . . , a2, a1) = 1. From theorem 2.5, we know that there exist
f0, f1 and f that K-simulate M0, M1 and M , via the functions Φ0, Φ1 and
Φ respectively. It can be checked that, if the state sets of M0 and M1 are
chosen to be the same as the state set of M , then functions Φ0, Φ1 and Φ are
identical. We claim then, that function F is computed by the on-line system
S = ([0, 1]2, f, f0, f1, q, A,R), where A,R are the subsets of [0, 1]2 of points
that encode the accepting and rejecting configurations of M , and q0 ∈ [0, 1]2

is the encoding of the initial state of M .

�

Actually, we can give an upper bound to the computational power of iterations
of piecewise linear functions, using results from [15]:

Theorem 2.8 • Let F : {0, 1}+ → {0, 1} be a function off-line computed by
iterations of a piecewise linear function f in dimension d: that is by an off-
line system S = (X, f, φ,A,R), where X ⊂ Rd. Assume that:

– φ is computable by a linear machine: there exists a linear machine (re-
striction of the BSS machine [8] which is only allowed to compute linear
operations: i.e. which is not allowed to compute multiplications between
its variables [15]) that is able, given w ∈ {0, 1}+, to return the real num-
ber φ(w).

– A,R ⊂ X are convex polyhedra.

– F is computed in polynomial time.

Then F is in P/poly.

• Let F : {0, 1}+ → {0, 1} be a function on-line computed by iterations of piece-
wise linear functions f0, f1, f in dimension d: that is, by an on-line system
S = (X, f0, f1, f, q0, A,R), where X ⊂ Rd. Assume that:

– A,R ⊂ X are convex polyhedra.

– F is computed in polynomial time.

Then F is in P/poly.

Proof: The hypotheses of the theorem are chosen so that, in any case, it is
possible to construct a linear machine [15] M that simulates the evolution of S.
From the fact that the computational power of linear machines with discrete inputs
is bounded by P/poly (see: [15]), we get that F ∈ P/poly.

�

As a conclusion, from the two previous theorems, and from the fact that the
iterations of piecewise linear functions with rational coefficients can be simulated
by some Turing machines, we get that the computational power of iterations of one
to one piecewise linear functions with rational (respectively: real) coefficients from
Rp to Rp, for p ≥ 2, is exactly

• P (resp: P/poly) in polynomial time.

• EXP (resp: unbounded) in exponential time.

14

3 Continuous dynamical systems

3.1 Continuous systems

The continuous dynamical systems that we shall study can be formalized by:

Definition 3.1 (Continuous system) • A continuous system is a pair H =
(X,F) where,

– X is a set, called space.

– F is a set of functions f : R → X.

– ∀t ∈ R, ∀f ∈ F , (f + t) ∈ F , where (f + t) : R → X is defined for all
t′ ∈ R, by (f + t)(t′) = f(t+ t′).

• A trajectory of H starting from x ∈ X is a function f ∈ F such that f(0) = x.

• There is a trajectory of time-length t between x and x′ if there exists a function
f ∈ F such that f(0) = x and f(t) = x′.

• If, for all x ∈ X, there is exactly one trajectory starting from x, the continuous
system is said to be deterministic.

The continuous systems H = (X,F) that we shall study in this paper are all
such that there exists an integer p, such that X ⊂ Rp. We will call integer p the
dimension of H . Note that continuous deterministic systems can be defined in an
equivalent way using a flow:

Proposition 3.1 A continuous system H = (X,F) is deterministic if and only if

∃ϕ : X × R+ → X

such that:

i) ϕ(x)(0) = x
ii) ∀t, t′ ∈ R+, ∀x ∈ X,ϕ(x)(t + t′) = ϕ(ϕ(x)(t))(t′)
iii) F = {ϕ(x)(.)|x ∈ X}

Hence, definition 3.1 is more general that the flow formalization of continuous
systems, since non-deterministic continuous systems can also be defined. We pro-
pose some definitions in order to compare the models for continuous systems:

Definition 3.2 (Differential system) A continuous system H = (X,F) is dif-
ferential if F is defined as the set of the solutions of a given ordinary differential
equation.

Definition 3.3 (System with continuous trajectories) A continuous system
H = (X,F), if X is a topological space, is a system with continuous trajecto-
ries if, for all f ∈ F , f : R → X is a continuous function.

3.2 Discretizations

In order to compare continuous systems to discrete systems, we will need to dis-
cretize them. In that purpose, we define the notion of state abstraction:

Definition 3.4 • Let H = (X,F) be a continuous system. Let ϕ be an onto
partial function from X to a set Q. Function ϕ is called a state abstraction
for H to Q . In a point x, where ϕ is not defined, we will denote ϕ(x) = ⊥.

15

• Let H be a continuous system and ϕ a state abstraction. Let f ∈ F be a
trajectory such that f(0) = x. We call ϕ-signature [3], or abstraction of f ,
the sequence (q1, q2, . . . , qn, . . .) of the values of ϕ(f(t)), when t describes R+.
Formally, there exist two sequences (li)i∈N, (ui)i∈N with, for all i ∈ N∗,

– li = inf{t > ui−1|ϕ(f(t)) 6= ⊥} (u0 = 0)

– ui = inf{t > li|ϕ(f(t)) = ⊥}
– qi = ϕ(f(t)) for some and every t ∈ (li, ui).

• Let H be a continuous system and ϕ a state abstraction. There is a trajectory
from x to x′ cutting ϕ−1(Q), if there exist f ∈ F, 0 ≤ t1 < t2 ≤ t3 ∈
R such that f(0) = x, f(t3) = x′, with ϕ(x) 6= ⊥, ϕ(x′) 6= ⊥, and ∀t ∈
(0, t1), ϕ(f(t)) = ϕ(x), ∀t ∈ (t1, t2), ϕ(f(t)) = ⊥, ∀t ∈ (t2, t3), ϕ(f(t)) =
ϕ(x′), ϕ(f(t1)) ∈ {⊥, ϕ(x)} and ϕ(f(t2)) ∈ {⊥, ϕ(x′)}.

We define the following notions of discretizations:

• by section the system is discretized by observing, through a state abstraction
every t time-units, for a given t ∈ R, the state of the system.

• by interval the system is discretized by observing only the sequence of the
states of the system through a state abstraction, independently of the time
of the system. It is required that the abstractions of all trajectories starting
from points with same abstraction must be identical.

• by abstraction the system is discretized by observing only the sequence of
the states of the system through a state abstraction, independently of the
time of the system. It is not required that the abstractions of all trajectories
starting from points with same abstraction must be identical.

The definitions are derived from [3, 5, 9]. Formally:

Definition 3.5 Let H = (X,F) be a continuous system.

• A transition system without input A = (Q, δ) is a discretization by section,
or S-discretization of H via ϕ, state abstraction for H to Q, if there exists
t0 ∈ R, such that, for all x, x′ ∈ ϕ−1(Q), there is a trajectory of time-length
t0 from x to x′ if and only if (ϕ(x), ϕ(x′)) ∈ δ.

• A transition system without input A = (Q, δ) is a discretization by interval,
or I-discretization of H via ϕ, state abstraction for H to Q, if for all x, x′ ∈
ϕ−1(Q), there is a trajectory of H from x to x′ cutting ϕ−1(Q) if and only if
(ϕ(x), ϕ(x′)) ∈ δ.

• A transition system without input A = (Q, δ) is a discretization by interval
and by section or SI-discretization of H via ϕ, state abstraction for H to Q,
if A is simultaneously a S–discretization of H via ϕ and an I-discretization of
H via ϕ.

• A transition system without input A = (Q, δ) is a discretization by abstrac-
tion, or A-discretization of H via ϕ, state abstraction for H to Q, if the set
of the trajectories of A is exactly the set of the ϕ-signatures of the trajectories
of H.

We get the notions of simulation by:

Definition 3.6 Let H = (X,F) be a continuous system.
Let A = (Q, δ) be a transition system without input.

16

• H I-simulates A if A is an I-discretization of H.

• H S-simulates A if A is a S-discretization of H.

• H SI-simulates A if A is a SI-discretization of H.

• A is an abstraction of H, or H ϕ-realizes A, denoted by A ≤ϕ H if A is
an A-abstraction of H.

The links between these definitions and the definitions in literature can be stated
as follows. Our definition of I-simulation for deterministic systems is similar to the
definition of [9], if we add that ϕ must be continuous, ϕ−1(Q) must be an open
set, and there must exist ε > 0 such that, in definition 3.4, t1 ≥ ε and t3 − t2 ≥ ε.
Definition 3.4 is also changed so that necessarily ϕ(f(t1)) = ϕ(f(t2)) = ⊥. Our
definition of I-simulation for deterministic systems is similar to the definition of Q-
simulation in [5] if we add that ϕ must be an one to one function, and if conditions
t1 = 0, t2 = t3 are added to definition 3.4. Our definition of S-simulation for
deterministic systems is similar to the notion of S-simulation in [9] if we add that
ϕ must be continuous. Our definition of A-simulation for deterministic systems is
similar to the notion of abstraction in [3], if we add that ϕ must be such that, for
all q ∈ Q, ϕ−1(q) is a convex relatively open set, and ϕ is not necessarily required
to be surjective.

In all the incoming results of this paper, it is possible to add the previous hy-
potheses (ϕ continuous, one to one,t1 = 0,t3 = t2,etc...) without any loss of gener-
ality. As a consequence, all our results can also be stated using the definitions of
the notions of simulation in [3, 5, 9].

3.3 Notions of computation

We define the notion of input for continuous systems, by considering their discretiza-
tions:

Definition 3.7 (Off-line computation) Let S be a class of continuous systems.
A decision function F : {0, 1}+ → {0, 1} is off-line S-computable (respectively:

I-computable, SI-computable, A-computable) by S in time T , if there exist H =
(X,F) ∈ S, a state abstraction ϕ : X → Q for H to Q, an off-line system S =
(Q, δ, φ,A,R) that computes F in time T , such that A = (Q, δ) is a S-discretization
(resp: I-discretization, SI-discretization, A-discretization) of H = (X,F) via ϕ.

Thus function F : {0, 1}+ → {0, 1} is considered as off-line recognized by con-
tinuous system H = (X,F) in time T , if there exists a function ϕ : X → Q such
that a discretization of H via ϕ computes off-line F in time T . Let H and ϕ be
fixed. Define AH = ϕ−1(A), RH = ϕ−1(R). AH ⊂ X and RH ⊂ X are called
the accepting and rejecting sets of H . We say that xw ∈ X encodes w ∈ {0, 1}+

if ϕ(xw) = φ(w). For q ∈ Q, denote Vq = ϕ−1(q). We call encoding function a
function ψ : {0, 1}+ → X that maps each w ∈ {0, 1}+ to w′ = ψ(w) such that w′

encodes w.
The definition means that the words w ∈ {0, 1}+ accepted by H (that is such

that F (w) = 1) are the words such that, for some xw that encodes w, there exists a
trajectory f ∈ F starting from xw (f(0) = xw) that intersects the accepting set AH

(that is there exists t ∈ R+ such that f(t) ∈ AH) . The words w ∈ {0, 1}+ → {0, 1}
that are rejected by H , are the words such that, for some xw ∈ X that encodes w,
there exists a trajectory starting from xw that intersects the rejecting set RH .

Thus, H is considered as a computational machine by using its discretization: a
computation of H (that is what corresponds to a computation of S) is a trajectory of
H . The acception or rejection is given by the fact that the trajectory crosses or not

17

the accepting or rejecting sets. The computation time is given by the computation
time of the discretization. For example suppose that A is a I-discretization or
A-discretization of H : time T of a computation of H is given by the number of
sets Vq = ϕ−1(q) crossed by the trajectory. That is, for a trajectory f ∈ F from
x ∈ X (f(0) = x) to x′ ∈ X (f(t) = x′, for some t ∈ R+), T is given by n where
q1q2 . . . qn is the ϕ-signature of trajectory f from x to x′. If now for example A is
a S-discretization of H , time T of a computation of H is given by T = t/t0 where
t0 is the constant t0 of definition 3.5.

Note that there might be no correspondence between the time of a computation
and the time of the continuous system: in other words, T can be different from
t. In the case of a S-discretization (or SI-discretization) computation time T and
continuous system time t are equivalent, but T and t are usually different in all the
other cases.

Similarly, we define the notion of on-line computation:

Definition 3.8 (On-line computation) Let S be a class of continuous systems.
A decision function F : {0, 1}+ → {0, 1} is on-line S-computable (respectively:

I-computable, SI-computable) by S in time T , if there exist H = (X,F) ∈ S,H0 =
(X,F0) ∈ S, H1 = (X,F1), a state abstraction ϕ : X → Q, an on-line system S =
(Q, δ, δ0, δ1, q0, A,R) that computes F in time T , such that A = (Q, δ),A0 = (Q, δ0),
A1 = (Q, δ1)) are S-discretizations (resp: I-discretizations, SI-discretizations) of
respectively H = (X,F),H0 = (X,F0) and H1 = (X,F1) via same function ϕ.

Let H = (X,F), H0 = (X,F0) and H1 = (X,F1) be fixed. Thus, a computation
is given by a trajectory f of a continuous system H ′ = (X,F ′) where F ′ is either
F0, F1 or F depending of time: every computation trajectory f starts from a point
x0 that encodes q0 (that is, ϕ(x0) = q0). Suppose u = u0u1 . . . u|u|−1 ∈ {0, 1}+ is
the input. The evolution of trajectory f is first given by a function of Fu0

during
one computation time unit (that is until time t′, where t′ is the first positive real
with ϕ(f(t′)) 6= ⊥ for the case of I-computability, or during time t′ = t′ for the
case of S-computability): ∃f0 ∈ Fu0

, f0(0) = x0, ∀t ∈ [0,t′], {(t) = {(t′). Then
the evolution of trajectory f starts from f(t′) and evolves during one computation
time unit to f(t∞) according to a function of Fu1

: ∃f1 ∈ Fu1
, f1(t′) = {(t′), ∀t ∈

[t′,t∞], {(t) = {∞ , then according to a function of Fu2
, . . . , Fu|u|−1

, and finally
according to a function of F for all the next computation time units. The acception
or rejection is given by the fact that trajectory f crosses or not the accepting or
rejecting sets AH , RH , where AH = ϕ−1(A) and RH = ϕ−1(R).

3.4 Properties

We can classify the notions of simulation by the following theorem:

Theorem 3.1 The following relations between the notions of simulation are true:

• The notions of S-simulation and I-simulation are not comparable.

• The notions of S-simulation and abstraction are not comparable.

• The notion of abstraction is strictly more powerful than the notion of I-
simulation:

H I-simulates A via ϕ ⇒ A ≤ϕ H.

A ≤ϕ H 6⇒ H I-simulates A via ϕ.

The following transitivity results are true:

18

• Suppose that a class C of continuous systems I-simulates a class C ′ of transi-
tion systems without input. Suppose that class C ′ Q-simulates a class C ′′ of
transition systems without input. Then class C I-simulates class C ′′.

• Suppose that a class C of continuous systems ϕ-realizes a class C ′ of transition
systems without input. Suppose that class C ′ ϕ-realizes a class C ′′ of transition
systems without input. Then class C ϕ-realizes class C ′′.

Proof: First two points are straightforward. Third point is proved using argu-
ments similar to theorem 2.2: a deterministic continuous system H that ϕ realizes
a non-deterministic system A is built. Non-deterministic system A cannot be S-
simulated or I-simulated by deterministic system H via ϕ.

LetH be a continuous system that I-simulates (respectively: ϕ-realizes) a transi-
tion system without input A via ϕ. Suppose that A Q-simulates (resp: ψ realizes) a
transition system without input B via ψ. Then, it can be checked thatH I-simulates
B via ψ ◦ ϕ. The first (resp: second) transitivity result follows.

�

As before, the notion of abstraction for continuous systems is very powerful
since with this notion non-deterministic machines can be simulated by deterministic
continuous systems.

The previous notions of simulations give us the tools to study the computational
power of continuous systems. Several such systems will be studied in section 4. In
order to simplify these studies, we relate them to the simulations of analog two
stack automata. We need the following definition:

Definition 3.9 Suppose that a class S of continuous systems simulates (whatever
the notion of simulation used) a class C of transition systems without input: for
all C ∈ C, C = (QM , δM) there exists a system SC = (XC , FC) ∈ S such that SC

simulates C via a function ϕC .
Suppose that,

{

C = (QC , δC)
C ′ = (QC , δ

′
C)

⇒ ϕC = ϕ′
C ∧XC = X ′

C

Then we say that S simulates C via transition independent functions.

We can then state:

Theorem 3.2 • Let C be a class of continuous systems that I-simulates (respec-
tively: SI-simulates) the reversible deterministic analog two stack automata.

Then:

– Every function F : {0, 1}+ → {0, 1} in P/poly is off-line I-computable
(resp: SI-computable) in polynomial time by C.

– Every function F : {0, 1}+ → {0, 1} is off-line I-computable (resp: SI-
computable) in exponential time by C.

• Let C be a class of continuous systems that I-simulates (respectively: SI-
simulates) the reversible deterministic analog two stack automata via tran-
sition independent functions.

– Every function F : {0, 1}+ → {0, 1} in P/poly is on-line I-computable
(resp: SI-computable) in polynomial time by C.

– Every function F : {0, 1}+ → {0, 1} is on-line I-computable (resp: SI-
computable) in exponential time by C.

19

Proof:

• Let M = (Q, δ) be a reversible analog two stack automaton that recognizes
F . There exists a system H ∈ C such that M is the I-discretization (resp:
SI-discretization) of H via ϕ. Automaton M can be considered as an off-line
system.

• Let M = (Q, δ) be a reversible analog two stack automaton, with stack al-
phabet Σ. that recognizes F r, where F r(a1a2 . . . an) = F (an . . . a2a1) for
all words a1a2 . . . an ∈ Σ∗. Let M0 = (Q, δ0) (respectively: M1 = (Q, δ1))
be a stack automaton such that δ0 (resp: δ1) on every step systematically
pushes 0 (resp: 1) on the first stack and leaves the second stack unchanged.
By definition, since C simulates the analog automata via transition indepen-
dent functions, we get that there exist continuous systems H = (X,F), H0 =
(X,F0), H1 = (X,F1) such thatM,M0,M1 are their respective I-discretizations
(resp: SI-discretizations) via a same function ϕ. F is computed by on-line sys-
tem S = (Q, δ, δ0, δ1, a0, A,R) where q0 is the initial state of M , A,R are the
accepting and rejecting sets of M .

�

In section 4, we will prove that many classes of continuous systems (the class of
mirror systems, piecewise constant derivative systems, differential systems and lin-
ear hybrid systems) I-simulate or SI-simulate reversible analog two stack automata
via transition independent functions. With previous theorem, we will be able to
conclude for each of them that they can off-line and on-line compute every function
of P/poly.

3.5 Necessity of dimension 3

We prove in this subsection that dimension 2 is not sufficient to simulate Turing
machines. Our result is based on arguments from [3]. We will show in the next
sections that, in dimension 3, continuous systems have super-Turing capabilities.
We need the following definition:

Definition 3.10 (Abstraction relative to ψ) Let A = (Q, δ) be a transition
system without input. Let ψ be a function from Q to a set Q′. The abstrac-
tion of A relative to ψ is the transition system A′ = (Q′, δ′) such that (q, q′) ∈ δ′

if and only if there exist q1, q2, . . . , qn ∈ Q, such that, for all i ∈ {1, 2, . . . , n − 1},
(qi, qi+1) ∈ δ, and there exists n0, 1 ≤ n0 < n, such that, for all 1 ≤ i ≤ n0,
ψ(qi) = q, and for all n0 < i ≤ n, ψ(qi) = q′.

Note that, the abstraction A′ of A relative to ψ is defined such that A′ is an
abstraction of A via ψ. We define now the notion of regular state abstraction:

Definition 3.11 (Regular state abstraction) Let ϕ : X → Q be a state ab-
straction (i.e: a function), with X ⊂ Rd. Let ψ : Q → Q′ be a state abstraction. ϕ
is regular relatively to ψ if there exist |Q′| convex-subsets V1, V2, . . . , V|Q′| ⊂ Rd,
such that Vq ∩ Vq′ = ∅ for all q 6= q′ ∈ Q, and such that ϕ−1(ψ−1(q′)) ⊂ Vq′ for all
q′ ∈ Q′.

Using arguments similar to [3], we state:

Theorem 3.3 Let H = (X,F) be a deterministic system with continuous trajecto-
ries in dimension 2 (i.e: X ⊂ R2). Let A = (Q, δ) be a transition system without
input. Assume that H I-simulates (respectively: SI-simulates, ϕ-realizes) A via ϕ.
Let ψ be a function from Q to Q′. Let A′ = (Q′, δ′) be the abstraction of A rel-
ative to ψ. Assume that ϕ is regular relatively to ψ. Then graph G′ = (Q′, δ′) is
necessarily a planar graph.

20

Proof: From the transitivity relations in theorems 2.2 and 3.1, we get that
A′ = (Q′, δ′) is realized by H via ϕ′ = ψ ◦ ϕ. It can be checked that ϕ′ is such

that, for all q′ ∈ Q′, ϕ′−1
(q′) is included into a convex set V ′

q . The proof of the
necessity of dimension 3 in [3] can be easily generalized to this case, and we get that
A′ cannot be realized by H if G′ is not a planar graph. The result follows.

�

In what follows, we will deal only with the simulation of discrete or analog two
stack automata M = (Q,Σ, δ, q0, F). M can always be considered as a transition
system without input M = (Q′ = Q × Σ# × Σ#,`). We define a particular state
abstraction ψM : Q′ → Q defined by, for all γ1, γ2,∈ Σ#, q ∈ Q, ψM (q, γ1, γ2) = q.

We can now define the notion of state regular simulation:

Definition 3.12 (State regular simulation) Let H = (X,F) be a continuous
system. We say that H state regularly simulates (whatever the notion of simulation
used) a discrete or analog two stack automaton M if H simulates M via a function
ϕ which is regular relatively to ψM .

All the simulations that we will use in this paper will be state regular simulations.
We get the following corollary from theorem 3.3

Corollary 3.1 Analog or discrete two stack automata can not be state regularly
I-simulated (respectively: SI-simulated, ϕ-realized) by deterministic systems with
continuous trajectories in dimension 2.

Proof: It is easy to construct an analog or discrete two stack automaton M
such that its abstraction relative to ψM is not a planar graph. Henceforth, theorem
3.3, proves that M can not be simulated by a deterministic system with continuous
trajectories in dimension 2, via a function ϕ which is regular relatively to ψM .

�

Note that the condition of state regular simulations avoids the unfolding on the
plane of the transition graph of the machine to be simulated. As a conclusion,
dimension 2 is not sufficient to get universality, unless non deterministic systems,
non continuous trajectories or non regular state simulations are used. Hence, from
now, we are mainly going to focus on continuous systems in dimension 3. We will
show that in dimension 3, deterministic systems with continuous trajectories do
have super-Turing capabilities.

4 Computational power of continuous systems

4.1 Mirror systems

In [19, 20], Moore studies the unpredictability and the undecidability of dynamical
systems. He proposed a transformation called Generalized Shift Map, that has the
computational power of Turing machines. He claims that it is possible, using planar
and parabolic mirrors, to conceive physical systems that realize the generalized shift
map transformations. The Generalized Shift Map was extended to an ”Analog Shift
Map” by Siegelmann in [23, 24]. We generalize here the results of Moore and prove
that mirror systems are also able to realize analog automata. This generalization is
similar to the one done in [23, 24].

Definition 4.1 (Mirror system) • A mirror system (or billiard) is a phys-
ical system made of a finite number of mirrors. A trajectory of the system is
given by the evolution of a particle in the system: the particle reflects on the
mirrors according to the physical reflection laws. Between two reflections, the
trajectory of the particle is a straight line.

21

• A planar parabolic mirror system S is a mirror system such that all the
mirrors of S are either planar or parabolic.

We claim:

Theorem 4.1 Planar parabolic mirror systems I-simulate deterministic analog two
stack automata.

Thus, it is possible to conceive a physical system that has the computational
power of analog two stack automata. The computation is done by a particle that
reflects on the mirrors. The sequence of the states of the system is given by the
sequence of the intersections of the particle trajectory with a fixed section of plane
(see proof and figure 1).

(x,y)

f(x,y)

translation

translation

O x

yz

P

C
1,1

C
2,1

C1,2

x Dilation

y Dilation

Figure 1: Mirror system simulating an analog automaton (Partially represented:
only one path C〉,| has been represented.)

Proof: We prove that every deterministic reversible analog two stack automaton
M can be I-simulated by a planar parabolic mirror system S. The result follows
from theorems 2.4 and 3.1 since every deterministic analog two stack automaton
can be Q-simulated by a reversible one.

From theorem 2.5, we know that M is K-simulated by the iterations of a dis-
connected one to one piecewise linear function f . We use the notations of definition
2.11 and the notations of the technical considerations in section 2.5 page 13. Let
P be the plane section P = {(x, y, 0)|(x, y) ∈ [0, 1]2} in the space (O, x, y, z). We
build S such that, if a particle p crosses P perpendicularly in a point (x, y, 0) in
z > 0 direction, then particle p necessarily crosses again P perpendicularly in z > 0
direction, in (x′, y′, 0), where (x′, y′) = f(x, y).

In [19], using homothetic parabolic mirrors, Moore gives a way to realize every
dilation of coefficient k with k > 0: see figure 2. Using planar mirrors, for each

22

d

k*d

Parabolic
Mirror

Parabolic
Mirror

Focus

Figure 2: Homothetic parabolic mirrors realizing a dilation.

Ci,j = [c1, d1] × [c2, d2] we build a “path” P〉,| that brings a particle p crossing
P in (x, y, 0), with (x, y) ∈ Ci,j , through parabolic mirror systems that realize
dilations on x and y direction by the coefficients βi,j,1 and βi,j,2 corresponding to
function f(x1, x2) = (αi,j,1 + βi,j,1x1, αi,j,2 + βi,j,2x2) on Ci,j . Then, using other
planar mirrors, path P〉,| brings particle p to cross again P in (x′, y′, 0), where
(x′, y′) = f(x, y) ∈ C ′

i,j : see figure 1. Remark that, from the considerations page
13, for all l ∈ {1, 2},

• either the dilations are by strictly positive coefficients (βi,j,l > 0)

• either βi,j,l = 0 implies cl = dl, that is that no dilation at all is needed. Only
a translation by αi,j,l is required.

Hence, the whole construction can be done using only dilations by strictly positive
coefficients.

From equation (7) page 13, we know that none of the path P〉,|, for i, j ∈ [1, n],
have to intersect each another. So, all the path P〉,| can be built independently, and
we get that M is I-simulated by system S, made of the union of the paths P〉,| of
planar and parabolic mirrors.

�

It is interesting to outline that, with theorem 4.1, the unpredictability and un-
decidability of mirror systems is actually greater than claimed by Moore [19]. For
example, Moore proved that any non-trivial property is undecidable for mirror sys-
tems. But, we can go further and state that there exist physical systems S such that
no Turing machine is able to give the state of system S, at time n, for an arbitrary
n ∈ N unless you feed the Turing machine with more and more information during
the simulation. Note that it would be possible to construct Turing machines that
give the state of these mirror systems at time n, if we do not suppose n arbitrary
in N, but bounded by an integer n0 ∈ N.

Of course, the mirror systems that are strictly more powerful than Turing ma-
chines are some for which the function G of the corresponding Generalized Shift Map
(see terminology in [19, 20]) has an infinite Domain of Effect (DoE). The reader can
refer to [23, 24] for a discussion along this line. Recall that we assume a continuous
space and time medium.

We can now also consider mirror systems as computational models, using theo-
rem 3.2.

23

Corollary 4.1 • Every function F : {0, 1}+ → {0, 1} in P/poly is off-line and
on-line I-computable in polynomial time by planar parabolic mirror systems.

• Every function F : {0, 1}+ → {0, 1} is off-line and on-line I-computable in
exponential time by planar parabolic mirror systems.

Proof: Just check for the second point that the simulation of analog automata
by planar parabolic mirror systems given by theorem 4.1 is actually done via tran-
sition independent functions.

�

We also get, from theorems 2.2 and 3.1, that:

Corollary 4.2 Planar parabolic mirror systems:

• I-simulate deterministic discrete two stack automata.

• I-simulate deterministic pushdown automata

• I-simulate deterministic finite state automata

• ϕ-realizes non-deterministic finite state automata.

4.2 Piecewise constant derivative systems

The notion of simulation used in previous section was the notion of I-simulation.
We go further and present here systems that simulate analog automata using the
SI-simulation notion. Actually we pursue the work of [3, 5, 18] about Piecewise
Constant Derivative systems. Note that similar systems have also been studied in
[26, ?].

 Trajectory

Direction

Figure 3: A PCD system in dimension 2.

Definition 4.2 (PCD System[5, 18]) A Piecewise Constant Derivative system
(PCD) is a pair H = (X, g) where X is the state-space, g is a (possibly partial)
function from X to a finite set of vectors C ⊂ X, and for every c ∈ C, g−1(c) is a
finite union of convex polyhedral sets. The trajectories of the PCD system are given
by the solutions of the differential equation ẋ = g(x).

In other words, a PCD system consists of partionning the space into convex
polyhedral sets, called regions, and assigning a constant derivative, called slope, to
all the points sharing the same region. The trajectories of such systems are broken
lines, with the breakpoints occuring on the boundaries of the regions [5]. The
reachability problem for PCD system was proved to be decidable for PCD systems

24

in dimension 2 [18], and undecidable for PCD systems in dimension 3 [3, 5]. We
go further and prove that, in dimension 3, PCD systems are also able to simulate
analog automata:

Theorem 4.2 • PCD systems in dimension 3 SI-simulate deterministic re-
versible analog two stack automata.

• PCD systems in dimension 3 I-simulate deterministic analog two stack au-
tomata.

Proof: The proof is quite similar to the proof of theorem 4.1: we prove that
every deterministic reversible analog two stack automaton M can be SI-simulated
by a PCD system S in dimension 3. Since every deterministic analog two stack
automaton can be Q-simulated by a reversible one, the results follow from theorems
2.4 and 3.1.

From theorem 2.5, we know that M is K-simulated by the iterations of a discon-
nected one to one piecewise linear function f . We will use the notations of definition
2.11 and the notations of the technical considerations in section 2.5 page 13. Let
P be the plane section P = {(x, y, 0)|(x, y) ∈ [0, 1]2} in the space (O, x, y, z). We
build S such that, if a trajectory t crosses P perpendicularly in a point (x, y, 0)
in z > 0 direction, then trajectory t necessarily crosses again P perpendicularly in
z > 0 direction, in (x′, y′, 0), where (x′, y′) = f(x, y), one unit time later. So we
will get SI-simulation of M by S.

We claim that, with a PCD system, it is possible to compute every multiplication
of one of the coordinates by k, for k ≥ 0: on region Z1 = {(x, y, z)|0 ≤ x ≤
1 ∧ 0 ≤ y ≤ 1 ∧ 0 ≤ z ≤ 1 − x} the slope is defined as (0, 0, 1). On region
Z2 = {(x, y, z)|0 ≤ x ≤ k ∧ 0 ≤ y ≤ 1 ∧ 1 − x ≤ z ≤ 1} the slope is defined
as (k, 0, 1). Every trajectory entering in (x, y, 0) at time 0 in Z1 will leave Z2 in
(kx, y, 1) at time 0: see figure 4. We call such a part of a PCD system a dilation
unit.

O
x

y

(x,y)

(kx,y)

1

k
1

Z1

2
Z

Figure 4: Dilation realized by a PCD system: dilation unit.

We claim now that, with a PCD system, it is possible to realize a “right angle”:
on region Z1 = {(x, y, z)|0 ≤ x < 1− z∧ 0 ≤ y ≤ 1∧ 0 ≤ z ≤ 1} the slope is defined
as (0, 0, 1). On region Z2 = {(x, y, z)|1− z ≤ x < 1+ z∧ 0 ≤ y ≤ 1∧ 0 ≤ z ≤ 1} the
slope is (1, 0, 0). On region Z3 = {(x, y, z)|1 + z ≤ x < 2 ∧ 0 ≤ y ≤ 1 ∧ 0 ≤ z ≤ 1}
the slope is chosen as (1/3, 0, 0). Every trajectory entering in (x, y, 0) at time 0 in
Z1 will leave Z3 at time 3 in (2, y, 1−x): see figure 5. We call such a part of a PCD
system a right angle unit.

It is also possible to build linear units, of length l, and time-length t, for any
l, t ∈ R+∗: on region Z1 = {(x, y, z)|0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1 ∧ 0 ≤ z ≤ l} the slope is

25

O x

y

(x,y)

1

1

Z1

2
Z

(1−x,y)

2

Z
3

Figure 5: Right angle unit.

chosen as (0, 0, t/l). Every trajectory entering in (x, y, 0) at time 0 in Z1 will leave
Z1 in (x, y, l) at time t: see figure 6.

O
x

y

(x,y)

1

1

Z1

(x,y)

Figure 6: Linear unit.

Using linear units and right angle units, for each Ci,j , we build a“path”P〉,| that
brings any trajectory t crossing P in (x, y, 0), with (x, y) ∈ Ci,j through dilations
units, that realize the x and y dilations by the coefficients βi,j,1 and βi,j,2 corre-
sponding to function f(x1, x2) = (αi,j,1 + βi,j,1x1, αi,j,2 + βi,j,2x2) on Ci,j . Then
using linear and right angle units, path P〉,| brings back trajectory t to cross again
P in (x′, y′, 0), where (x′, y′) = f(x, y) ∈ C ′

i,j : see figure 7.
Note that actually, as in theorem 4.1, from technical considerations of page

13 only dilations by strictly positive coefficients are needed: see proof of theorem
4.1. Similarly, none of the paths P〉,| have to intersect, and the paths can be built
independently: see proof of theorem 4.1. The global PCD system is made of the
union of the paths P〉,|, for i, j ∈ [1, n].

The right angle, linear and dilation units are made such that the time ti,j
taken by a trajectory t to follow entirely path P〉,|, from (x, y, 0), (x, y) ∈ Ci,j

to (x′, y′, 0), (x′, y′) = f(x, y) ∈ C ′
i,j , is independent of trajectory t (i.e: indepen-

dent of (x, y)). We call time-length of P〉,| the value of ti,j Let i0, j0 be such that
ti0,j0 = max{ti,j |i, j ∈ [1, n]}. P〉′,|′ is the slowest path. It is always possible to
adjust the time-lengths of the linear units of all the other paths, such that the time-
lengths of all paths P〉,|, for i, j ∈ [1, n], are set to the same value ti0,j0 . Note that, by
multiplying all slopes by the constant 1/ti0,j0 , is is possible to set the time-lengths
of all the paths to exactly one time unit.

26

Hence, we get that M is SI-simulated by S.

C
i,j

(x,y)

Translation

Translation

x

y x Dilation

y Dilation

z

f(x,y)

Figure 7: A PCD system in dimension 3 simulating an analog two stack automaton.
Only one path P〉,| have been represented.

�

Since analog two stack automata can simulate Turing-machines, the undecidabil-
ity results of [3, 5] can be seen as consequences of theorem 4.2. We can determine
the computational power of PCD systems by the following results:

Corollary 4.3 • Every function F : {0, 1}+ → {0, 1} in P/poly is off-line and
on-line SI-computable in polynomial time by a PCD system in dimension 3.

• Every function F : {0, 1}+ → {0, 1} is off-line and on-line SI-computable in
exponential time by a PCD system in dimension 3.

Proof: Immediate from theorem 3.2: it can be checked that the SI-simulation
of reversible analog two stack automata by PCD systems in dimension 3 given by
theorem 4.2 is done via transition independent functions.

�

Note that, very recently, Asarin and Maler [4] proved some super-Turing ca-
pabilities of PCD systems even with purely rational coefficients, using some Zeno
properties of these systems. However, the notion of time of a computation used in
[4] is different from ours: they define the computation time as the intrinsic time of
the dynamical system [4]. Our notion of computation time is here equivalent to the
number of regions crossed by the trajectory.

Actually, with our notion of computation time, we can prove that we cannot get
more power from PCD systems:

27

Theorem 4.3 • Let F : {0, 1}+ → {0, 1} be a function off-line I–computable
(respectively: S-computable, SI-computable) by a PCD system H = (X,F),
where X ⊂ Rp.

– such that an encoding function ψ is computable by a linear machine: that
is, there exists a linear machine[15] that is able, given w ∈ {0, 1}+, to
return the real number ψ(w).

– the accepting and rejecting sets are convex polyhedra of Rp.

– Each trajectory of H crosses at most a polynomial number, in the size of
the input, of regions.

Then F ∈ P/poly.

• Let F : {0, 1}+ → {0, 1} be a function on-line I-computable (respectively:
S-computable, SI-computable) by PCD systems.

– such that the accepting and rejecting sets are convex polyhedra of Rp.

– Each trajectory crosses at most a polynomial number, in the size of the
input, of regions.

Then F ∈ P/poly.

Proof: The hypotheses are chosen so that, it is always possible to simulate
the computation of the PCD systems by linear machines in polynomial time. The
result follows from a result in [15]: every language recognized in polynomial time
by a linear machine with discrete inputs is in P/poly.

�

As a conclusion, we have characterized the computational power of PCD sys-
tems as exactly the computational power of analog automata: that is P/poly in
polynomial time, and unbounded in exponential time.

4.3 Differential systems

We are now going to focus on the computational power of differential systems: we
consider the class of continuous systems H = (X,F), where X ⊂ Rn, and F is given
by the set of solutions of an ordinary differential equation (ODE) ẋ = g(x) over Rn.

First remark is that PCD systems are differential continuous systems: the tra-
jectories of a PCD systems are given by the solutions of ẋ = g(x), where g is defined
as a piecewise constant function. But function g is usually supposed to be Lipschitz,
or at least continuous. One main reason is that the existence of solutions to a given
ODE is easily proved only in these two cases. Cauchy theorem states that, with a
given initial condition, there is existence and unicity of the solution for Lipschitz
ODEs, and only existence but not unicity for continuous ODEs. The question that
we want to answer is to know if the previous results of super-Turing capabilities of
dynamical systems can be generalized to Lipschitz ODE systems, or by default, to
continuous ODE systems.

Note that some results are already known: see [9]. Branicky proved that Turing
machines, stack automata and finite state automata can be SI-simulated by contin-
uous ODEs in R3, and that finite state automata can be I-simulated by Lipschitz
continuous ODEs in R3. We state:

Theorem 4.4 • Ordinary differential equations defined by ẋ = g(x), with g
Lipschitz continuous piecewise linear on [0, 1]3, SI-simulate deterministic re-
versible analog two stack automata.

28

• Ordinary differential equations defined by ẋ = g(x), with g Lipschitz con-
tinuous piecewise linear on [0, 1]3, I-simulate deterministic analog two stack
automata.

Proof: The proof is based on the proof of theorem 4.2. We use exactly the
same arguments, except that the right angle units, linear units and dilation units
are different. The new units U are chosen such that the modulus of the speed of
any trajectory entering an unit U is equal to 1, and such that the modulus of the
speed of any trajectory leaving U is also equal to 1. Moreover, the speed g(x) in
any unit U is built as a continuous function. To do so, interpolation regions are
inserted in the right angle, linear and dilation units of theorem 4.2 to get the new
ones.

Thus, the new linear unit, of length l, and time-length t, for l, t ∈ R+ is defined
as: let α = 1/3, and β such that (2β ln(β) + β − 1)/(3β(β − 1)) = t. On Z1 =
{(x, y, z)|0 ≤ x ≤ αl ∧ 0 ≤ y ≤ 1 ∧ 0 ≤ z ≤ 1}, function g is defined as g(P) =
(1 − x/(αl))(1, 0, 0) + x/(αl))(β, 0, 0) on P = (x, y, z). On Z2 = {(x, y, z)|αl ≤
x ≤ (1 − α)l ∧ 0 ≤ y ≤ 1 ∧ 0 ≤ z ≤ 1}, function g is defined as g(P) = (β, 0, 0).
On Z3 = {(x, y, z)|(1 − α)l ≤ x ≤ l ∧ 0 ≤ y ≤ 1 ∧ 0 ≤ z ≤ 1} g is defined as
g(P) = (l−x)/(αl)(β, 0, 0) + (x− l(1−α))/(αl)(1, 0, 0). Any trajectory entering in
Z1 at time 0 with speed (1, 0, 0) in (0, y, z) leaves Z3 at time t with speed (1, 0, 0)
in (l, y, z): see figure 8.

x

y

z

(y,z)

(x,z)

Constant
Speed

Interpolation

InterpolationZ

Z

Z

1

2

3

Figure 8: Linear unit.

The new right angle unit is build in the following way: on Z1 = {(x, y, z)|0 ≤ x ≤
3/2∧0 ≤ y ≤ 1∧0 ≤ z ≤ 1} function g is defined as g(P) = z(0, 0, 1)+(1−z)(1, 0, 1):
that is, Z1 is an interpolation region that interpolates speed from (0, 0, 1) to (1, 0, 1).
On Z2 = {(x, y, z)|1/2 ≤ x ≤ 3/2∧0 ≤ y ≤ 1∧1 ≤ z ≤ 2} we define g(P) = (1, 0, 1).
Z3 = {(x, y, z)|3/2 ≤ x ≤ 5/2 ∧ 0 ≤ y ≤ 1 ∧ 1 ≤ z ≤ 5/2} is chosen to be
an interpolation between (1, 0, 1) and (1, 0, 0): g(P) = (5/2 − x)(1, 0, 1) + (x −
3/2)(1, 0, 0). On Z4 = {(x, y, z)|5/2 ≤ x ≤ z + 1 ∧ 0 ≤ y ≤ 1 ∧ 3/2 ≤ z ≤ 5/2},
g(P) = (1, 0, 0). Z5 = {(x, y, z)|z + 1 ≤ x ≤ z + 3/2 ∧ 0 ≤ y ≤ 1 ∧ 3/2 ≤ z ≤ 5/2}
is an interpolation region between speed (1, 0, 0) and (1/3, 0, 0): g(P) = (z + 3/2−
x)(1, 0, 0) + (x − z − 1)(1/3, 0, 0). On Z6 = {(x, y, z)|z + 3/2 ≤ x ≤ 4 ∧ 0 ≤ y ≤
1 ∧ 3/2 ≤ z ≤ 5/2} we define g(P) = (1/3, 0, 0). Z7 = {(x, y, z)|4 ≤ x ≤ 5 ∧ 0 ≤
y ≤ 1 ∧ 3/2 ≤ z ≤ 5/2} is an interpolation region between (1/3, 0, 0) and (1, 0, 0):
g(P) = (5 − x)(1/3, 0, 0) + (x − 4)(1, 0, 0). Any trajectory entering Z1 at time 0
in (x, y, 0) with x, y ∈ [0, 1] with speed (0, 0, 1) leaves Z7 in (5, y, 2 − x) a constant
time later with speed (1, 0, 0): see figure 9.

29

y

x

Z

1

2
3

4 5

6

Z

Z

Z
Z

Z

Z
7

1

3/2 5/2 3 4 5

(x,y,0)

(5,y,2−x)

Figure 9: Right angle unit

The dilation unit is built in a similar way: we consider the dilation unit from
theorem 4.2, for k > 0 and its two regions. We insert two interpolation regions Z2

and Z4 in between that do respectively interpolation from speed (0, 0, 1) to (k, 0, 1)
and from speed (k, 0, 1) to speed (0, 0, 1): see figure 10. Any trajectory entering in
(x, y, 0) with speed (0, 0, 1) at time 0 will leave Z4 in (kx+αx, y, 1 +αz) at time γ,
where αx, αz and γ are some constants.

O
x

y

1

Interpolation

Interpolation

1

Z

Z

Z

Z
1

2

3

4

Constant
Speed

Constant
Speed

Figure 10: Dilation unit

As in the proof of theorem 4.2, the paths P〉,| are built using right angle, linear
and dilation units. The time-lengths of the linear parts are chosen such that the
time-lengths of all the paths P〉,| are identical, using a process similar to proof of
theorem 4.2. All the dimensions can be dilated by some constants such that the
whole construction enters in [0, 1]3. We get then, a partially defined function g that
corresponds to the union of all the paths P〉,|, for i, j ∈ [1 . . . n]. Partial contin-
uous piecewise linear function g can be completed, for example by triangulation,
to a continuous piecewise linear function defined on all [0, 1]3. Since a continuous
function on a compact subset is Lipschitz, the result follows.

30

�

Remark that we extend the results from [9]: theorem 4.4 implies that (respec-
tively: reversible) Turing machines can be I-simulated (resp: SI-simulated) by
bounded Lipschitz ordinary differential equations. Furthermore, we have proved
that bounded continuous piecewise linear functions can be used. We can also go
further and state:

Theorem 4.5 • Ordinary differential equations defined by ẋ = g(x), with g
Lipschitz smooth C∞ on [0, 1]3, SI-simulate deterministic reversible analog
two stack automata.

• Ordinary differential equations defined by ẋ = g(x), with g Lipschitz smooth
C∞ on [0, 1]3, I-simulate deterministic analog two stack automata.

Proof: In the proof of theorem 4.4, we used linear interpolations. But we could
also use C∞ interpolations, using the usual mathematical methods.

�

Then, we get:

Corollary 4.4 • Every function F : {0, 1}+ → {0, 1} in P/poly is off-line and
on-line SI-computable in polynomial time by ordinary differential equations
continuous Lipschitz piecewise linear on [0, 1]3.

• Every function F : {0, 1}+ → {0, 1} is off-line and on-line SI-computable in
exponential time by ordinary differential equations continuous Lipschitz piece-
wise linear on [0, 1]3.

Proof: Immediate from theorem 3.2, since the simulations of reversible analog
two stack automata by Lipschitz ordinary differential equations, given by theorem
4.4, are done via transition independent functions.

�

Hence, we get that Lipschitz ODEs have at least the computational power of
analog automata. We turn now to the problem of finding an upper bound to the
computational power of ordinary differential equations: the following result shows
the difficulty of this problem: every deterministic discrete transition system is SI-
computable by a system defined by a continuous ordinary differential equation in
dimension 3.

Theorem 4.6 (Consequence of [9]) Let A = (Q, δ) be a deterministic transition
system without input, where A ⊂ Zn. Then, there exists a continuous system
H = (R3, F), where F is given by the set of the solutions of a continuous ordi-
nary differential equation in dimension 3, that SI-simulates A.

Proof: A state q = (q1, q2, . . . , qn) ∈ Zn of A can be encoded by integer p =
∏n

i=1 p
qi

i , where pi is the ith prime number. Hence, transition system A can be
K-simulated by a transition system A′ = (Z, δ′). The result follows from theorem
5.7 in [9] applied to system A′.

�

Note that, in the previous proof, unbounded spaces are used. However we get
that the computational power of continuous ordinary differential equations is un-
bounded in dimension 3.

Corollary 4.5 Let F : {0, 1}+ → {0, 1}

• F is off-line SI-computable in constant time by continuous ordinary differential
equations in dimension 3.

31

• F is on-line SI-computable in linear time by continuous ordinary differential
equations in dimension 3.

Proof: Let A = (Z, δ) be the transition system without input defined, for all
q ∈ Z, by δ(q) = −1−F (q). Let H = (R3, F) that SI-simulates A, given by theorem
4.6.

• Function F is off-line computed by the system S = (Z, δ, φ, Acc,Rej), where
Acc = {−2}, Rej = {−1} and φ : {0, 1}+ → Z is the function that maps w to
the integer that has w as radix-2 expansion. By definition, we get that F is
off-line SI-computable in constant time by continuous ODEs.

• Function F is on-line computed by the system S = (Z, δ, δ0, δ1, 0, Acc, Rej),
where δ0(q) = 2q and δ1(q) = 2 ∗ q + 1, with Acc = {−2}, Rej = {−1}.
(Z, δ), (Z, δ0) and (Z, δ1) can be SI-simulated by continuous ODEs on R3, from
theorem 4.6, via a same abstraction function ϕ, since it can be checked that the
simulations given by theorem 4.6 are simulations via transition independent
functions. By definition, we get that F is on-line SI-computable in linear time
by continuous ODEs.

�

As a consequence, it seems that continuous differential equations on unbounded
spaces do not give “reasonable” computational models. Hence, from now, we focus
on Lipschitz ordinary differential equations on bounded sets: at this time, the only
case where we can answer is:

Theorem 4.7 • Let F : {0, 1}+ → {0, 1} be off-line S-computable in polyno-
mial time by a differential system H = (X,F), where F is the set of the solu-
tions to a Lipschitz ordinary equation ẋ = g(x) on compact subset X ⊂ Rn.

– Suppose that an encoding function ψ is in PEd/poly: cf [13, 14].

– Suppose that the accepting and rejecting sets of H are convex polyhedra
of Rn.

– Suppose that the solutions of ẋ = g(x) are in Pd/poly[13, 14].

Then F is in P/poly.

• Let F : {0, 1}+ → {0, 1} be on-line S-computable in polynomial time by Lips-
chitz ordinary differential equations on a compact subset X ⊂ Rn.

– Suppose that the accepting and rejecting sets are convex polyhedra of Rn.

– Suppose that the solutions of the ODEs are in Pd/poly[13, 14].

Then F is in P/poly.

Proof:

• Let H = (X,F ′) be a differential continuous system that off-line S-computes
decision function F , such that F ′ is the set of the solutions of an ordinary
Lipschitz differential equation ẋ = g(x). Let t0 be the real of definition 3.5 for
the definition of S-discretization. Let x ∈ X . For x ∈ X , denote fx the unique
solution of ẋ = g(x) such that fx(0) = x. Since F is off-line S-computable by
H , we get that F is computed by off-line system S = (X, f, φ,A,R) where f :
X → X is defined, for all x ∈ X as f(x) = fx(t0), and φ,A,R are respectively
an encoding function, the accepting and rejecting sets of continuous system

32

H . It is known that for Lipschitz ODE the solutions depend in a Lipschitz way
of initial conditions. Precisely, the following assertion is true: for all t ∈ R+:

|fx(t) − fy(t)| ≤ |x− y| expkt

We get that F is recognized by off-line system S = (X, f, φ,A,R) where
f : X → X is (expkt0 -)Lipschitz. The result follows from lemma 2.1.

• Similarly, it can be proved that if F is on-line S-computed by Lipschitz ordi-
nary differential equations, F is computed by an on-line system

S = (X, f, f0, f1, q0, A,R)

where f, f0, f1 are Lipschitz functions. The result is immediate from lemma
2.1.

�

Note that requiring solutions of the ODE to be in Pd/poly seems a very strong
condition.

4.4 Hybrid systems

Alur and al. propose in [1] the following definition:

Definition 4.3 (Hybrid System [1]) A hybrid system is made of 6-components:

H = (Loc, V ar, Lab, Edg,Act, Inv)

where:

• Loc is a finite set of vertices called locations.

• Var is a finite set of real-valued variables. A valuation is a function v :
V ar → R. The set of valuations will be written V. A state is a pair (l,v)
with l ∈ Loc and v ∈ V . The set of states will be written Σ.

• Lab is a finite set of synchronization labels that contains the stutter label
τ .

• Edg is a finite part of Loc×Lab×P(V∈)×Loc. Let e = (l, a, µ, l′) ∈ Edg: l is
called the source location, l′ is called the target location and µ is called the
transition relation. The following condition is required: ∀l ∈ Loc, (l, τ, Id, l) ∈
Edg, where Id = {(v, v)|v ∈ V }.
The transition e is enabled in a state (l, v) if for some valuation v′ ∈ V ,
(v, v′) ∈ µ. The state (l′, v′), then, is a transition successor of the state (l, v).

• Act is a function which maps each l ∈ Loc to a subset Act(l) of the functions
from R+ to V . The following condition is required: ∀l ∈ Loc, ∀f ∈ Act(l), ∀t ∈
R+, (f + t) ∈ Act(l) where (f + t)(t′) = f(t+ t′), ∀t, t′ ∈ R+.

• Inv is a function which maps each l ∈ Loc to a subset Inv(l) ⊂ V .

At any time instant, the state of a hybrid system is given by a control loca-
tion and values for all variables. The states change in two ways: by discrete and
instantaneous transitions that change both the control location and the values of
variables, and by time delays that change only the values of the variables according
to the activities of the current location [1].

A run [1] of the hybrid system H is a finite or infinite sequence ρ : σ0 7−→t0
f0

σ1 7−→t1
f1
σ2 7−→t2

f2
. . . of states σi = (li, vi) ∈ Σ, nonnegative reals ti ∈ R+, and

activities fi ∈ Act(li) such that for all i ≥ 0,

33

1. fi(0) = vi

2. for all 0 ≤ t ≤ ti, fi(t) ∈ Inv(li)

3. the state σi+1 is a transition successor of the state (li, fi(ti))

We will call dimension of hybrid system H , and denote dim(H), the cardinality
of V ar. We propose also the following definitions:

Definition 4.4 • A hybrid system H is time-deterministic [1] if for every l ∈
Loc and every v ∈ V , there is at most one function f ∈ Act(l) with f(0) = v.

• A hybrid system H is (full-)deterministic if H is simultaneously time-
-deterministic and such that for every l ∈ Loc, every v ∈ V , every f ∈ Act(l)
and every t, t′ ∈ R+, we have

{

(l, v) 7−→t
f (l′, v′)

(l, v) 7−→t′

f (l′′, v′′)
⇒ (l′, v′) = (l′′, v′′) ∧ t = t′

We need also the formalism about linear hybrid systems in [1]: we just suppress
the fact that in a linear term all the coefficients are integers. Actually, if we suppose,
that the coefficients can only be integers or rationals, that means, for example, that
a PCD system [3, 4, 5, 18] cannot be considered as a linear hybrid system. Assuming
real coefficients seems more realistic.

Definition 4.5 A linear term over the set V ar of variables is a linear combination
with real coefficients.

A linear formula over V ar is a boolean combination of inequalities between linear
terms over V ar.

Definition 4.6 (Linear hybrid systems [1]) A hybrid system H is linear if H
is time-deterministic, and its activities, invariants, and transition relations can be
defined by linear expressions over the set V ar of variables:

1. For all l ∈ Loc, the activities Act(l) are defined by a set of differential equa-
tions of the form ẋ = kx where kx is a real constant. The rate kx of the
variable x at location l, is denoted by Act(l, x) = kx.

2. For all locations l ∈ Loc, the invariant Inv(l) is defined by a linear formula
ψ over V ar

v ∈ Inv(l) ⇔ v(ψ)

3. For all transitions e ∈ Edg, the transition relation µ is defined by a guarded
set of non-deterministic assignments.

ψ ⇒ {x := [αx, βx]|x ∈ V ar}

where the guard ψ is a linear formula and for each variable x ∈ V ar, both
interval boundaries αx and βx are linear terms:

((v, v′) ∈ µ) ⇔ v(ψ) ∧ (∀x ∈ V ar, v(αx) ≤ v′(x) ≤ v(βx))

If αx = βx, the updated value αx of variable x after transition e, is denoted
by µ(e, x) = αx.

We will need also the following definition [1]:

Definition 4.7 ([1]) • If Act(l, x) = 0 for each location l ∈ Loc, and
µ(e, x) ∈ {0, 1} for each transition e ∈ Edg, x is a proposition.

34

• If there is a nonzero integer k ∈ Z such that Act(l,x)=k for each location l and
µ(e, x) ∈ {0, x} for each transition e, then x is a skewed clock. A multirate
timed system is a linear hybrid system all of whose variables are propositions
and skewed clocks. An n-rate timed system is a multirate timed system whose
skewed clocks proceed at n different rates.

See [1, 2] for the definitions of the following special cases of linear hybrid systems:
discrete systems, finite-state systems, timed automata, multi-rate timed systems,
n-rate time systems, integrator systems. Examples of linear hybrid systems can also
be found in [10, 12, 22, 21]. The reader should also refer to [26, ?] for some study
of these systems from the control point of view.

We focus now on the computational power of linear hybrid systems. Thus, we
study continuous systems that are not necessarily systems with continuous trajecto-
ries. Theorem 3.3 cannot be applied any more, and we obtain that now, dimension 2
is sufficient to get universality and super-Turing capabilities: we construct some lin-
ear hybrid systems with the computational power of analog automata in dimension
2.

Theorem 4.8 • Linear hybrid systems in dimension 2 SI-simulate non-
-deterministic analog two stack automata.

• Full-deterministic linear hybrid systems in dimension 2 SI-simulate determin-
istic analog two stack automata.

Proof: Let M be a deterministic analog two stack automaton. From theorem
2.5, we now that M is K-simulated by the iterations of a disconnected piecewise
linear function f . We use the notations of definition 2.11. It is easy to construct a
linear hybrid systemH with two variables x1, x2 such that the sequence of the values
of the two variables x1, x2 after each discrete transition corresponds to the sequence
of the values of the iterations of function f : the location l ∈ Loc = [1 . . . n]× [1 . . . n]
of H corresponds at any time to the pair (i, j) such that (x1, x2) ∈ Ci,j . Since f is
linear on every Ci,j , it is sufficient to build the discrete transitions of H on location
l = (i, j) ∈ Loc, such that their correspond to function f on Ci,j .

It is an easy exercise to generalize the whole construction to non deterministic
two stack automata using non-deterministic transitions.

�

Furthermore, we give an extension of the results in [1] about the undecidability
of the reachability problem for 2-rate timed systems: we prove that it is also possible
to get super-Turing capabilities with 2-rate timed systems.

Theorem 4.9 2-rate timed systems SI-simulate non–deterministic analog two
stack automata.

Proof: We use accurate clocks of rate 1, and skewed clocks of rate 4. Using
methods similar to proof of theorem 3.2 in [1], we are able to realize the piecewise
linear functions f , given by theorem 2.5. Theorem 3.2 in [1] gives a mean to realize
multiplication and division by 4. To realize addition of α to the real number rep-
resenting the content of a stack, just reset the corresponding clock when it reaches
1 − α, instead of reseting the clock when it reaches 1: see [1].

�

Using theorem 3.2 (generalized to non-deterministic systems) and from the fact
that the simulations given by 4.8 are done via transition independent functions, we
get:

Theorem 4.10 • Every function F : {0, 1}+ → {0, 1} in NP/poly (respec-
tively: P/poly) is off-line and on-line SI-computable in polynomial time by
(resp: deterministic) linear hybrid systems in dimension 2.

35

• Every function F : {0, 1}+ → {0, 1} is off-line and on-line SI-computable in
exponential time by deterministic linear hybrid systems in dimension 2.

The most interesting fact is that, for linear hybrid systems, we are able to give
an upper bound to their computational power:

Theorem 4.11 • Let F : {0, 1}+ → {0, 1} be a function off-line S-computable
(resp: I-computable,SI-computable) in polynomial time by a linear (respec-
tively: deterministic) hybrid system

– such that an encoding function φ is computable by a linear machine: there
exists a linear machine[15] M , such that, given w ∈ {0, 1}+, M is able
to give the value of φ(w) in polynomial time.

– such that the accepting (respectively: rejecting set) is given by a particular
location: that is defined by AH = {(l, v)|v ∈ V } (resp: RH = {(l′, v)|v ∈
V }) for some l, l′ ∈ Loc.

Then F ∈ NP/poly (resp: F ∈ P/poly).

• Let F : {0, 1}+ → {0, 1} be a decision function on-line S-computable (resp:
I-computable, SI-computable) in polynomial time by linear (respectively: de-
terministic) hybrid systems

– such that the accepting (rejecting set) is given by a particular location

Then F ∈ NP/poly (resp: F ∈ P/poly).

Proof: The hypotheses are chosen such that linear machines [15] are able to
simulate the computations of the hybrid systems. The result follows from a result
in [15] that proves that every language recognized in polynomial time by a deter-
ministic (resp: non-deterministic) linear machine with discrete inputs is in P/poly
(resp: NP/poly).

�

Hence, we characterize the computational power of deterministic (respectively:
non-deterministic) linear hybrid systems as exactly the computational power of
analog automata: P/poly (resp: NP/poly) in polynomial time, and unbounded in
exponential time.

5 Discussion

This paper shows that many dynamical systems and hybrid systems are strictly more
powerful than Turing machines. This super-Turing power comes from the dynamical
systems capabilities to be“analog”machines: a continuous system computation may
make an arbitrary infinite precision real number“appear”, which can be used later as
an advice. This was the main property used in this paper to prove the super-Turing
capabilities of continuous systems.

These results have direct consequences for the decidability issues: since analog
two stack automata simulate Turing machines, we get, for example, that the reach-
ability problem is undecidable in dimension 3 for mirror systems, PCD systems,
differential systems and in dimension 2 for linear hybrid systems.

But this paper also shows that there is “more” than undecidability: continuous
systems are able to simulate some machines that cannot be simulated by Turing
machines: hence there exist some continuous systems H , such that no Turing ma-
chine M exists, such that, given n ∈ N, M is able to give the state of H , at time
n. Thus, there exist systems that cannot be numerically simulated by the usual

36

discrete models of computation (except if we add the restriction that n is not an
arbitrary integer , but is an integer smaller than a given n0 ∈ N) . These systems
can only be simulated by computational machines that are allowed to compute over
the real numbers in unbounded-precision in constant time. For example, by the
Blum Shub and Smale machine [8].

Thus, this paper outlines the limitations of the belief that all physical systems
and all computational models can be simulated by Turing machines. Actually, only
the discrete models can be simulated. That must be kept in mind whenever an ex-
plicit or implicit reference to Church thesis is made. Actually, one very interesting
question would be to find the equivalent of the Church thesis for the continuous
models: in [25], Siegelmann and Sontag proved that analog recurrent networks are
very robust: allowing high order networks, polynomial activations, arbitrary Lips-
chitz transition functions do not give much power that the initial model of analog
neural recurrent networks. They proposed the SiSo thesis[23, 24, 25]: every rea-
sonable continuous computational model does not have more power than recurrent
analog neural networks. Stated in terms of analog automata: the computational
power of analog automata is an upper bound to the computational power of any
reasonable computational model. This paper shows that many continuous systems
are at least as powerful as analog automata. But the full question is still open.

One aim of this paper was also to show that the machines computing over the
reals in unbounded precision are physically plausible. We have proved in this paper
that it is theoretically possible to construct with a finite number of planar and
parabolic mirrors a machine that is more powerful than all the Turing machines.
So analog recurrent networks [25] and all the machines that compute in unbounded
precision [8] may have some reality [23, 24]. However, recall that we assume a
continuous physical time and space.

We would like to outline that hybrid systems are “natural” analog computa-
tional models. We proved in this paper that they have at least the power of analog
two stack automata. It can be checked that hybrid systems considered as com-
putational models can do operations that the usual analog computational models
(the BSS machine [8] and its restrictions for example) cannot do: for example, a
polynomial hybrid system is able to compute semi-algebraic functions in constant
time in unbounded-precision: take a polynomial activation and a polynomial con-
dition of transition. If we put away the condition that the variables must be in
finite number, the BSS machine [8] can be seen itself as a particular hybrid system.
Henceforth hybrid systems can be considered as very general computational models
which may have even more power than all other analog machines, in particular than
BSS machines [8].

6 Acknowledgments

The authors would like to thank Pascal Koiran for all his helpful comments and
discussions about this paper.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid sys-
tems. Theoretical Computer Science, 138(1):3–34, 6 February 1995.

[2] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata:
an algorithmic approach to the specification and verification of hybrid systems.
Hybrid Systems, 736:209–229, 1993.

37

[3] Eugene Asarin and Oded Maler. On some relations between dynamical systems
and transition systems. In Proceedings of the International Colloquium on
Automata Language Programming (ICALP), volume 820 of Lecture Notes in
Computer Science, pages 59–72. Springer-Verlag, 1994.

[4] Eugene Asarin and Oded Maler. Achilles and the tortoise climbing up the
arithmetical hierarchy. Journal of Computer and System Sciences, 57(3):389–
398, December 1998.

[5] Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dy-
namical systems having piecewise-constant derivatives. Theoretical Computer
Science, 138(1):35–65, February 1995.

[6] José Luis Balcázar, Josep Diáz, and Joaquim Gabarró. Structural Complexity
I. EATCS Monographs on Theoretical Computer Science, 1988.

[7] C. H. Bennett. Logical reversibility of computation. IBM Journal Research
Development, 6:525–532, 1973.

[8] L. Blum, M. Shub, and S. Smale. On a theory of computation and complex-
ity over the real numbers; np completeness, recursive functions and universal
machines. Bulletin of the American Mathematical Society, 21(1):1–46, July
1989.

[9] M. S. Branicky. Universal computation and other capabilities of hybrid and
continuous dynamical systems. Theoretical Computer Science, 138(1):67–100,
6 February 1995.

[10] K. Cerāns. Decidability of bissimulation equivalences for parallel timer pro-
cesses. In Computer Aided Verification, 4th International Workshop, volume
663 of Lecture Notes in Computer Science, pages 302–315. Springer-Verlag,
1992.

[11] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory Languages
and Computation. Addison-Wesley, October 1979.

[12] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: A class of
decidable hybrid systems. 736:179–??, 1993.

[13] Pascal Koiran. On the relations between dynamical systems and boolean cir-
cuits. Technical Report 01, Ecole Normale Supérieure de Lyon, January 1993.

[14] Pascal Koiran. Puissance de calcul des réseaux de neurones artificiels. PhD
thesis, Ecole Normale Supérieure de Lyon, June 1993.

[15] Pascal Koiran. Computing over the reals with addition and order. Theoretical
Computer Science, 133(1):35–47, 11 October 1994.

[16] Pascal Koiran. A weak version of the blum shub smale model. Technical Report
005, NeuroCOLT Technical Report Series, August 1994. A preliminary version
can be found in 34th IEEE Symposium on Foundations of Computer Science
(STOC), pages 486-495, 1993.

[17] Pascal Koiran, Michel Cosnard, and Max Garzon. Computability with low-
dimensional dynamical systems. Theoretical Computer Science, 132(1-2):113–
128, September 1994.

[18] O. Maler and A. Pnueli. Reachability analysis of planar multi-linear systems.
volume 697 of Lecture Notes in Computer Science, pages 194–209. Springer-
Verlag, 1995.

38

[19] Christopher Moore. Unpredictability and undecidability in dynamical systems.
Physical Review Letters, 64(20):2354–2357, May 1990.

[20] Christopher Moore. Generalized shifts: unpredictability and undecidability in
dynamical systems. Nonlinearity, 4:199–230, 1991.

[21] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description
and analysis of hybrid systems. 736:149–??, 1993.

[22] X. Nicollin, J. Sifakis, and S. Yovine. From atp to timed graphs and hybrid
systems. Acta Inform, 30:181–202, 1993.

[23] Hava T. Siegelmann. The simple dynamics of super turing theories. Technical
Report NN-1, Technion, 1994.

[24] Hava T. Siegelmann. Computation beyond the Turing limit. Science, 268:545–
548, 1995.

[25] Hava T. Siegelmann and Eduardo D. Sontag. Analog computation via neural
networks. Theoretical Computer Science, 131(2):331–360, September 1994.

[26] E. D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE
Transactions on Automatic Control, AC-26(2), April 1981.

39

