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Abstract In last RTA, we introduced the notion of probabilistic rewrite
systems and we gave some conditions entailing termination of those sys-
tems within a finite mean number of reduction steps.
Termination was considered under arbitrary unrestricted policies. Poli-
cies correspond to strategies for non-probabilistic rewrite systems.
This is often natural or more useful to restrict policies to a subclass. We
introduce the notion of positive almost sure termination under strategies,
and we provide sufficient criteria to prove termination of a given prob-
abilitic rewrite system under strategies. This is illustrated with several
examples.

1 Introduction

As discussed in several papers such as [7,22,15], when specifying probabilistic
systems, it is rather natural to consider that the firing of a rewrite rule can be
subject to some probabilistic law.

Considering rewrite rules subject to probabilities leads to numerous questions
about the underlying notions and results. In [7], we introduced probabilistic ab-
stract reduction systems, and we introduced notions like almost-sure termination
or probabilistic confluence, with relations between all these notions. In [6], we
proved that, unlike what happens for classical rewriting logic, there is no hope
to build a sound and complete proof system with probabilities in the general
case [6]. In [5], we argue that positive almost sure termination is a better notion
than simple almost sure termination for probabilistic systems and we provide
necessary and sufficient criteria entailing positive almost sure termination.

In this paper, we pursue the investigation, by considering positive almost
sure termination under strategies. As we show through several examples, it is
often natural to restrict strategies to a subset of strategies. Many simple prob-
abilistic rewrite systems do not terminate under arbitrary strategies, whereas
they terminate if strategies are restricted to natural strategies.

The idea of adding probabilities to high level models of reactive systems is
not new, and has also been explored for models like Petri Nets [3,26], automata
based models [10,27], or process algebra [16]. There is now a rather important
literature about model-checking techniques for probabilistic systems: see example
[21] and the references there. Computer Tools like PRISM [20], APMC [19], do



exist. Observe however, that most of the studies and techniques restrict to finite
state systems.

Termination of probabilistic concurrent programs has already been investi-
gated. In particular, in [18] it has been argued that this is important to restrict
to fair schedulers, and techniques for proving termination under fair schedulers
have been provided. These techniques have been extended to infinite systems in
[17]. Compared to our work, they focus on almost sure termination, whereas we
focus on positive almost sure termination. Furthermore, we deal with probabilis-
tic abstract reduction systems or rewrite systems, whereas these two papers are
focusing on concurrent programs, where strategies correspond to schedulers.

Several notions of fairness have been introduced for concurrent programs,
and in particular for probabilistic concurrent programs. In particular, Pnueli
[23], and Pnueli and Zuck have introduced extreme fairness and α-fairness [24].
Hart, Sharir and Pnueli [18] and Vardi [27] consider probabilistic systems in
which the choice of actions at the states is subject to fairness requirements, and
proposed model checking algorithms. A survey and discussion of several fairness
notions for probabilistic systems can be found in chapter 8 of [10].

Probabilistic abstract reduction systems and probabilistic rewrite systems do
correspond to classical abstract reduction systems and classical rewrite systems
where probabilities can only be 0 or 1 [5]. Therefore, any technique for prov-
ing termination of a probabilistic system must have a counterpart for classical
systems. In particular, any technique for proving termination of probabilistic
rewrite systems under strategies is an extension of a technique for proving ter-
mination of classical rewrite systems under strategies. The termination of rewrite
systems under strategies has been investigated in e.g. [12,13]. Since the extension
to the probabilistic case of very basic techniques already yields several problems
discussed in this paper, we do not consider so general strategies.

The paper is organized as follows: in Section 2, we recall probabilistic ab-
stract reduction systems, and probabilistic rewrite systems, as well as several
concepts and results from [5]. In Section 3, we introduce positive almost sure
termination under strategies, and we discuss several examples of systems that
are non positively almost surely terminating but which are positively almost
surely terminating under some strategies. In Section 4, we derive some tech-
niques to prove positive almost sure termination under strategies. In Section 5,
we discuss several applications of our results.

2 Probabilistic Abstract Reduction Systems and

Probabilistic Rewrite Systems

A stochastic sequence on a set A is a family (Xi)i∈N, of random variables defined
on some fixed probability space (Ω, σ, P ) with values on A. It is said to be
Markovian if its conditional distribution function satisfies the so-called Markov
property, that is for all n and s ∈ A,

P (Xn = s|X0 = π0, X1 = π1, . . . , Xn−1 = πn−1) = P (Xn = s|Xn−1 = πn−1),



and homogeneous if furthermore this probability is independent of n.
Probabilistic abstract reduction systems (PARS) were introduced in [5]. In

the same way that abstract reduction systems are also called transition systems
in other contexts, PARS correspond12 to Markov Decision Processes [25].

Definition 1 (PARS). Given some denumerable set S, we note Dist(S) for
the set of probability distributions on S: µ ∈ Dist(S) is a function S → [0, 1]
that satisfies

∑

i∈S µ(i) = 1.
A probabilistic abstract reduction system (PARS) is a pair A = (A,→) con-

sisting of a countable set A and a relation →⊂ A×Dist(A). A state a ∈ A with
no µ such that a→ µ is said terminal.

A PARS is said deterministic if, for all a, there is at most one µ with a→ µ.
We denote Dist(A) for the set of distributions µ with a→ µ for some a.

We now need to explain how such systems evolve: a history is a finite sequence
a0a1 · · · an of elements of the state space A. It is non-terminal if an is.

Definition 2 (Deterministic Policy/Strategy). A (deterministic) policy φ,
that can also be called a (deterministic) strategy, is a function that maps non-
terminal histories to distributions in such a way that φ(a0a1 · · · an) = µ is always
one (of the possibly many) distribution µ with an → µ. A history is said realiz-
able, if for all i < n, if µi denotes φ(a0a1 · · · ai), one has µi(ai+1) > 0.

Actually, previous definition assumes that strategies must be deterministic
(µ is a deterministic function of the history). If we want to be very general, we
can also allow the strategy to be itself random (µ is selected among the possible
µ with an → µ in a random fashion).

Definition 3 (Randomized Policy/Strategy). A randomized policy φ, that
can also be called a randomized strategy, is a function that maps non-terminal
histories to Dist(M), where M is the set of µ with an → µ.

Following the classification from [25], one can also distinguish history depen-
dent strategies (the general case) from Markovian strategies (the value of the
function on a history a0, · · · , an depends only on an), to get the classes HD,
HR, MD, MD, where H is for history dependent, M for Markovian, D for de-
terministic, R for randomized. In what follows, when we talk about strategies,
it may mean a strategy of any of these classes.

A derivation of A is then a stochastic sequence where the non-deterministic
choices are given by some policy φ, and the probabilistic choices are governed
by the corresponding distributions.

1 The only true difference with [25] is that here action names are omitted.
2 We prefer to keep to the terminology of [5], since we think that PARS indeed cor-

respond to a probabilistic extension of Abstract Reduction Systems (ARS), Markov
Decision Processes indeed correspond to a probabilistic extension of transition sys-
tems, and hence that the question of the best terminology is related to the question
of the best terminology for ARS/transition systems, i.e. a cultural question.



Definition 4 (Derivations). A derivation π of A over policy φ is a stochastic
sequence π = (πi)i∈N on set A ∪ {⊥} (where ⊥ is a new element: ⊥ 6∈ A) such
that for all n,

P (πn+1 = ⊥|πn = ⊥) = 1,

P (πn+1 = ⊥|πn = s) = 1 if s ∈ A is terminal,

P (πn+1 = ⊥|πn = s) = 0 if s ∈ A is non-terminal,

and for all t ∈ A.

P (πn+1 = t|πn = an, πn−1 = an−1, . . . , π0 = a0) = µ(t)

whenever a0a1 · · ·an is a realizable non-terminal history and µ = φ(a0a1 · · · an).

If a derivation is such that πn = ⊥ for some n, then πn′ = ⊥ almost surely
for all n′ ≥ n. Such a derivation is said to be terminating. In other words, a
non-terminating derivation is such that πn ∈ A (πn 6= ⊥) for all n.

The following two notions were introduced in [5]:

Definition 5 (Almost Sure Termination). A PARS A = (A,→) will be
said almost surely (a.s) terminating iff for any policy φ, the probability that a
derivation π = (πi)i∈N under policy φ terminates is 1: i.e. for all φ, P (∃n|πn =
⊥) = 1.

Definition 6 (Positive Almost Sure Termination). A PARS A = (A,→)
will be said positively almost surely (+a.s.) terminating if for all policies φ, for
all states a ∈ A, the mean number of reduction steps before termination under
policy φ starting from a, denoted by T [a, φ], is finite.

The following was proved in [5].

Theorem 1. A PARS A = (A,→) is +a.s. terminating if there exist some
function V : A→ R, with infi∈A V (i) > −∞, and some ǫ > 0, such that, for all
states a ∈ A, for all µ with a→ µ, the drift in a according to µ defined by

∆µV (a) =
∑

i

µ(i)V (i) − V (a)

satisfies

∆µV (a) ≤ −ǫ.

The technique was proved complete for finitely branching systems in [5]: such
a function V always exists for +a.s. terminating finitely branching systems.

In [5], we also introduce the following notion, that covers classical (i.e. non-
probabilistic) rewrite systems, and also Markov chains over finite spaces. It fol-
lows in particular that all examples that have been modeled in literature using
finite Markov chains (for e.g. in model-checking contexts [21,20]) can be modeled
as probabilistic rewrite systems.



Definition 7 (Probabilistic Rewrite system). Given a signature Σ and a
set of variables X, the set of terms over Σ and X is denoted by T (Σ,X).

A probabilistic rewrite rule is an element of T (Σ,X) × Dist(T (Σ,X)). A
probabilistic rewrite system is a finite set R of probabilistic rewrite rules.

To a probabilistic rewrite system is associated a probabilistic abstract reduc-
tion system (T (Σ,X),→R) over the set of terms T (Σ,X) where →R is defined
as follows: When t ∈ T (Σ,X) is a term, let Pos(t) be the set of its positions.
For ρ ∈ Pos(t), let t|ρ be the subterm of t at position ρ, and let t[s]ρ denote the
replacement of the subterm at position ρ in t by s. The set of all substitutions
is denoted by Sub.

Definition 8 (Reduction relation). To a probabilistic rewrite system R is
associated the following PARS (T (Σ,X),→) over terms: t →R µ iff there is a
rule (g,M) ∈ R, some position p ∈ Pos(t), some substitution σ ∈ Sub, such that
t|p = σ(g), and, for all t′, µ(t′) =

∑

d|t′=t[σ(d)]p
M(d).

For example, a probabilistic rewrite rule can be f(x, y) 7→

{

g(a) : 1/2
y : 1/2

, where

right hand side denotes the distribution with value 1/2 on g(a) and value 1/2 on
y. Then f(b, c) rewrites to g(a) with probability 1/2, and to c with probability
1/2. Now, f(b, g(a)) rewrites to g(a) with probability 1.

Example 1. Consider3 the following probabilistic rewrite system, with two rules
R1 and R2 (of course, we assume 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1).

X ⊙ (Y ⊕ Z) →

{

(X ⊙ Y ) ⊕ (X ⊙ Z) : p1

X ⊙ (Y ⊕ Z) : 1 − p1

((X ⊙ Y ) ⊕ (X ⊙ Z)) ⊕X →

{

(X ⊙ (Y ⊕ Z)) ⊕X : p2

X ⊙ ((Y ⊕ Z) ⊕X) : 1 − p2

Consider the polynomial interpretation of symbols {⊕,⊙} given by [X⊕Y ] =
2[X ] + [Y ] + 1 and [X ⊙ Y ] = [X ] ∗ [Y ], where [P ] ∈ N[X1, . . . , Xn] denotes the
polynomial interpretation of a term P of arity n.

Fix some integer n0 ≥ 2, yet to be determined. The set of integers ≥ n0 is
preserved by the polynomials [P ]. Consider function V that maps any term P
to [P ](n0, · · · , n0). Denote also V (P ) by {P}.

We have [X ⊙ (Y ⊕ Z)] = 2[X ][Y ] + [X ][Z] + [X ], [(X ⊙ Y ) ⊕ (X ⊙ Z)] =
2[X ][Y ] + [X ][Z] + 1, and hence {X ⊙ (Y ⊕ Z)} = 2{X}{Y } + {X}{Z}+ {X},
{(X ⊙ Y )⊕ (X ⊙ Z)} = 2{X}{Y } + {X}{Z}+ 1, and the drift of the first rule
(see [5]) is given by ∆R1V (X ⊙ (Y ⊕ Z)) = p1 × {(X ⊙ Y ) ⊕ (X ⊙ Z)} + (1 −
p1){X ⊙ (Y ⊕Z)}− {X ⊙ (Y ⊕Z)} = p1 × (1−{X}). This is negative, and any

3 Example obtained by modifying an example discussed in [2] about polynomial inter-
pretations. As far as we know, this is the first time that a polynomial interpretation
is used to prove termination of a probabilistic system (the examples from [5] used
only linear interpretation functions).



substitution on X can only decrease it: R1 is substitution decreasing following
the terminology of [5].

Considering the second rule, we have [((X⊙Y )⊕ (X⊙Z))⊕X ] = 4[X ][Y ]+
2[X ][Z] + [X ] + 3, [(X ⊙ (Y ⊕ Z)) ⊕X ] = 4[X ][Y ] + 2[X ][Z] + 3[X ] + 1, [X ⊙
((Y ⊕ Z) ⊕ X)] = 2[X ][Y ] + 2[X ][Z] + X + 2, and hence ∆R2V (((X ⊙ Y ) ⊕
(X ⊙ Z)) ⊕X) = p2 × {(X ⊙ (Y ⊕ Z)) ⊕X} + (1 − p2){X ⊙ ((Y ⊕ Z)⊕X)} −
{((X ⊙Y )⊕ (X ⊙Z))⊕X} = 2(p2 − 1){X}{Y }+2p2{X}− p2− 1. This drift is
not necessarily negative: in particular for p2 = 1, it is positive. However, assume
p2 < 1. If we take, n0 ≥ p2/(1 − p2), we can be sure that it becomes negative,
since 2(p2−1){X}{Y } ≤ −2p2{X}. For such an n0, it is substitution decreasing.

Now, observing the form of the interpretation of symbols {⊕,⊙}, which are
linear in each of their variables with integer positive coefficients, a context can
only decrease a drift. We get that the probabilistic rewrite system is +a.s. ter-
minating for p2 < 1.

This is a fortiori true for the following system, since the drift of the third
rule is −1 − 2{X}, and hence negative.

Example 2. Consider the following probabilistic rewrite system, with three rules
R1, R2, R3:

X ⊙ (Y ⊕ Z) →

{

(X ⊙ Y ) ⊕ (X ⊙ Z) : p1

X ⊙ (Y ⊕ Z) : 1 − p1

((X ⊙ Y ) ⊕ (X ⊙ Z)) ⊕X →

{

(X ⊙ (Y ⊕ Z)) ⊕X : p2

X ⊙ ((Y ⊕ Z) ⊕X) : 1 − p2

(X ⊕ Y ) ⊕ Z →
{

X ⊕ (Y ⊕ Z) : 1

3 Positive Almost Sure Termination Under Strategies

Positive almost sure termination means that for all starting term the mean num-
ber of rewrite steps to reach a terminal state is finite under any policy/strategy.
In particular, non termination can happen with a single very specific strategy.

In many examples, one is often tempted not to consider arbitrary strate-
gies, but to restrict to a subset of strategies. Whatever the considered class of
strategies is, the following notion is rather natural.

Definition 9 (Positive Almost Sure Termination Under Strategies).
Fix a class Φ of strategies (i.e. policies);

A PARS A = (A,→) will be said positively almost surely (+a.s.) terminating
under Φ if for all strategy (i.e. policy) φ ∈ Φ, for all states a ∈ A, the mean
number of reduction steps before termination under φ starting from a, denoted
by T [a, φ], is finite.

Example 3. Consider the following probabilistic rewrite system, with two rules.

a→ {a : 1
a→ {b : 1



This system is clearly not (almost surely) terminating , since there is the
infinite derivation a→ a→ · · ·a→ · · · .

However, it is +a.s. terminating under Markovian non-deterministic4 ran-
domized strategies: indeed, in state a, such a strategy selects either the first rule
with probability p1, or the second with probability 1−p1, for some fixed p1 < 1.
The system is then equivalent to the probabilistic rewrite system

a→

{

a : p1

b : 1 − p1

whose positive almost sure termination can be established easily, for example
using previous theorem and V (a) = 1, V (b) = 0.

Example 4. Consider the following probabilistic rewrite system, with two rules
named red and green: see Figure 1.

s(x) →

{

x : p1

s(s(x)) : 1 − p1

s(x) →

{

x : p2

s(s(x)) : 1 − p2

p1

1−p1 1−p1 1−p1

p1 p1

0 1 2 3 4

p1

p1

1−p1

1−p2

p2 p2 p2 p2

1−p2 1−p2 1−p2

p2

Figure 1. Example 4.

The red (respectively: green) rule5 is easily shown to be +a.s. terminating iff
p1 > 1/2 (resp. p2 > 1/2).

Suppose that p1 < 1/2, p2 > 1/2. The whole system is not +a.s. terminating:
consider the strategy that always selects the red rule.

However, it is +a.s. terminating under the strategy that always selects the
green rule.

Intuitively, in a more general case, its +a.s. termination depends on the
ratio of selection of the red versus green rule. Indeed, if we focus on Markovian

4 we want to avoid p1 = 1.
5 That is to say: the probabilistic rewrite system made of this rule alone.



randomized strategies that select the red (respectively green) rule with a fixed
probability p (resp. 1 − p), the whole system is equivalent to

s(x) →

{

x : p1 ∗ p+ p2 ∗ (1 − p)
s(s(x)) : (1 − p1) ∗ p+ (1 − p2) ∗ (1 − p)

which is easily shown to be +a.s. terminating iff p1 ∗ p+ p2 ∗ (1 − p) > 1/2, i.e.
p < (1 − 2p2)/(2(p2 − p1)).

Example 5. Consider the following probabilistic rewrite system, over signature
Σ = {A,B,C}, with four rules, where we assume p1 > 0, p2 > 0.

A →

{

B : p1

A : 1 − p1

B →

{

A : p2

B : 1 − p2

A → {C : 1
B → {C : 1

We have only states A and B, and in each of these states, a strategy can
either select the rule among the two first that applies or the rule among the two
last that applies. It is easy to see that with probability one, an infinite derivation
is made of a sequence of A and B, each of them appearing infinitely often.

This probabilistic rewrite system is not +a.s. terminating: consider the strat-
egy φ∞ that always excludes the second possibility (i.e. never choose third or
fourth rule).

However, it is clearly +a.s. terminating under Φ, for any class Φ that does
not contain this specific strategy φ∞.

This example illustrates that one may want to restrict to fair strategies, for
some or one’s preferred notion of fairness: in this example, since third and fourth
rule can fire infinitely often, one may want that they fire at least once (or with
positive probability).

In literature, several notions of fairness have been introduced: see [23,24,27,10]
and references in the introduction of this paper. Termination of probabilistic sys-
tems under fairness constraints has been investigated, in particular in [18] for
probabilistic finite state systems, and in [17] for probabilistic infinite state sys-
tems.

Next section will be devoted to provide techniques to prove positive almost
sure termination of a probabilistic rewrite system under strategies. These results
can be applied with classes of strategies constrained by several of these notions of
fairness. The following results can also be seen as an extension of the two papers
[18,17] to deal with +a.s. termination (and not only almost sure termination).

4 Proving +a.s. Termination Under Strategies

A slight generalization of Theorem 1 yields rather directly:



Theorem 2. Fix a class of strategies Φ.
A PARS A = (A,→) is +a.s. terminating under Φ if there exist some func-

tion V : A → R, with infi∈A V (i) > −∞, and some ǫ > 0, such that, for all
realizable non-terminal history h = a0a1 · · · an, for all φ ∈ Φ, the drift in h
according to φ defined by

∆φV (h) =
∑

i

φ(h)(i)V (i) − V (an)

satisfies
∆φV (h) ≤ −ǫ.

Fortunately, we can do better in many cases.
Consider a PARS A = (A,→). Assume thatDist(A) (see Definition 1) can be

partitioned into finitely many subsets Dist(A) = D1 ∪D2 . . . ∪Dk. Intuitively,
when A is corresponding to a PARS associated to some probabilistic rewrite
system with k probabilistic rewrite rules R1, . . . , Rk, each Di corresponds to
rewrite rule Ri: Di is made of distributions µ obtained by varying position p,
and substitution σ in the distribution of rule Ri, according to Definition 8.

We assume that for any strategy φ ∈ Φ, φ−1(Di) is measurable. The expec-
tation of a random variable X is denoted by E[X ].

Definition 10 (Next Selection of a Rule). Fix some Di.
Fix some deterministic policy φ and some realizable non-terminal history

h = a0a1 · · ·an. Let (πi)i∈N be a derivation starting from h: (πi)i∈N is a stochastic
sequence as in Definition 4 with π0 = a0, · · · , πn = an.

Let τ be the random variable denoting the first index greater than n at which
Di is selected, or a terminal state is reached (set τ = ∞ if there is no such index).
I.e. τ = m iff φ(π0, · · · , πm) ∈ Di, and φ(π0, · · · , πm′) 6∈ Di for n < m′ < m, or
πm = ⊥ and πm′ 6= ⊥ for n < m′ < m.

Let τDi,π,φ,h denote the τ for the corresponding Di, π, φ and h.

Each random variable τDi,π,φ,h is a stopping time with respect to derivation π
(see e.g. [9]): it is a random variable taking its value in N∪{∞}, such that for all
integers m ≥ 0, the event {τ = m} can be expressed in terms of π0, π1, . . . , πm.

Remark 1. One must understand that even if the policy is deterministic, and
hence not depending on any random choice, each τDi,π,φ,h is random. Indeed,
when h = a0 · · · an is fixed, the choice of an+1 is made according to distribution
φ(a0 · · ·an), and hence random; the choice of an+2 is then made according to
distribution φ(a0 · · ·anan+1), and hence random. And so on. The event Di is
selected or a terminal state is reached at time n is then random.

Definition 11 (Bounded Mean Selection). A class of strategy Φ has bounded
mean selection α ∈ R for Di, if for any strategy φ ∈ Φ, for any history, the ex-
pected time to wait before reaching a final state or selecting a rule from Di is less
than α. I.e. for any realizable non-terminal history h = a0 · · · an, for any policy
φ ∈ Φ, for any derivation π starting from h, τDi,π,φ,h has a finite mean with

E[τDi,π,φ,h] ≤ n+ α.



Observe that a variable taking values in N ∪ {∞} with a finite mean is nec-
essarily almost surely finite: in other words, when the conditions of the previous
definition hold, one knows that almost surely starting from any history h, one
reaches either a final state, or one selects a rule from Di.

Definition 12 (Expected Value of V At Time τ). Let V : A → R be
some function. Let τ ∈ N ∪ {∞} denotes some stopping time with respect to
derivation π, which is almost surely finite: P (τ < ∞) = 1. Fix some policy φ,
and a corresponding derivation (πi)i∈N.

We denote by EτV the expected value of V at time τ : formally

EτV = E[V (πτ )]

when it exists.

We claim:

Theorem 3 (Almost Sure Termination Under Strategy). Fix a class of
strategies Φ.

A PARS A = (A,→) is almost surely terminating under strategies Φ if there
exist some function V : A → R, with infi∈A V (i) > −∞, some ǫ > 0, and
some Di such that for all strategy φ ∈ Φ, for all realizable non-terminal history
h = a0 . . . an, for all derivation π starting from h,

1. the stopping time τDi,π,φ,h is almost surely finite,

2. and

EτDi,π,φ,hV ≤ V (an) − ǫ.

This follows from the following result from Martingale theory: See [11] for a
proof (1A denotes the characteristic function of a set A).

Proposition 1. Let (Ω,F , P ) be a given probability space, and {Fn, n ≥ 0} an
increasing family of σ-algebra.

Consider a sequence (Si)i∈N of real non-negative random variables, such that
Si is Fi-measurable, for all i. Assume S0 to be constant, w.l.o.g.

Denote by τ the Fn-stopping time representing the epoch of the first entry
into [0, C], for some C: τ = inf{i ≥ 1, Si ≤ C}.

Introduce the stopped sequence S′
i = Smin(i,τ).

Assume S0 > C, and for some ǫ > 0, and for all n ≥ 0, almost surely

E[S′
i+1|Fn−1] ≤ S′

i − ǫ1τ>i. (1)

Then:

– Almost surely τ is finite.

– E[τ ] < S0/ǫ.



Proof (of Theorem 3). Replacing function V by V +K for some constant K if
needed, we can assume without loss of generality that V (a) ≥ 2ǫ for all a ∈ A.
Extend function V on A ∪ {⊥} by V (⊥) = 0.

Fix a strategy φ ∈ Φ, a realizable non-terminal history h, and a derivation
(πi)i∈N starting from h.

From Condition 1., one can build a sequence of random functions (ψn)n∈N

such that almost surely, for all n > 1, either πψ(n) = ⊥, or Di is selected at
rank ψ(n). Indeed: Take ψ(0) = 0; when ψ(n) is built, build ψ(n+ 1) as ψ(n) if
πψ(n) = ⊥ and as ψ(n) + τDi,π,φ,h otherwise.

Consider the increasing family of σ-algebra Fn where Fn is the σ-algebra
generated by π0, · · · , πn. Condition 2. implies almost surely E[S′

n+1|Fn−1] ≤
S′
n − ǫ1πψ(n) 6=⊥, where S′

n = V (πψ(n)) for all n. By Proposition 1 above with
C = ǫ, almost surely there must exist some n with πn = ⊥.

In other words, the PARS is almost surely terminating under Φ.

Remark 2. Previous hypotheses yield almost sure termination, but not positive
almost sure termination. Indeed, the proof build a subsequence of indexes ψ(n)
yielding almost surely to termination. But there is no reason that ψ(n+1)−ψ(n)
stay bounded, and hence the original derivation can be non positively almost
surely terminating (such an example is easy to build).

Actually, weaker conditions entailing almost sure termination have been de-
rived in [17]: in particular ǫ can be taken as 0. However, for +a.s. almost sure
derivation, we claim:

Theorem 4 (+ A.S. Termination Under Strategy). Fix a class of strate-
gies Φ.

A PARS A = (A,→) is +a.s. terminating under strategies Φ if there exist
some function V : A → R, with infi∈A V (i) > −∞, some ǫ > 0, and some Di

such that Φ has bounded mean selection for Di, and such that for all strategy
φ ∈ Φ, for all realizable non-terminal history h = a0 . . . an, for all derivation π
starting from h,

EτDi,π,φ,hV ≤ V (an) − ǫ.

Proof. By previous discussion, the fact that Φ has bounded mean selection for
Di entails Condition 1. of previous theorem, and hence we have almost sure
termination. Even if we did not mention it, the application of Proposition 1 in
the proof of previous Theorem also yields that the random variable N giving the
smallest n with πn = ⊥ has a finite mean with E[N ] ≤ V (an)/ǫ.

Now, since Φ has bounded mean selection α for some α > 0, we can bound
E[ψ(N)] by αV (a0)/ǫ using following Lemma, whose proof can easily be estab-
lished (for example by adapting the proof of Wald’s Lemma in [9]).

Lemma 1. Consider a stochastic sequence (Xi)i∈N taking non-negative values.
Let N be an integer-valued random variable, with a finite expectation. Assume
there exists some constant M such that 0 ≤ Xn+1 −Xn ≤ M almost surely for
all n. The random variable XN has an expectation bounded by E[X0]+M ∗E[N ].



5 Applications

We first derive one simple case:

Proposition 2. Consider a PARS A = (A,→) so that there exists V : A →
R, with infi∈A V (i) > −∞, some (possibly positive) α, some ǫ > 0, such that
Dist(A) can be partitioned into Dist(A) = D1 ∪D2 such that for all a→ µ, we
have

1. ∆µV (a) ≤ α whenever µ ∈ D1.
2. ∆µV (a) ≤ −ǫ whenever µ ∈ D2.

Assume that a rule of the form a→ µ, with µ ∈ D1 never lead to a terminal:
for all a→ µ, µ ∈ D1, for all a′ with µ(a′) > 0, a′ is not a terminal.

Assume that φ selects D2 at least once every k steps for some constant k: for
any h = a0 · · ·an, for any φ ∈ Φ, for any π, we assume that τD2,π,φ,h exists and
satisfies τD2,π,φ,h ≤ n+ k.

Assume that (k − 1)α− ǫ < 0.
Then A is +a.s. terminating under strategies Φ.

Proof. It is easy to see that we always have EτD2,π,φ,h
V ≤ V (an) + (k − 1)α− ǫ

in this case: Indeed, a derivation starting from h must either reach a terminal or
lead to a state where D2 is selected. In any case, the last applied rule will be a
rule from D2, and hence V will decrease in mean of at least ǫ, after the at most
k − 1 first rules that can make it increase in mean of at most (k − 1)α. We can
then apply previous theorem.

Example 6. Consider the following probabilistic rewrite system, with three rules
R1, R

′
2, R3:

X ⊙ (Y ⊕ Z) →

{

(X ⊙ Y ) ⊕ (X ⊙ Z) : p1

X ⊙ (Y ⊕ Z) : 1 − p1

((X ⊙ Y ) ⊕ (X ⊙ Z)) ⊕X →

{

(X ⊙ (Y ⊕ Z)) ⊕X : p2

((X ⊙ Y ) ⊕ (X ⊙ Z)) ⊕X : 1 − p2

(X ⊕ Y ) ⊕ Z →
{

X ⊕ (Y ⊕ Z) : 1

This probabilistic rewrite system is not positively almost surely terminating.
Indeed, for the policy which always apply the first two rules and never the
third, we have an infinite derivation with terms ((X ⊙ Y ) ⊕ (X ⊙ Z)) ⊕X and
(X ⊙ (Y ⊕ Z)) ⊕X , each of them appearing almost surely infinitely often.

The drift of the rules R1 and R3 have been computed in Example 2. Now,
the drift of the rule R′

2 is ∆R′

2
V (((X ⊙ Y )⊕ (X ⊙Z))⊕X) = 2p2 × ({X} − 1),

and hence positive.
If we choose a policy φ with a bounded mean selection for the rewrite rule

R3, and if φ always reduce the term of a cycle ((X ⊙ Y ) ⊕ (X ⊙ Z)) ⊕ X →
(X ⊙ (Y ⊕ Z)) ⊕ X until it can be broken by firing rule R3, then conditions
of Theorem 4 are satisfied, because, for all histories h = a0, . . . , an such that
an contains a subterm which is an instance of ((X ⊙ Y ) ⊕ (X ⊙ Z)) ⊕X , then
EτD3 ,π,φ,h

V ≤ V (an) − 2 × {X} − 1.



Example 7. Let’s now consider the following term rewrite system, coming from
the model of [8] of a simulator for the CSMA-CA protocol [1]. The rules rewrite
lists of couples. Each couple is made of two positive integers. The sort operator
triggers a rule based sort algorithm, which sorts in increasing order the list in
function of the value of the first field. The first rule will take the head of the list,
replace the first field by a random value between 1 and p following an uniform
law with probability µ and decrease the value of the second field with probability
1 − µ.

(∆t, n+ 1), . . . , (∆k, nk) →

{

(U(1, . . . , p), n+ 1), . . . , (∆k, nk) : µ
(U(1, . . . , p), n), . . . , (∆k −∆t, nk) : 1 − µ

(∆t, n+ 1), . . . , (∆k, nk) → sort((∆t, n + 1), . . . , (∆k, nk))
sort((∆t, nt), X) → sort1((∆t, nt), nil,X)
sort1((∆t, nt), l, (∆

′
t, n

′
t).X) → sort1(((∆t, nt), l.(∆

′
t, n

′
t), X)) If ∆t < ∆′

t

sort1((∆t, nt), l, (∆
′
t, n

′
t).X) → sort1(((∆′

t, n
′
t), l.(∆t, nt), X)) If ∆t > ∆′

t

sort1((∆t, nt), l, (∆
′
t, n

′
t).nil) → (∆t, nt).sort(l.(∆

′
t, n

′
t)) If ∆′

t > ∆t

sort1((∆t, nt), l, (∆
′
t, n

′
t).nil) → (∆′

t, n
′
t).sort(l.(∆t, nt)) If ∆′

t < ∆t

where, X, l are some lists of couples of integers, the operator “.”denotes the
concatenation of lists and nil is the empty list. U(1, . . . , p) is a random integer
variable following an uniform law on {1, . . . , p}. n and nii∈1,...,k are non negative
integers.

This PRS is easily seen not +a.s. terminating: For example the first two rules
always apply on every list or sublists.

Now let’s build a policy under which the PRS positively almost surely ter-
minates. Let’s start with a0 a list of length n, φ(a0) is the rule that rewrites
a0 to sort(a0). The length of the sorting process is n(n − 1), and the policy φ
chooses only the rules coding the sort algorithm during the sort process. If the
first element of the list has a zero second field, there’s no rule matching this list
and this term is terminal. Otherwise, the policy φ will choose again the rule that
triggers the sort of the list, and later apply the rule number one, and so one
since no terminal state is reached.

To show this system is +a.s. terminating, let’s consider the function V :
T (Σ,X) → N computing the sum of the second field of each element of a list,
and apply Proposition 2.

An alternative proof is the following: We can apply Theorem 4, because φ has
bounded mean selection for the first rule rewrite relation D1, because such a rule
is triggered between two sorts of length n(n−1) and EτD1 ,π,φ,h

V = V (an)+µ−1,
because V does not change during the sorting process since the values of the
second field are not touched, and the only variation of the mean is induced by
the rule D1 whose drift is µ−1. V , as the sum of positive value, is lower bounded.



6 Conclusion and Future Work

In this paper, we introduced positive almost sure termination under strategies,
and we provide sufficient criteria to prove positive almost sure termination of a
given probabilitic rewrite system under strategies.

We plan to apply our techniques on industrially motivated examples of bigger
size. It may be possible to weaken the hypotheses of our theorems since they
mainly use a special case of Proposition 1. As mentioned in the introduction,
any technique to deal with probabilistic systems, must work for classical ones,
since probabilities can be 0/1. The classical (non-probabilistic) counterpart of our
framework for proving termination under strategies is very poor: the question
of understanding which of the techniques from literature for non-probabilistic
systems can be extended to deal with probabilistic systems seems fascinating.
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15. Thom Frühwirth, Alexandra Di Pierro, and Herbert Wiklicky. Toward probabilis-
tic constraint handling rules. In Slim Abdennadher and Thom Frühwirth, editors,
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