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Abstract Recently, functions over the reals that extend elementarily
computable functions over the integers have been proved to correspond
to the smallest class of real functions containing some basic functions
and closed by composition and linear integration.
We extend this result to all computable functions: functions over the
reals that extend total recursive functions over the integers are proved
to correspond to the smallest class of real functions containing some
basic functions and closed by composition, linear integration and a very
natural unique minimization schema.

1 Introduction

The power of digital discrete time models of computations is rather well under-
stood: all reasonable and sufficiently powerful digital discrete time models have
the same power thanks to Turing’s work and so-called Church thesis.

For analog models the situation is far from being so clear. Several models
have been defined (e.g. the General Purpose Analog Computer (GPAC) model
of Shannon [28], neural network models [29,24], hybrid systems [3,4], or the-
oretical physic models [11,15,23],. . . ) but there are only few results concerning
relations between their respective computational power: GPAC computable func-
tions have been characterized mathematically as differentially algebraic functions
[12,18,25,28] but this does not provide directly a way to understand the relations
between the power of such machines compared to classical discrete machines. Sev-
eral other analog models have been shown to exhibit super-Turing computational
power: using the so-called Zeno’s paradox, some models make it possible to com-
pute non-Turing computable functions in a constant time: see e.g. [3,5,11,15,19];
the continuity of the space makes it sometimes possible to have models whose
power is close to non-uniform complexity classes [29].

Since the progress of electronics and other domains of physics such as mechan-
ics or optics makes the construction of some of the machines realistic, clarifying
the situation becomes a crucial matter.

In [19], Moore introduced a class of functions over the reals inspired from the
classical characterization of computable functions over integers: observing that



the continuous analog of a primitive recursion is a differential equation, Moore
proposes to consider the class of R-recursive functions, defined as the smallest
class of functions containing some basic functions, and closed by composition,
differential equation solving (called integration), and minimization. The mini-
mization schema of [19] makes it possible to use a “compression trick” (another
incarnation of Zeno’s paradox) to simulate in a bounded time an unbounded
number of discrete transitions in order to recognize arithmetical (hence non-
Turing-computable) reals [19].

Actually, the original definitions of [19] suffer from several technical problems
that appear as soon as the minimization schema is used (see e.g. discussions in
[19,9,10,20,21]), and it has been proposed to replace minimization schema by a
limit schema to have well-defined classes of functions as in [20,21], or to restrict
to functions defined without minimization schema as in [10,12].

Concerning second approach, in his PhD dissertation [10], Campagnolo pro-
poses to consider a class L of real-functions built in analogy with the class of
elementarily computable functions in classical discrete computability: class L
is defined as the smallest class of functions containing some well-chosen basic
functions and closed by composition and linear integration.

Class L is proved by Campagnolo et al. to be related to functions elementarily
computable over the integers in classical recursion theory: any function over the
integers elementary in the sense of classical recursion theory is the restriction to
integers of a function that belongs to L [10,9]; any function in L that preserves
integers has its restriction to integers elementarily computable [10,9].

This paper proves that this is indeed possible to define a reasonable minimiza-
tion schema to get a class, that we call L+!µ, that corresponds in a similar way
to all (i.e. not necessarily elementary) computable functions over the integers :
we prove that any total recursive function over the integers is the restriction to
integers of a function that belongs to L+!µ, and that any function in L+!µ that
preserves integers has its restriction to integers total recursive.

Concerning, classical discrete computability, we get a new original character-
ization of computable functions in terms of restrictions to integers of a natural
class of functions over the reals.

Concerning analog models, our results relate the computational power of
some algebraically defined classes of functions over the reals to classical discrete
models, and hence contribute to understand computations over the reals, or at
least to understand the computational power of R-(sub)-recursive functions.

Furthermore the problem we solve is in some sense the definition of a mini-
mization operator, which is strong enough to get at least Turing machine power,
but not too strong to get the technical problems of [19], nor non-robust super-
Turing Zeno phenomena of [3,5,11,15,19]. In that sense, we believe that our
results may be a step toward understanding criteria that could guarantee “ro-
bustness” for continuous models as sought by papers like [2,14].

Moreover, we think that that our results could be a first step toward getting
an algebraic characterization of functions over the real numbers computable in
the sense of recursive analysis, in the spirit of [6], and alternative to [7,8].
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2 Preliminaries

2.1 Mathematical preliminaries

Let N, Q, R, denote the set of natural integers, the set of rational numbers, and
the set of real numbers respectively. Given x ∈ Rn, we write −→x to emphasize
that x is a vector.

Lemma 1 (Bounding Lemma for Linear Differential Equations (see
e.g. [1])). For linear differential equation −→x ′ = A(t)−→x , if A is defined and
continuous on interval I = [a, b], where a ≤ 0 ≤ b, then, for all −→x 0, the solution
of −→x ′ = A(t)−→x with initial condition −→x (0) = −→x 0 is defined and unique on I.
Furthermore, the solution satisfies ‖−→x (t)‖ ≤ ‖−→x 0‖ exp(supτ∈[0,t] ‖A(τ)‖t).

Lemma 2 (Implicit Functions Theorem (see e.g. [26])). Let f : Rk+1 →
R be a function of class Ck, for k ≥ 1. Assume that for all −→x , the equation
f(−→x , y) = 0 has exactly one solution y. Assume for all −→x that ∂f

∂y
(−→x , y) 6= 0

in the corresponding root y. Then function g : Rk → R that maps −→x to the
corresponding root y is also of class Ck.

2.2 Classical Recursion Theory

Classical recursion theory deals with functions over integers. Most classes of clas-
sical recursion theory can be characterized as closures of a set of basic functions
by a finite number of basic rules to build new functions [27,22]: given a set F of
functions and a set O of operators on functions (an operator is an operation that
maps one or more functions to a new function), [F ;O] will denote the closure of
F by O.

Proposition 1 (Classical settings: see e.g. [27,22]). Let f be a function
from Nk to N for k ∈ N. Function f is

– elementary iff it belongs to E = [0, S, U,+,	; COMP,BSUM,BPROD];
– primitive recursive iff it belongs to PR = [0, U, S; COMP,REC];
– total recursive iff it belongs to Rec = [0, U, S; COMP,REC,MU].

A function f : Nk → Nl is elementary (resp: primitive recursive, total recur-
sive) iff its projections are elementary (resp: primitive recursive, total recursive).

The basic functions 0, (Um
i )i,m∈N, S,+,	 and the operators BSUM, BPROD,

COMP, REC, MU are given by

1. 0 : N → N, 0 : n 7→ 0; Um
i : Nm → N, Um

i : (n1, . . . , nm) 7→ ni; S : N →
N, S : n 7→ n + 1; + : N2 → N, + : (n1, n2) 7→ n1 + n2; 	 : N2 → N,
	 : (n1, n2) 7→ max(0, n1 − n2);

2. BSUM : bounded sum. Given f , h = BSUM(f) is defined by h : (−→x , y) 7→
∑

z<y f(−→x , z); BPROD : bounded product. Given f , h = BPROD(f) is de-
fined by h : (−→x , y) 7→

∏

z<y f(−→x , z);
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3. COMP : composition. Given f1, . . . , fp and g, h = COMP(f1, . . . , fp; g) is
defined as the function verifying h(−→x ) = g(f1(−→x ), . . . , fp(−→x ));

4. REC : primitive recursion . Given f and g, h = REC(f, g) is defined as the
function verifying h(−→x , 0) = f(−→x ) and h(−→x , n+ 1) = g(−→x , n, h(−→x , n)).

5. MU : minimization. Given a function f such that for all −→x , there is a y with
f(−→x , y) = 0, the minimization of f is µf : −→x 7→ inf{y; f(−→x , y) = 0}.

Observe that we consider here only total functions. Furthermore, observe that
minimization operator can actually be reinforced into a unique minimization
operator as follows:

Proposition 2. A function f from Nk to Nl, for k, l ∈ N, is total recursive
iff its projections belong to [0, U, S; COMP,REC,UMU] where operator UMU is
defined as follows:

1. UMU: unique minimization. Given f such that for all −→x there is a unique
y with f(−→x , y) = 0, the unique minimization of f is defined as the function,
denoted by !µ(f)(−→x , y), that maps −→x to that unique y, for all −→x .

Proof. The inclusion [0, U, S; COMP,REC,UMU] ⊂ Rec is immediate. Con-
versely, let φ be a function from Rec. It is well known [16,27] that φ can be
written as φ = χ ◦ µ(ψ) with χ and ψ in E and such that for all −→x , there
is at least a y with ψ(−→x , y) = 0 (recall that φ is total). Let σ be the ele-
mentary function defined by σ(m,n) =

∏

z<n ψ(m, z). Given m, let us note
n0 = µ(ψ)(m). We have ∀n ≤ n0, σ(m,n) 6= 0 and ∀n > n0, σ(m,n) = 0. Let
κ(m,n) = 1 	 (1 	 ((1 	 σ(m,n)) + σ(m,n + 1))). We have clearly ∀n < n0,
κ(m,n) = 1, κ(m,n0) = 0 and ∀n > n0, κ(m,n) = 1, hence µ(κ) =!µ(κ) = µ(ψ).
κ is an elementary function and we have φ = χ◦!µ(κ), hence φ belongs to
[0, U, S; COMP,REC,UMU].

We have E ⊆ PR ⊆ Rec, and the inclusions are known to be strict [27,22].
If TIME(t) and SPACE(t) denote the classes of functions that are computable
with time and space t, then, PR = TIME(PR) = SPACE(PR) [27,22]. Class
PR corresponds to functions computable using For-Next programs. Class E cor-
responds to computable functions bounded by some iterate of the exponential
function [27,22].

In classical computability, more general objects than functions over the inte-
gers can be considered, in particular functionals, i.e. functions Φ : (Nm)N×Nk →
Nl. A functional will be said to be elementary (or primitive recursive, recursive)
when it belongs to the corresponding1 class.

1 Formally, a function f over the integers can be considered as functional f : (V,−→n ) 7→
f(−→n ). Similarly, an operator Op on functions f1, . . . , fm over the integers can be
extended to argument Op(F1, . . . , Fm) : (V,−→n ) 7→ Op(f1(V, .), . . . , fm(V, .))(−→n ).

In that spirit, given some set F of basic functions Nk
→ Nl and a set O

of operators on functions over the integers, we will still (abusively) denote by
[f1, . . . , fp; O1, . . . , Oq ] for the smallest class of functionals that contains basic func-
tions f1, . . . , fp, plus the functional Map : (V, n) → Vn, the nth element of sequence
V , and which is closed by the operators O1, . . . , Oq . For example, a functional will be
said elementary iff it belongs to E = [Map, 0, S, U, +,	; COMP, BSUM, BPROD].
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3 Computable Analysis

The idea sustaining computable analysis, also called recursive analysis, is to
define computable functions over real numbers by considering functionals over
fast-converging sequences of rationals [30,17,13,31].

Let νQ : N → Q be the following representation2 of rational numbers by
integers: νQ(〈p, r, q〉) 7→ p−r

q+1 , where 〈., ., .〉 : N3 → N is a computable bijection.

A sequence of integers (xi) ∈ NN represents a real number x if (νQ(xi))
converges quickly toward x (denoted by (xi)  x) in the following sense :
∀i, |νQ(xi) − x| < 2−i. For (xi) ∈ (Nk)N, we write (xi)  x when it holds
componentwise.

Definition 1 (Recursive analysis [31]). A function f : Rk → R is said

computable (or real-computable) if there exists a recursive functional Φ : (Nk)
N
×

N → N such that for all −→x ∈ Rk, for all sequence X = (−→x n) ∈ (Nk)N, we have
(φ(X, j))j  f(−→x ) whenever X  −→x . A function f : Rk → Rl, with l > 1, is
said computable if all its projections are.

A function f will be said elementarily computable whenever the correspond-
ing functional Φ is. The class of computable (respectively elementarily com-
putable) functions over the reals will be denoted by Rec(R) (resp. E(R)).

4 Real-sub-recursive and sub-recursive functions

Following the original ideas from [19], but avoiding the minimization schema
of [19] source of many problems, Campagnolo proposed in [10] to consider the
following class, built in analogy with elementarily computable functions over the
integers.

Definition 2 ([10,9]). Let L be the class of functions f : Rk → Rl, for some
k, l ∈ N, defined by L = [0, 1,−1, π, U, θ3; COMP,LI] where the basic functions
0, 1, −1, π, (Um

i )i,m∈N, θ3 and the schemata COMP and LI are the following:

1. 0, 1,−1, π are the corresponding constant functions; Um
i : Rm → R are, as

in the classical settings, projections: Um
i : (x1, . . . , xm) 7→ xi;

2. θ3 : R → R is defined as θ3 : x 7→ x3 if x ≥ 0, 0 otherwise;
3. COMP: composition is defined as in the classical settings: Given f1, . . . , fp

and g, h = COMP(f1, . . . , fp; g) is defined by h(−→x ) = g(f1(−→x ), . . . , fp(−→x ));
4. LI: linear integration. From g and h, LI(g, h) is the maximal solution of

the linear differential equation ∂f
∂y

(−→x , y) = h(−→x , y)f(−→x , y) with f(−→x , 0) =

g(−→x ).
In this schema, if g goes to Rn, f = LI(g, h) also goes to Rn and h(−→x , y) is
a n× n matrix with elements in L.

2 Many other natural representations of rational numbers can be chosen and provide
the same class of computable functions: see [31].
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Class L includes common functions like +,sin,cos,−,×,exp, or x → r for all
r ∈ Q (see [10,9]), but contains only total functions [9]:

Proposition 3 ([9]). All functions from L are continuous, defined everywhere,
and of class C2.

Actually, observing the proofs from [10,9], schema LI can be strengthened as
follows:

Proposition 4. Class L is also the class of functions f : Rk → Rl, for some
k, l ∈ N, defined by L = [0, 1,−1, π, U, θ3; COMP,CLI] where CLI is the following
schema:

1. CLI: controlled linear integration. From g and h, and c, with h differentiable
and entries of h′ bounded by c, CLI(g, h, c) is the maximal solution of the lin-
ear differential equation ∂f

∂y
(−→x , y) = h(−→x , y)f(−→x , y) with f(−→x , 0) = g(−→x ).

In this schema, if g goes to Rn, f = CLI(g, h, c) also goes to Rn and h(−→x , y)
is a n× n matrix with elements in L.

Class L can be related to the class E of elementarily computable functions
over the integers. A real extension f̃ of a function f : Nk → Nl over the integers is
a function f̃ from Rk to Rl whose restriction to Nk is f . Observe that a function
f̃ : Rk → Rl over the reals is an extension of a function over the integers iff its
preserves integers: f̃(Nk) ⊂ Nl.

Definition 3 (Discrete Part). Given a class C of real functions, we denote by
DP (C) the class of functions over the integers that have a real extension in C.

Proposition 5 ([10,9]). E = DP (L). I.e.:

– If a function from L extends some functions over the integers, this latter
function is elementarily computable.

– Any elementarily computable function over the integers, has a real extension
that belongs to L.

Actually, class L can also be partially related to the class E(R) of functions
over the real numbers elementarily computable in the sense of recursive analysis:
any function from L is in E(R) [10,9]. We proved in [6] that the inclusion is
actually strict, but that adding a limit schema to class L, allows us to capture
whole class E(R) for functions defined over a compact domain.

5 Real-recursive and recursive functions

We are now going to extend the class L with a minimization schema in order to
get a class whose discrete part correspond to total recursive functions over the
integers.

To do so, we need to introduce a zero-finding operator that permits to simu-
late the classical discrete minimization schema over the integers. However, this
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operator needs to be stricter than a simple “return the smallest root” since this
idea, investigated in [19], has shown to be the source of numerous problems, in-
cluding ill-defined problems and super-Turing Zeno phenomena [10,9,21,20,19].

Our idea is to use the alternative UMU schema which is equivalent to schema
MU for classical computability, but has real counterparts which turn out to
preserve real computability.

Indeed, motivated by Proposition 2, by Lemma 2, and by results from re-
cursive analysis about the computability of zeros (see e.g. [31]), we define our
unique-zero-finding operator UMU as follows (observe that we also take schema
CLI instead of schema LI, which is equivalent when schema UMU is not present):

Definition 4. Given a differentiable function f from Rk+1 to R , if for all
−→x , y 7→ f(−→x , y) is a non-decreasing function with a unique root y0, on which
∂f
∂y

(−→x , y0) > 0, then UMU(f) is defined as follows:

UMU(f) :

{

Rk −→ R
−→x 7→ y0 such that f(−→x , y0) = 0

Let L+!µ be the set of functions defined by

L+!µ = [0, 1, U, θ3; COMP,CLI,UMU].

Lemma 3. L ⊂ L+!µ.

Proof. (sketch) We only need to prove that constant functions −1 and π are
in L+!µ. Indeed, −1 is the unique root of x 7→ x + 1, and π = 4 arctan(1),
where arctan(x) is the solution of linear differential equation arctan(0) = 0
and arctan′(x) = 1

1+x2 , and x 7→ 1
1+x2 can be obtained by applying UMU on

x, y 7→ (1 + x2)y − 1.

Lemma 4. All functions from L+!µ are of class C2 and total.

Proof. By structural induction. Basic functions 0, 1, U , θ3 are total and of class
C2. Now, class C2 and totality are preserved by composition, by linear integration
(see e.g. [1]), and by schema UMU by Lemma 2.

Now, observe that operator UMU preserves real computability:

Lemma 5. Given f : Rk+1 −→ R real computable, if UMU(f) is defined, then
UMU(f) is also real computable.

Proof. Given −→x ∈ Rk, let y0 be the unique y0 with f(−→x , y0) = 0. Since f(−→x , .)
is continuous, non-decreasing, and with a unique root, we have f(−→x , y) < 0 for
y < y0, and f(−→x , y) > 0 for y > y0.

There exists m ∈ N, such that f(−→x ,−m) < 0 and f(−→x ,m) > 0: one just
need to take any integer m with −m < y0 < m. Actually, such an m can be
computed as follows:
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m = 1
Repeat

Compute f1 = f(−→x ,m) and f2 = f(−→x ,−m) at p r e c i s i o n ±2−m

m = m+ 1
Until ( f1 > 2−m and f2 < −2−m )
Return m

Indeed, given any integer m0 ∈ N with −m0 < y0 < m0, (take for example
b|y0|c + 1), we have for all m ≥ m0, f(−→x ,m) ≥ f(−→x ,m0) > 0 and f(−→x ,−m) ≤
f(−→x ,−m0) < 0. Now, for m big enough (i.e. m ≥ m0, 2−m ≤ |f(−→x ,−m0)|, and
2−m ≤ |f(−→x ,m0)|) we have f1 > 2−m and f2 < −2−m and the algorithm stops
with an m such that f(−→x ,−m) < 0 and f(−→x ,m) > 0.

Computing y0 then reduces to compute the unique root of function f(−→x , .)
over a compact [−m,m]. The fact that this is indeed computable can be seen as
a consequence of the results in [31].

Here is a direct proof: given n, we have to find an approximation of y0 at preci-
sion 2−n. Let us slice [−m,m] in 2i closed intervals: [−m,m] = ∪0≤j<2i [yj , yj+1]

where yj = −m + j 2m
2i . Let zj be an approximation of f(−→x , yj) computed at

precision 2−i. We know that for a root to exist in [yj , yj+1], the only possibilities
are that |zj | < 2−i or |zj+1| < 2−i or zjzj+1 < 03. Then, let mi be the yj (resp.
Mi be the yj+1) where index j is the smallest (resp. greatest) integer 0 ≤ j < 2i

with |zj | < 2−i or |zj+1| < 2−i or zjzj+1 < 0.
The sequences (mi) and (Mi) have range in compact sets, so there exist

subsequences (mφ(i)) and (Mφ(i)) that converge, thanks to Bolzano-Weierstrass
theorem. Let m∗ and M∗ be the limits of those sequences. For all i, either
|f(−→x ,mi)| ≤ |f(−→x ,mi)−zj |+|zj| < 2−i+2−i, or |f(−→x ,mi+2−i)| ≤ |f(−→x ,mi)−
zj+1|+ |zj+1| < 2−i +2−i, or f(−→x ,mi)f(−→x ,mi +2−i) < 0. Since f is continuous,
we can deduce that f(−→x ,m∗) = 0. For the same reason, f(−→x ,M∗) = 0 and
since y 7→ f(−→x , y) has only one root, m∗ = M∗. So, there exists i such that
Mi −mi < 2−n. When this holds, mi is an approximation at precision 2−n of
the root. This means that the following algorithm terminates and returns an
approximation of y0 at precision 2−n.

i = 0
Repeat

Compute mi and Mi

i = i+ 1
Until Mi −mi < 2−n

Return mi

Lemma 6. Given h, g and c real computable, then f = CLI(g, h, c) is also real
computable.

Proof. Observing carefully [10,9], if given −→x ∈ Rk and some y ∈ Q one can

bound effectively the norms of h(−→x , y), f(−→x , y), ∂2f
∂y2 (−→x , y) for |y| ≤ y, then

3 In fact, since the function we are investigating is non-decreasing, we could have more
accurate constraints, however these ones are sufficient.
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f will be real computable: use the constructions and bounds based on Euler’s
method to prove preservation of elementarily computability by linear integration
in [10,9], but replacing elementary bounds by computable bounds.

Now, from [31], it is known that one can bound effectively the norm of any real
computable function on a compact domain, and so we only need to care about

f(−→x , y) and ∂2f
∂y2 (−→x , y). But the norm of f(−→x , y) can be bounded effectively by

Lemma 1 from bounds on the norms of g(−→x ) and h(−→x , y) on the correspond-

ing domain, which are computable by previous argument. Now, ‖ ∂2f
∂y2 (−→x , y)‖ =

‖(h2(−→x , y)+ ∂h
∂y

(−→x , y))f(−→x , y)‖, hence is bounded by (‖h2(−→x , y)‖+‖c(−→x , y))‖)×

‖f(−→x , y)‖. First factor can still be bounded effectively since h2(−→x , y) and c(−→x , y)
are particular real computable functions, and we just see that second factor can
be bounded effectively.

From previous two Lemmas, the fact that basic functions are real computable
and observing that composition is known to preserve real computability for total
functions (see [31]), we obtain:

Theorem 1. Every function belonging to L+!µ is real computable.

We now prove the converse direction. Following lemma is a weaker form of a
Lemma that we proved in [6]:

Lemma 7. Given f : R2 → R in L, there exists f̃ : R2 → R in L such that
∀(m,n) ∈ N2, ∀(x, y) ∈ R2,

– f̃(m,n) = f(m,n)
– f̃(m, y) ∈ [f(m, byc), f(m, by + 1c)] (or [f(m, by + 1c), f(m, byc)]).
– f̃(x, n) ∈ [f(bxc, n), f(bx+ 1c, n)] (or [f(bx+ 1c, n), f(bxc, n)]).

Proof. Let ζ = 3π
2 . Let ω : x 7→ ζθ3(sin(2πx)). ∀i,

∫ i+1

i
ω = 1 and ω is equal to 0

on [i+ 1
2 , i+1] for i ∈ N. LetΩ its primitive equal to 0 in 0, and int : x 7→ Ω(x− 1

2 ).
Function int is a function similar to the integer part: ∀i ∈ N, ∀x ∈ [i, i + 1

2 ],
int(x) = i = bxc. Figure 1 shows graphical representations of ω and int.
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Figure 1. Graphical representation of ω and int
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Let ∆(i, y) = f(i, y + 1) − f(i, y). Then for all i ∈ N, y ∈ R, we have

ω(y)∆(i, int(y)) =

{

0 whenever y − byc ≥ 1/2
ω(y)∆(i, byc) otherwise.

Let G be the solution of the linear differential equation G(x, 0) = f(x, 0),
∂G
∂y

(x, y) = ω(y)∆(x, int(y)). An easy induction on j then shows that G(i, j) =

f(i, j) for all integer j. Furthermore, by construction, ∀i ∈ N, G(i, y) belongs to
the interval delimited by G(i, byc) = f(i, byc) and G(i, by + 1c) = f(i, by + 1c).

Now, let f̃ be the solution of the linear differential equation f̃(0, j) = G(0, j),
∂f̃
∂x

(x, y) = ω(x)(G(int(x + 1), y) −G(int(x), y)). We have ∀(i, j) ∈ N2, f̃(i, j) =

f(i, j). And ∀i ∈ N, f̃(i, y) belongs to the interval delimited by f̃(i, byc) =
f(i, byc) and f̃(i, by + 1c) = f(i, by + 1c). And also, ∀j ∈ N, f̃(x, j) belongs to
the interval delimited by f̃(bxc, j) = f(bxc, j) and f̃(bx+ 1c, j) = f(bx+ 1c, j).

Theorem 2. Every recursive function over the integers has a real extension in
L+!µ.

Proof. Let φ be a function from Rec. We have φ = χ◦!µ(κ) as in the proof of
Proposition 2. Let ι(m,n) = 2 × (1 	 σ(m,n)) + (1 	 κ(m,n)) where σ is the
same as in the proof of Proposition 2. ∀m ∈ N, for n = n0 =!µ(κ)(m,n), we have
ι(m,n0) = 1, and before this n0, ι(m,n) is equal to 0 and after this n0, ι(m,n)
is equal to 2. Let i be a real extension of ι in L given by Proposition 5. Let ĩ be
the function from L obtained by Lemma 7 on f(m,x) : m,x 7→ i(m,x) − 1.

∀m ∈ N, there exists exactly one y ∈ R (given by y0 =!µ(κ)(m,n)) such
that ĩ(m, y) = 0. But, we can not directly apply schema UMU, since we have
no assurance4 that it also holds for non integer values m. However, from the
constructions in the proof of Lemma 7, given m ∈ N, we have ĩ(m, y) equal to
−1 for y ≤ y0 − 1, and equal to Ω(y) for y ∈ [y0 − 1, y0 + 1], where Ω is defined
in that proof.

Consider M(x) = θ3(x+ 1). We have M(x) = 0 if x ≤ −1 and M(x) ≥ 1 if
x ≥ 0. Let us define g̃ as the solution of the differential equation g̃(−→x , 0) = −1,
∂g̃
∂y

(−→x , y) = αM(̃i(−→x , y)). Let us choose α (maple says α = 1024
2609 ) such that

α
∫ 0

−1
M(Ω(x))dx = 1. We have ∀m ∈ N, g̃(m, y) = 0 ⇔ y =!µ(κ)(m,n).

Then define g as the solution of the linear differential equation g(−→x , 0) = −1,
∂g
∂y

(−→x , y) = βM(g̃(−→x , y)). If we choose β adequately5 (maple says β = aπ4

bπ4−cπ2+d

for some integers a, b, c, d) , we will still have ∀m ∈ N, g(m, y) = 0 ⇔ y =
!µ(κ)(m,n).

The point is that, since M is always non-negative, we know that ∀x ∈ R,
y 7→ g̃(x, y) is non-decreasing, and, because of Lemma 7, and from the definition
of function M(x), it must go to infinity when y goes to infinity. Actually, it
must be equal to −1 up to a certain value y−, then be strictly increasing, and
since it goes to infinity, it must have a root y0 strictly greater than y−. Now the
derivative in this root y0 cannot be 0 since M(x) is zero only when x ≤ −1.

4 Actually, another problem is that the derivative relative to the second variable in
the root point is 0.

5 This β is in L since it can be obtained as a ∗ π4
∗ UMU(x 7→ (bπ4

− cπ2 + d)x − 1).
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This g is such that ∀−→x , ∃!y0 such that g(−→x , y0) = 0 and ∂g
∂y

(−→x , y0) 6= 0 and

for all −→x , y 7→ g(−→x , y) is non-decreasing. We can thus apply UMU to this g.
Now if we extend χ in a real function h belonging to L using Proposition 5, we
have h ◦ UMU(g) extending φ = χ ◦ µ(ψ) and belonging to L+!µ.

From previous two theorems, we obtain the main result of this paper:

Theorem 3. Rec = DP (L+!µ). I.e:

– If a function from L+!µ extends some function over the integers, this latter
function is total recursive.

– Any total recursive function over the integers, has a real extension that be-
longs to L+!µ.

Proof. The second item is Theorem 2. The first item is immediate from Theorem
1: if a function f belonging to L+!µ preserves integers, then a recursive function
that equals f on Nk can easily be obtained from the functional computing f .

Corollary 1. L is strictly included in L+!µ.
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