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Abstract. Recently rule based languages focussed on the use of rewrit-
ing as a modeling tool which results in making specifications executable.
To extend the modeling capabilities of rule based languages, we explore
the possibility of making the rule applications subject to probabilistic
choices.
We propose an extension of the ELAN strategy language to deal with
randomized systems. We argue through several examples that we propose
indeed a natural setting to model systems with randomized choices. This
leads us to interesting new problems, and we address the generalization of
the usual concepts in abstract reduction systems to randomized systems.

1 Introduction

Term rewriting has been developed since the last thirty years, leading to a deep
and solid corpus of knowledge about the rewrite relation induced by a set of
rewrite rules. More recently, rule based languages focussed on the use of rewrit-
ing as a modeling tool, which results in making the out-coming specification
executable in a very efficient way [11]. Such languages enlighten the fundamen-
tal role of rewrite strategies, either for computation or for deduction. In the
ELAN language, the notion of rule and strategy are both first class and this is
backed-up by the concept of rewriting calculus [5]. In this framework, that gener-
alizes the lambda-calculus, the basic notions are those of rewrite rule and of rule
application. To extend the modeling capabilities of the calculus, we explore in
this work the possibility of making the rule application subject to probabilistic
choices.

Since the probabilistic firing of a rewrite rule can be seen as a specific kind of
strategy, we introduce in the first part of this work a new notion of strategy. From
a practical point of view, we added to ELAN the notion of probabilistic choice
strategy, permitting us to fire under some probability a given set of rules. It is
in particular a fundamental design choice to manage probabilities at the level of
strategies instead of at the level of the rules themself where the flexibility and
the semantics would have been then less clear.

This leads us to interesting new capabilities and problems that we are ad-
dressing in this paper.



The combination of the concept of explicit rule application and of probabilis-
tic choice has many applications. In particular for probabilistic data bases [21],
probabilistic agents [6], genetic algorithms [9], randomized algorithms [15], ran-
domized proof procedures [14], . . . etc. Therefore, the notion of probabilistic
strategy is quite useful as a modeling tool. What we address in the second part of
this paper is a first step in the understanding of such strategies in the rewriting
context.

Indeed we focus on the study of abstract reduction systems extensions under
probabilistic choice. For example, we can define a notion of almost-sure termina-
tion as the property that the set of infinite derivations of an abstract reduction
system is of null measure. A typical situation is the rewrite system a→ a, a→ b
where the rewrite strategy consists in applying each rule with probability 0.5.
This system is terminating with probability one but clearly not terminating.

Similarly, probabilistic notions for confluence or other usual notions of classi-
cal abstract reduction systems can be defined. The design of tools to check these
properties at the level of a rewrite relation is a challenge and will strengthen
the use of the concept as a specification tool. This paper aims at putting a first
stone towards these directions.

We presented first ideas about such an approach to control rule firing together
with a first prototype in [1]. A different point of view has been developed recently
to extend the Constraint Handling Rule process with probabilistic capabilities
put on the rewrite rules themselves [8,16,18,17,19]. This is, to the best of our
knowledge, the only attempts to formalize probabilistic transitions using rule
based languages.

In Section 2 we introduce through some simple examples the strategy opera-
tor that we added to ELAN strategy language to deal with probabilistic systems.
In Section 3, we argue through several examples that this is indeed a natural set-
ting for specifying systems with probabilistic choices. In Section 4, we discuss on
the operational semantic of the proposed strategy operator through a discussion
on the way this operator is implemented in the ELAN prototype. This leads us to
important questions about the generalization of usual rewriting concepts such as
confluence and termination that we discuss for probabilistic abstract reduction
systems in Section 5.

2 A general probabilistic rewrite strategy operator.

Let us first consider the simple example of euro coin flipping1. It could be mod-
eled using the following rules:

[h] x => head

[t] x => tail

1 See http://www.inference.phy.cam.ac.uk/mackay/abstracts/euro.html for a
summary of the recent attention devoted to the potential bias of the euro coin (thanks
to one of the referees).

http://www.inference.phy.cam.ac.uk/mackay/abstracts/euro.html


where h and t are the names, also call labels of the rules, head, tail are just
constant function symbols and x is a variable.

In order to express the equiprobability of the two sides of a euro coin, we
write

equi => PC(h:0.5, t:0.5)

which means that the two rules fire with the same probability and that the
application of the strategy equi to flip (denoted (equi flip)) reduces either
to tail or to head with the same probability 0.5.

If euro coins were biased, we would write something like:

bias => PC(h:0.4, t:0.6)

Then, we would have with probability 0.4 the derivation
(bias flip) => (PC(h:0.4, t:0.6) flip)

=> (h flip)

=> head

and, with probability 0.6 the derivation
(bias flip) => (PC(h:0.4, t:0.6) flip)

=> (t flip)

=> tail

But actually a strategy operator that makes choices with fixed probabilities
is not sufficient to model all games, since probabilities often also depend on
parameters.

Suppose for example, that in addition to bias problems there were no harmo-
nization between the countries of the euro zone. Then, the bias would depend
on the country and we would need somehow a function probaH, from countries
to numbers in the interval [0, 1] to represent the bias.

It could be natural to model this latter function as a strategy itself, mapping
(normalizing) terms representing countries to real numbers in the interval [0, 1].

This could be done in ELAN using something like:

[probaH] france => 0.49

[probaH] belgium => 0.50

...

The bias operator would then be simply described by:

bias => PC(h:probaH, t:1 - probaH)

and we would write (bias luxembourg) to simulate Luxembourg euro flipping.
Hence, we actually introduce the following strategy operator: for strategies

p1, . . . , pn mapping terms (which sort is un-important here) to terms of the
sort of real numbers so that on any term t, Σi(pi t) = 1, and when s1, . . . , sn

are other strategies which application is subject to a certain probability law,
PC(s1 : p1, . . . , sn : pn) is the strategy that consists, applied on some term t, in
choosing an i ∈ {1, . . . , n} with probability (pi t), and then returning (si t), the
application of strategy si on the term t.

Before formally describing this strategy combinator, let us play with more
examples.



3 Examples

We now develop several examples to argue that the PC operator is indeed a
natural setting for modeling probabilistic systems. We choose first an example
that requires probabilistic choices with fixed probabilities. The second example
requires probabilistic choices with run-time varying probabilities. We choose as
third example to take a simple algorithm of the book [15] to exemplify how easy
it is to transform any randomized algorithm into a ELAN program using the
previous operator.

Example 1. Suppose we want to model the following game between two players.
Initially, two players have M euros (M ≥ 2). An unbiased coin is flipped. If it
falls on head, player one wins one euro from player 2, otherwise player 2 wins
two euros from player 1. The game stops when one of the two players is ruined.

This can be modeled as follows.

[h] game(M1,M2) => game(M1+1,M2-1)

if M2>0

[h] game(M1,0) => player-1-wins

[t] game(M1,M2) => game(M1-2,M1+2)

if M1>1

[t] game(0,M2) => player-2-wins

[t] game(1,M2) => player-2-wins

The strategy modeling the repetition of coin flipping is:

play => repeat(PC(h:0.5, t:0.5))

Considering the derivations of (play game(M,M)), we get a modeling of our
game.

This is clearly not a terminating system, since there are infinite derivations
starting from (play game(M,M)). However, according to probability theory, the
probability of such an infinite derivation is null: with probability 1, a derivation
terminates. So we can say, as we will develop in Section 5, that this system is
almost-surely terminating (but not terminating).

Of course we must also have a picking balls example:

Example 2. Consider a urn with N green balls and two yellow balls. We pick a
ball until we get a yellow one. We loose if we pick all the green balls.

[pickgreen] urn(N) => urn(N-1)

if N>1

[pickgreen] urn(1) => loose

[pickyellow] urn(N) => win

Transition probabilities now depend on time, i.e. on terms. If balls are picked
equiprobably, then the probability of picking a green ball should be N/(N + 2).

So we write:



play => repeat(PC(pickgreen: p, pickyellow: 1-p))

where p is itself a strategy.

[p] urn(N) => N / (N+2)

We could add many other examples to argue that this setting is quite natural
for prototyping probabilistic games, random walks, or randomized algorithms.

To argue that randomized algorithms can easily been turned into a ELAN

program, we take the first example of the book [15]. This is a sorting algorithm
in expected time O(2nHn) = O(n log n), where Hn is the nth Harmonic number
[15].

Example 3. We need first to choose an element uniformly in a list L. This is
obtained as the application of the probabilistic strategy any to L with:

[thisone] y.L => y

[otherone] y.L => L

[pthisone] L => 1/length(L)

[potherone] L => (length(L)-1)/length(L)

any => repeat*(PC(thisone: pthisone, otherone: potherone))

And now, we sort as follows:

[] sort(L) => sort(subset-lower(L,y)).y.sort(subset-greater(L,y))

where y:= (any L)

[] sort(nil) => nil

[] subset-lower(z.L,y) => z.subset-lower(L,y) if z < y

[] subset-lower(z.L,y) => subset-lower(L,y) if z >= y

[] subset-lower(nil,y) => nil

[] subset-greater(z.L,y) => z.subset-greater(L,y) if z > y

[] subset-greater(z.L,y) => subset-greater(L,y) if z <= y

[] subset-greater(nil,y) => nil

4 Operational semantics

The previous PC operator is available in the ELAN system and the previous
examples can be check in the current prototype.

We now present the operational semantic of the probabilistic choice strategy.
This is easy to get from following discussion on its implementation, using the
background semantics of the ELAN language [3,5].

Actually, the PC operators are implemented in ELAN itself, using the classi-
cal trick of imperative programming to simulate any probabilistic distribution



using a uniform one [13]. Concretely, we just added to ELAN a built-in operator
uniform-random-generator() that returns a real number in interval [0, 1] with
uniform distribution.

Now, when the pi are strategies (possibly constant) that, on any term t,
evaluate to a positive (or null) real number such that

∑n

i=1
(pi t) = 1, then the

application of the strategy PC(s1 : p1, . . . , sn : pn) on a term t is defined as
follows:

[ ] (PC(s1 : p1, . . . , sn : pn) t)⇒ (choose(y, s1 : (p1 t), . . . , sn : (pn t)) t)

where y := uniform-random-generator()

With, for reals ξi ∈ [0, 1] (that result from the evaluation of pi on t) such
that

∑n

i=1
ξi = 1:

[ ] choose(y, τ1 : ξ1, . . . , τn : ξn)⇒ τ1

if y ≤ ξ1

[ ] choose(y, τ1 : ξ1, . . . , τn : ξn)⇒ τ2

if ξ1 < y ≤ ξ1 + ξ2

...

[ ] choose(y, τ1 : ξ1, . . . , τn : ξn)⇒ τn

if ξ1 + ξ2 + . . . + ξn−1 < y

This ELAN code simulates a non-uniform distribution using a uniform one.
For example, we have the derivations

(bias france) => (PC(h : probaH, t:1 - probaH) france)

=> (choose(0.7, h: (probaH france),

t: ((1- probaH) france)) france)

=> (choose(0.7, h: 0.49, t: 0,51) france)

=> (t france)

=> tail

and
(bias france) => (PC(h: probaH, t:1 - probaH) france)

=> (choose(0.25, h: (probaH france),

t: ((1- probaH) france)) france)

=> (choose(0.25, h: 0.49, t: 0,51) france)

=> (h france)

=> head

5 Probabilistic Abstract Reduction Systems

Dealing with probabilistic systems gives rise to interesting new problems. For
example, what are the generalizations of the classical notions of rewriting such
as confluence, termination? Which results still hold, and which can be extended



to that setting? These are the kind of problems that we address in this section
by studying the generalization of the classical results about abstract reduction
systems to probabilistic ones.

In a first step, we are not dealing with rewriting (ad posteriori nor with
conditional rewriting, nor rewriting controlled by strategies) but with reduction
systems. However, we claim that this study can give some clues to understand
what probabilistic rewriting could be.

Observe also that we took the approach of starting from results from classical
abstract reduction systems and studying whether they are still valid in that
setting. This is a priori different from considering probabilistic abstract reduction
systems by themselves.

We first come back to the classical setting (see for example [2,12]). An abstract
reduction system (ARS) is A = (A,→) consisting of a set A and a binary relation
→⊂ A×A on A . A derivation is a finite, or infinite sequence π = π0 → π1 . . .→
πn with (πi, πi+1) ∈→ for all i.
→n denotes the n-step composition of→:→0 is the identity, and→n+1=→n

◦ →.→≤n denotes less-than-n-step composition:→≤n=
⋃

0≤i≤n →
i. The reflex-

ive transitive closure of a relation→ is denoted by→∗ and its symmetric closure
is denoted by ↔.

The reduction relation → is said locally confluent (LC) if b ← a → c ⇒
∃d b →∗ d ∧ c →∗ d. It is said confluent (C) if b ←∗ a →∗ c ⇒ ∃d b →∗

d ∧ c→∗ d.
The following results are well-known.

Proposition 1 (Classical Setting [2,12]). The following are equivalent:

1. → is confluent (C)
2. →∗ is locally confluent (LC)
3. →∗ is confluent (C)
4. the relation is semi-confluent: b← a→∗ c⇒ ∃d b→∗ d←∗ c.
5. the relation is Church Rosser: a↔∗ b⇒ ∃c a→∗ c←∗ b.

Let A be an ARS. a ∈ A is said to be in normal form if there is no b with
a→ b. We say that a has a normal form (hnf) if there is a b in normal form
with a→∗ b. a, b ∈ A are said to be convertible if a↔∗ b·

The reduction relation →, or A, is normalizing (N) if every a ∈ A has a
normal form. It is terminating (T) if there is no infinite chains π0 → π1 . . .→
πn . . ..

It has the unique normal form property (UN) if for all a, b ∈ A, if a and b
are convertible and in normal form, then a and b are identical. It has the normal
form property (NF) if for all a, b ∈ A, if a is in normal form and convertible
with b, then b→∗ a.

It is inductive (Ind) if every reduction sequence π0 → π1 . . .→ πn (possibly
infinite) there is an a with πi →

∗ a for all i. It is increasing (Inc) if there is a
map f from A to N such that a→ b implies f(a) < f(b). It is finitely branching
(FB) if for all a, the set of b with a→ b is finite.

The following relations are well-known.



Proposition 2 (Classical Setting [2,12]).

1. confluent (C) ⇒ normal form property (NF) ⇒ unique normal form
property (UN)

2. terminating (T) and locally confluent (LC) ⇒ confluent (C)
(Newman’s Lemma)

3. unique normal form property (UN) and normalizing (N) ⇒ confluent
(C)

4. unique normal form property (UN) and normalizing (N) ⇒ inductive
(Ind)

5. inductive (Ind) and increasing (Inc) ⇒ terminating (T)
6. locally confluent (LC) and normalizing (N) and increasing (Inc)
⇒ terminating (T)

We can now switch to the probabilistic case. The idea behind the probabilistic
setting is to consider reductions with probabilities.

Let us first come back to school [10,7,20]: a σ-algebra on a set Ω is a set of
subsets of Ω which contains the empty-set, and is stable by countable union and
complementation. In particular, the set of subsets is a natural σ-algebra for any
countable set. A measurable space (Ω, σ) is a set with a σ-algebra on it. If (Ω, σ)
and (Ω′, σ′) are measurable spaces, a function f : Ω → Ω′ is measurable if for
all W in σ′, f−1(W ) ∈ σ.

A probability is a function P from a σ-algebra to [0, 1], which is countably
additive, and such that P (Ω) = 1. A triplet (Ω, σ, P ) is called a probability space.
A random variable is a measurable function on some probability space.

Given two probabilities P and P ′ on σ and σ′ respectively, one can consider
P ⊕ P ′ which is the product measure defined on the σ-algebra σ × σ′, and is
characterized by P ⊕ P ′(A× A′) = P (A)P (A′). Given A, B ∈ σ, when P (B) >
0, the conditional probability of A given B is by definition P (A|B) = P (A ∩
B)/P (B).

A stochastic sequence on a set S is a family (Xi)i∈N, of random variables
defined on some fixed probability space (Ω, σ, P ) with values on S. It is said
to be Markovian if its conditional distribution function satisfies the so-called
Markov property, that is for all n

P (Xn = s|X0 = π0, X1 = π1, . . . , Xn−1 = πn−1) = P (Xn = s|Xn−1 = πn−1),

and homogeneous if furthermore this probability is independent of n.
We are ready to define probabilistic abstract reduction systems (PARS). The

idea is that a PARS is given by some set A, and a function [s  t] that gives,
for all s,t in A, the probability of going from s to t. Formally:

Definition 1 (PARS). A probabilistic abstract reduction system (PARS) is a
pair A = (A, [  ]) consisting of a countable set A and a function [  ] from
A×A to [0, 1], such that for all s,

∑

t∈A[s t] is 0 or 1.

Note that we allow
∑

t∈A[s  t] to be 0. This happens exactly for terminal
states: a state a ∈ A is terminal if there is no b with [a b] > 0. For non-terminal
states,

∑

t∈A[s t] is necessarily 1.



A derivation of A is then a finite or infinite homogeneous Markovian stochas-
tic sequence whose transition probabilities are given by [  ]. Formally:

Definition 2 (Derivations). A derivation π of A is an homogeneous Marko-
vian stochastic sequence π = (πi)i∈N on

S ∪ {⊥}

such that for all i,

P (πi+1 = t|πi = s) = [s t] if s 6= ⊥ non-terminal
= 1 if t = ⊥ and s 6= ⊥ terminal
= 1 if t = ⊥ and s = ⊥
= 0 otherwise.

PARS correspond to the extension of ARS with probabilities on derivations.
Indeed, to a finitely branching2 ARS A = (A,→), we can associate a PARS
A′ = (A, [  ]) where, for all x, y ∈ A, [x  y] is 0 if (x, y) 6∈→, [x  
y] = 1/cardinal({t|(s, t) ∈→}) otherwise. Derivations of the ARS A and of the
PARS A′ are in correspondence: a non-terminating chain π0 → π1 . . . → πn . . .
of A corresponds to derivation π0π1 . . . πn . . . of A′ (observe that we have πi ∈
A ∀i). A terminating chain π0 → π1 . . . → πn of A corresponds to derivation
π0π1 . . . πn⊥⊥ . . . of A′.

Clearly, to an ARS can correspond several PARS. Conversely, to a PARS
A′ = (A, [  ]) corresponds a unique ARS A = (A,→) which is obtained by
forgetting probabilities: the relation→⊂ A×A of A is defined by s→ t iff [s 
t] > 0. This unique ARS, or the corresponding relation →, will be called the
projection of A′.

The matrix (pt,s) = (P (πi = t|πi−1 = s)) on S ∪ {⊥} is what is called a
stochastic matrix (even when S is an infinite set) [4]. It has the nice property that
columns sum to 1. Actually our setting is the one of Homogeneous Markov Chain
(HMC) theory [4]. The main difference is that we will focus on the generalization
of classical rewriting notions and not on the usual Markov chain problematics:
see [4] for a presentation of HMC theory.

Definition 3 (Relations , n, ∗). Let s ∈ A be a state, and π = π0π1 . . . πn

a derivation with π0 = s. We write

1. s t iff π1 = t,

2. s n t iff πn = t,

3. s ≤n t iff there is some i ≤ n with πi = t,

4. s ∗ t iff there is some i ∈ N with πi = t.

2 To an unrestricted (non-necessarily finitely-branching) ARS associate similarly a
PARS A′ by putting probabilities 1/2, 1/4, 1/8, . . . on the outgoing transitions of a
non-terminal s when the set {t|(s, t) ∈→} is not finite.



For s, t ∈ A, we write [s  t] (respectively: [s  n t],[s  ≤n t],[s  ∗ t]) for
the probability that s t (resp. s n t, s ≤n t, s ∗ t) holds on a derivation
π = π0π1 . . . πn . . . given that π0 = s.

Derivations have the nice property of being preserved by shifting: a stopping
time with respect to a stochastic sequence (Xn)n∈N is a random variable τ taking
its values in N ∪ {∞} such that for all integer i ≥ 0, the event τ = m can be
expressed in terms of X0, X1, . . . , Xm [4]. A typical example is the hitting time
of some state s ∈ S defined as T = inf{i|Xi = s}. An other typical example is a
constant time which is a particular stopping time [4].

Observation 1 (Strong Markov Property) Let τ be a stopping time with
respect to a derivation π = π0π1 . . . πn . . . of A. The derivation after τ , (also
called the τ -shift of π) is by definition the derivation (π′

i)i∈N defined by π′
i = πτ+i.

Then for any state s ∈ S, given that Xτ = s (hence we suppose τ 6=∞), the
derivation after τ is a derivation of A.

Proof. This is a restatement of the so-called“Strong Markov Property”for HMC:
see [4] for example.

Clearly, the function [  ] corresponds to the function [  ] of A. From
the (strong) homogeneous Markov properties, we can also easily prove:

Proposition 3. for all s, t ∈ A, n ≥ 1

1. [s 1 t] = [s t]
2. [s n t] =

∑

u∈A[s n−1 u][u t]
3. [s ∗ t] = limn→∞[s ≤n t]

Example 4. Let A be the PARS defined by A = {a, b} and

1. [a a] = 1/2
2. [a b] = 1/2

Then.

1. [a n a] = 1/2n

2. [a n b] = 1/2n

3. [a ≤n a] = 1
4. [a ≤n b] = 1− 1/2n

5. [a ∗ a] = 1
6. [a ∗ b] = 1

Recall that in the classical setting that an ARS A is locally confluent (LC)
if b ← a → c ⇒ ∃d b →∗ d ∧ c →∗ d. We will then say that a PARS A is
probabilistically locally confluent (pLC) if P (∃d b ∗ d∧ c ∗ d) > 0 whenever
a b and a c by two independently chosen derivations.

Of course, such a definition must be understood as follows: a PARS A is
probabilistically locally confluent, if for all a, b, c ∈ A, if a b by some derivation
π, and a c by some independently chosen derivation π′, then the probability



that there is a d ∈ A such that simultaneously b  ∗ d by derivation π after
stopping time τ = 1 and c  ∗ d by derivation π′ after stopping time τ = 1 is
positive. The probability measure considered here is the product measure P ⊕P ,
since we consider two independently randomly chosen derivations π and π′.

Observe that from Strong Markov Property, this is equivalent to say that,
for all b, c ∈ A, the probability that for two independently randomly chosen
derivations π and π′ starting from b and c respectively, there is a d ∈ A such
that simultaneously b  ∗ d by derivation π and c  ∗ d by derivation π′, is
positive, whenever [a b] > 0 and [a c] > 0 for some a ∈ A.

In the same vein, we will say that is almost-surely locally confluent (PLC)
if P (∃d b ∗ d ∧ c ∗ d) = 1 whenever a b and a c by two independently
chosen derivations.

We let the reader guess what probabilistically confluent (pC) , and almost-
surely confluent (PC) are.

Proposition 1 has the following equivalent:

Proposition 4. The following are equivalent:

1.  is almost-surely confluent (PC) (resp. probabilistically confluent (pC)
)

2.  ∗ is almost-surely locally confluent (PLC) (resp. probabilistically locally
confluent (pLC) )

3.  ∗ is almost-surely confluent (PC) (resp. probabilistically confluent (pC)
)

4. a  b, a  ∗ c implies there is a d with b  ∗ d, c  ∗ d with probability one
(resp. positive probability).

Recall that an a ∈ A is in normal form if there is no b with [a b] > 0.
We say that a ∈ A probabilistically has a normal form (phnf) if P (∃b nf a ∗

b) > 0. We say that a ∈ A almost-surely has a normal form (Phnf) if
P (∃b nf a ∗ b) = 1.

A relation is probabilistically normalizing (pN) if every a ∈ A probabilisti-
cally has a normal form (phnf) . A relation is almost-surely normalizing (PN)
if every a ∈ A almost-surely has a normal form (Phnf) .

A relation is almost-surely terminating (PT) if every derivation π0, π1, . . . , πn

is terminal (ultimately equal to ⊥) with probability 1. It is probabilistically ter-
minating (pT) if this latter probability is positive.

Two states a, b ∈ A are said to be convertible if a and b are convertible in the
classical sense for the projection of A′, that is for the classical binary relation
[  ] > 0.

A relation has unique normal form property (UN) if for all a, b ∈ A, if a
and b are convertible and in normal form, then a and b are identical.

A relation has the probabilistic normal form property (pNF) if P (b  ∗

a) > 0 whenever a is in normal form and convertible with b. A relation has the
almost-sure normal form property (PNF) if P (b  ∗ a) = 1 whenever a is in
normal form and convertible with b.

We are now ready to study the properties of the above notions.



We will then say that a PARS is locally confluent (LC) (respectively
confluent (C) , normalizing (N) , terminating (T) , unique normal form
property (UN) , inductive (Ind) , increasing (Inc) , finitely branching
(FB) ) if its projection is.

It is noticeable that the projection operator commutes with finite iteration
and (reflexive) transitive iteration. In other words, probabilistic joinability and
joinability corresponds. Formally,

Proposition 5. Let A′ = (A, [  ]) be a PARS and A = (A,→) its projection:
s→ t iff [s t] > 0.

Then, for all s, t ∈ A,

1. [s n t] > 0 iff s→n t
2. [s ∗ t] > 0 iff s→∗ t

Proof. The two assertions are proved by induction over n. They are clear for
n = 0 and n = 1. For n > 1, we have s →n t iff there is a u with s →n−1 u
and u → t iff there is a u with [s  n−1 u] > 0 and [u  t] iff [s  n t] =
∑

u∈A[s n−1 u][u t] > 0. For the second assertion, we have s→∗ t iff there
is a n with s →n t iff there is a n with [s  n t] > 0 iff [s  ∗ t] > 0. Indeed, if
there is such a n, [s ∗ t] is at least [s n t]. For the other direction, we clearly
have by sigma-additivity of probabilities [s ∗ t] ≤

∑

n∈N
[s n t].

We then claim.

Proposition 6. 1. almost-surely locally confluent (PLC) ⇒ probabilistically
locally confluent (pLC) ⇔ locally confluent (LC) .

2. The reverse implication is false in general.

Proof. Only the equivalence between probabilistically locally confluent (pLC)
and locally confluent (LC) is not trivial. Clearly P (∃d a ∗ d∧ b ∗ d) > 0
iff ∃d P (a  ∗ d ∧ b  ∗ d) > 0 iff ∃d P (a  ∗ d) > 0 ∧ P (b  ∗ d) > 0. From
previous lemma, that happens iff [  ] > 0 is locally confluent (LC) .

In the same vein, we can prove:

Proposition 7. 1. almost-surely confluent (PC) ⇒ probabilistically conflu-
ent (pC) ⇔ confluent (C)

2. almost-surely has a normal form (Phnf) ⇒ probabilistically has a normal
form (phnf) ⇔ has a normal form (hnf)

3. almost-surely normalizing (PN) ⇒ probabilistically normalizing (pN) ⇔
normalizing (N)

4. almost-sure normal form property (PNF) ⇒ probabilistic normal form
property (pNF) ⇔ normal form property (NF)

5. terminating (T) ⇒ almost-surely terminating (PT) ⇔ almost-surely
normalizing (PN) ⇒ probabilistically terminating (pT)

6. The reverse implications are false in general.

We then get the following picture:



Proposition 8. 1.

C −−−−→ NF
x



y

x



y

pC −−−−→ pNF −−−−→ UN
x





x





PC −−−−→ PNF

2. Newman’s Lemma.
T&LC

x



y

T&pLC −−−−→ C
x





x





T&PLC −−−−→ PC




y

x



y

PT&PLC −−−−→ PC
3.

UN&N
x



y

UN&pN −−−−→ C
x





x





UN&PN −−−−→ PC
4.

UN&N
x



y

UN&pN −−−−→ Ind
x





UN&PN
5.

LC&N&Inc
x



y

pLC&pN&Inc −−−−→ T
x





PLC&PN&Inc



The previous implications can all be derived by adapting the proofs from the
classical abstract reduction systems towards probabilistic ones.

Observe that they were obtained by considering the classical rewriting set-
tings and testing whether it generalizes to that context. That means first that we
are not at all exhaustive: some reverse implications, or other implications may
hold. Second, the classical theory of HMC can a priori also be used to derived
other facts, or relations between our notions.

6 Conclusion

In this paper we presented an extension of the ELAN system to deal with the
prototyping and modeling of systems with probabilistic evolutions. We proposed
to extend the system by adding a new “probabilistic choose” operator to the
strategy language of the system.

We argued through simple classical examples that this approach that puts
probabilities at the level of strategies, i.e. at the level of the control of rewriting
is very natural. This is in contrast with similar works where probabilities are in
some sense hard-coded in rules [8]. Furthermore, this approach has the advantage
that the problem of probabilities normalization (probabilities must be normalized
to sum to 1) in the above mentioned work is avoided in a nice manner: this is put
at the level of the definition of the operators which are coded in the language
itself.

Dealing with probabilistic systems gives rise to many very interesting ques-
tions about the generalization of the classical rewriting notions. We put the first
stones in that direction by defining several notions and stating generalizations of
classical results for abstract derivation systems. Our results mainly say that the
notions defined by considering joinability with positive probability corresponds
to classical notions by putting away probabilities, and that the notions defined
by considering almost-sure joinability are stronger.

These are of course only the first steps in the direction of fully understanding
probabilistic rewrite systems. Actually, when dealing with rewrite systems, the
objects of interest are; (1) abstract rewrite systems, (2) the rewrite relation that
should be stable by context and substitution, (3) the rewrite logic, (4) the rewrite
calculus. The generalization of all these concepts and their relations dealing with
probabilistic systems/theories give rise to many potentially interesting problems.
We touched only (1), and on this topics we think that some other results could
also been derived from Homogeneous Markov Chain Theory.
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