
Safe Recursion Over an Arbitrary Structure:
PAR, PH and DPH

Olivier Bournez a, Felipe Cucker b,1,
Paulin Jacobé de Naurois a,1 and Jean-Yves Marion a

a LORIA/INRIA,
615 rue du Jardin Botanique, BP 101,

54602 Villers-lès-Nancy Cedex, Nancy, France
email: {bournez, denauroi, marionjy}@loria.fr

b Department of Mathematics
City University of Hong Kong
83 Tat Chee Avenue, Kowloon

HONG KONG
e-mail: macucker@math.cityu.edu.hk

Abstract

Considering the Blum, Shub, and Smale computational model for real numbers,
extended by Poizat to general structures, classical complexity can be considered as
the restriction to finite structures of a more general notion of computability and
complexity working over arbitrary structures.

In a previous paper, we showed that the machine-independent characterization of
Bellantoni and Cook of sequential polynomial time for classical complexity is actu-
ally the restriction to finite structures of a characterization of sequential polynomial
time over arbitrary structures.

In this paper, we prove that the same phenomenon happens for several other
complexity classes: over arbitrary structures, parallel polynomial time corresponds
to safe recursion with substitutions, and the polynomial hierarchy corresponds to
safe recursion with predicative minimization.

Our results yield machine-independent characterizations of several complexity
classes subsuming previous ones when restricted to finite structures.

1 Partially supported by City University of Hong Kong SRG grant 7001290.

Preprint submitted to Elsevier Preprint 1 April 2005

1 Introduction

Classical computability and complexity can be considered as a restricted case
of a more general notion of computability and complexity over arbitrary struc-
tures. Indeed, considering the notion of computation introduced by Blum
Shub and Smale in [BSS89] for computations over the real numbers, and ex-
tended by Poizat in [Goo94,Poi95] for general structures, computations over
finite structures correspond to classical computability and complexity, whereas
computations over non-finite structures, such as real or complex numbers, give
birth to new complexity classes and results, and provide new insights for un-
derstanding complexity and computability theory [BCSS98].

To understand computability in a whole perspective, in the spirit of the
monographs [BCSS98,Poi95], it might be important to understand which re-
sults are specific to classical complexity and which one are special cases of
results working over arbitrary logical structures. In particular, it might be
important to understand whether machine independent characterizations of
complexity classes exist for computability over arbitrary structures.

In last year ICC workshop [BdNM02], we proved that safe primitive re-
cursion principle of Bellantoni and Cook [BC92] for characterizing sequential
polynomial time is actually valid over arbitrary structures.

This paper is a contribution to the natural following steps: understand
whether other complexity classes can be characterized implicitly in a same
spirit.

First, based on Leivant and Marion in [LM95], we characterize parallel
polynomial time (the results presented in [BdNM02] and this result are also
presented in [BCdNM03]).

Theorem 1.1 Over any structure K = (K, {opi}i∈I , rel1, . . . , rell, 0, 1), the
set of functions computable with safe recursion with substitution over K is the
set of functions computed in parallel polynomial time over K of polynomial
output size.

Observe that, unlike Leivant and Marion, Theorem 1.1 characterizes par-
allel polynomial time and not polynomial space: for classical complexity both
classes correspond. However over arbitrary structures, this is not true, since
the notion of working space may be meaningless: as pointed out by Michaux
[Mic89], on some structures like (R, +,−, ∗,≤, 0, 1), any computable function
can be computed in constant working space.

Second, based on [Bel94], we characterize problems of the polynomial hi-
erarchy.

One difficulty is that over an arbitrary structure, two kinds of nonde-
terminism may be considered according to whether the witness is allowed
to be an arbitrary element of the structure or is restricted to be in {0, 1}
[BSS89,BCSS98]. The latter is usually called digital and a letter D is used to

2

denote complexity classes arising from the use of digital nondeterminism. Note
that in classical complexity theory, over a finite structure, these two notions
of nondeterminism coincide and they yield the same polynomial hierarchy.

We prove:

Theorem 1.2 Over any structure K = (K, {opi}i∈I , rel1, . . . , rell, 0, 1), the
set of decision problems computable in the polynomial hierarchy over K corre-
sponds to safe recursion with predicative minimization.

Theorem 1.3 Over any structure K = (K, {opi}i∈I , rel1, . . . , rell, 0, 1), the
set of decision problems computable in the digital polynomial hierarchy over K
corresponds to safe recursion with digital predicative minimization.

This work stems from the notion of safe recursion introduced by Bellantoni
and Cook in [BC92]. Other machine independent characterizations of com-
plexity classes have been obtained in classical complexity. Such characteriza-
tions include descriptive characterization based on finite model theory like Fa-
gin [Fag74], characterization by function algebra like [Cob62], or by combining
both kinds of characterization like in [Gur83,Saz80]: see [Clo95,Imm99,EF95]
for more complete references. One benefit of the approach of Bellantoni and
Cook, and the alternative approach of Leivant [Lei95] by mean of data tiering,
is that they do not require explicit upper bounds on computational resources
or restrictions on the growth rates.

When considering computations over arbitrary structures, machine inde-
pendent characterizations of several complexity classes inspired by finite model
theory have already been obtained [BCSS98,GG98,GM95]. They basically re-
quire over arbitrary structure to distinguish two (not so natural) types of
functions (called “number terms” and “index terms” in [GM95]) in order to
be able to use finiteness considerations over the models even in presence of
infinite underlying domains like the field of real numbers. We believe our
approach to give nicer machine-independent characterizations of complexity
classes.

From a programming perspective, a way of understanding all our results
is to see computability over arbitrary structures like a programming language
with extra operators which come from some external libraries. This observa-
tion, and its potential to build methods to automatically derive computational
properties of programs, along the lines of [Hof99,Jon01,MM00], is a main mo-
tivation of our work.

This paper is organized as follows. In Section 2, we recall some of our
results in [BdNM02]. In Section 3, we characterize parallel polynomial time.
In Section 4, we characterize the polynomial hierarchy. In Section 5, we char-
acterize the digital polynomial hierarchy. Section 6 is a conclusion.

3

2 Preliminaries

We assume that the reader has some familiarities with the BSS model of
computation. Detailed accounts can be found in [BCSS98] —for structures
like real and complex numbers— or [Poi95] —for considerations about more
general structures.

Definition 2.1 A structure K = (K, {opi}i∈I , rel1, . . . , rell, 0, 1) is given by
some underlying set K, a family of operators opi with arities, and a finite
number of relations rel1, . . . , rell with arities. Constants correspond to opera-
tors of arity 0. While the index set I may be infinite, the number of operators
with arity greater than 1 needs to be finite. We will not distinguish between
operator and relation symbols and their corresponding interpretations as func-
tions and relations respectively over the underlying set K. We assume that the
equality relation = is a relation of the structure, and that there are at least
two constant symbols, with different interpretations (denoted by 0 and 1 in
our work) in the structure.

An example of structure is K = (R, +,−, ∗, =,≤, {cr}r∈R). Another ex-
ample, corresponding to classical complexity and computability theory is K =
({0, 1},∨,∧, =, 0, 1).

We denote by K
∗ =

⋃

i∈N
K

i the set of words over the alphabet K. The
space K

∗ is the analogue to Σ∗ the set of all finite sequences of zeros and ones.

In what follows, words of elements in K will be represented with overlined
letters, while elements in K will be represented by letters. For instance, a.x

stands for the word in K
∗ whose first letter is a and which ends with the word

x. We denote by ε the empty word. The length of a word w ∈ K
∗ is denoted

by |w|.

Let us first recall our notion of safe recursion, as found in [BdNM02],
extending the notion of safe recursive functions over the natural numbers
found in [BC92].

In the spirit of [BC92], safe recursive functions have two different types of
arguments, each of them having different properties and purposes. The first
type of argument, called normal, can be used to make basic computation steps
or to control recursion. The second type of argument, called safe, can not be
used to control recursion. This distinction between safe and normal arguments
ensures that safe recursive functions can be computed in polynomial time.

To emphasize the distinction between normal and safe variables we will
write f : N × S → R where N indicates the domain of the normal arguments
and S that of the safe arguments. If all the arguments of f are of one kind, say
safe, we will write ∅ in the place of N . Also, if x̄ and ȳ are these arguments,
we will write f(x̄; ȳ) separating them by a semicolon “;”. Normal arguments
are placed at the left of the semicolon and safe arguments at its right.

4

Definition 2.2 The set of safe recursive functions over K is the smallest set
of functions f : (K∗)k × (K∗)l → K

∗, for some k and l, containing the basic
safe functions, and closed under the operations of safe composition and safe
recursion.

Our basic safe functions are of four kinds:

(i) Functions making elementary manipulations of words of elements in K:

hd(; a.x) = a tl(; a.x) = x cons(; a.x1, x2) = a.x2

hd(; ε) = ε tl(; ε) = ε cons(; ε, x2) = x2

(ii) Projections: For any n ∈ N, i ≤ n

n

Pr
i

(; x1, . . . , xi, . . . , xn) = xi.

(iii) Functions of structure K: for any operator (including the constants treated
as operators of arity 0) opı or relation relı of arity nı we have

Opı(; a1.x1, . . . , anı
.xnı

) = (opı(a1, . . . , anı
)).xnı

Relı(; a1.x1, . . . , anı
.xnı

) =

1 if relı(a1, . . . , anı
)

ε otherwise

(iv) Test function :

Test(; x, y, z) =

y if hd(x) = 1

z otherwise

The operations mentioned above are defined as follows.

(1) Safe composition. Assume g : (K∗)m × (K∗)n → K
∗, h1, . . . , hm : K

∗ × ∅ →
K

∗ and hm+1, . . . , hm+n : K
∗ × K

∗ → K
∗ are given safe recursive functions.

Then their safe composition is the function f : K
∗ × K

∗ → K
∗ defined by

f(x; y) = g (h1(x;), . . . , hm(x;); hm+1(x; y), . . . , hm+n(x; y)) .

(2) Safe recursion. Assume h1, . . . , hk : K
∗×K

∗ → K
∗ and g1, . . . , gk : (K∗)2 ×

(K∗)k+1 → K
∗ are given functions. Functions f1, . . . , fk : (K∗)2 × K

∗ → K
∗

can then be defined by safe recursion:

f1(ε, x; y), . . . , fk(ε, x; y) = h1(x; y), . . . , hk(x; y)

f1(a.z, x; y)=

g1(z, x; f1(z, x; y), . . . , fk(z, x; y), y) if ∀i fi(z, x; y) 6=⊥

⊥ otherwise

5

...

fk(a.z, x; y)=

gk(z, x; f1(z, x; y), . . . , fk(z, x; y), y) if ∀i fi(z, x; y) 6=⊥

⊥ otherwise

In [BdNM02], we proved:

Proposition 2.3 Over any structure K = (K, {opi}i∈I , rel1, . . . , rell, 0, 1),
the set of safe recursive functions over K is exactly the set of functions com-
puted in polynomial time by a BSS machine over K.

3 A Characterization of the Parallel Class FPARK

3.1 A Parallel Model of Computation

Recall the notion of circuit over an arbitrary structure K [BCSS98,Poi95].

Definition 3.1 A circuit over the structure K is an acyclic directed graph
whose nodes, called gates, are labeled either as input gates of in-degree 0,
output gates of out-degree 0, test gates of in-degree 3, or by a relation or an
operation of the structure, of in-degree equal to its arity.

The evaluation of a circuit on a given assignment of values of K to its
input gates is defined in a straightforward way, all gates behaving as one
would expect. We just note that any test gate tests whether its first parent
is labeled with 1, and returns the label of its second parent if this is true or
the label of its third parent if not. This evaluation defines a function from
K

n to K
m where n is the number of input gates and m that of output gates.

See [Poi95,BCSS98] for formal details.

We say that a family {Cn | n ∈ N} of circuits computes a function f :
K

∗ → K
∗ when the function computed by the nth circuit of the family is the

restriction of f to K
n. We say that this family is P-uniform when there exists

a deterministic machine computing a description of the ith gate of the nth
circuit in time polynomial in n.

Definition 3.2 FPARK (resp. PARK) is the class of functions computable
(resp. problems decidable) by P-uniform families of circuits of polynomial
depth and such that |f(x̄)| = |x̄|O(1) for all x̄ ∈ K

∗.

It can be shown that these notions of parallel polynomial time correspond
indeed to functions of polynomial output size and to problems which can be
computed in polynomial time by natural notions of parallel machine over a
structure K: see [BCSS98].

The goal of this section is to prove that, over any structure K, FPARK

also corresponds to the class of functions computable with safe recursion with
substitutions.

6

3.2 Safe Recursion with Substitutions

Definition 3.3 The set of functions defined with safe recursion with substitu-
tions over K is the smallest set of functions f : (K∗)p×(K∗)q → K

∗, containing
the basic safe functions, and closed under safe composition and the following
operation:

Safe recursion with substitution. Let h1, . . . , hk : K
∗ × (K∗)2 → K

∗,
g1, . . . , gk : (K∗)2 × (K∗)kl+1 → K

∗, and σij : ∅ × K
∗ → K

∗ for 0 < i ≤ k

and 0 < j ≤ l be safe recursive functions. The functions f1, . . . , fk :
(K)2 × (K∗)2 → K

∗ are defined by safe recursion with substitutions as fol-
lows:

f1(ε, x; u, y), . . . , fk(ε, x; u, y) =h1(x; u, y), . . . , hk(x; u, y)

and

f1(a.z, x; u, y) =

g1 (z, x; f1(z, x; σ11(; u), y), . . . , f1(z, x; σ1l(; u), y), . . .

fk(z, x; σk1(; u), y), . . . , fk(z, x; σkl(; u), y), y)

if ∀i, j fi(z, x; σij(; u), y) 6=⊥

⊥ otherwise

...

fk(a.z, x; u, y) =

gk (z, x; f1(z, x; σ11(; u), y), . . . , f1(z, x; σ1l(; u), y), . . .

fk(z, x; σk1(; u), y), . . . , fk(z, x; σkl(; u), y), y)

if ∀i, j fi(x, z; σij(; u), y) 6=⊥

⊥ otherwise.

The functions σij are called substitution functions.

Theorem 3.1 Over any structure K = (K, {opi}i∈I , rel1, . . . , rell, 0, 1), the
set of functions definable with safe recursion with substitution over K is exactly
FPARK.

An immediate corollary is the following:

Corollary 3.2 Over any structure K = (K, {opi}i∈I , rel1, . . . , rell, 0, 1), the
set of decision functions definable with safe recursion with substitution over K
is exactly the set of decision functions computed in parallel polynomial time
over K.

In the classical setting (see [LM95]), safe recursion with substitution char-
acterizes the class FPSPACE. However, in the general setting, this notion of
working space is meaningless, as pointed in [Mic89]: on some structures like
(R, 0, 1, =, +,−, ∗), any computation can be done in constant working space.
However, since in the classical setting we have FPAR = FPSPACE, our result

7

extends the classical one from [LM95].

4 A Characterization of PHK

4.1 Polynomial hierarchy over a structure K

As for the classical settings, the polynomial hierarchy over a given structure
K can be defined in several equivalent ways, including logical descriptions, or
definitions by successive relativizations of non-deterministic polynomial time:
see [BCSS98].

Focusing on a logical point of view, we have:

Definition 4.1 The polynomial time hierarchy over K is PHK =
⋃∞

ı=0 Σı
K,

where Σı
K is the class of decision problems defined in the following way: S ∈ Σı

K

if and only if

• there exists a polynomial time BSS machine Mp over K

• there exist polynomial functions p1, . . . , pı : N → N

• x ∈ S ⇔ ∃y1 ∈ K
≤p1(|x|)∀y2 ∈ K

≤p2(|x|) . . .Qyı ∈ K
≤pı(|x|), Mp accepts

(x, y1, . . . , yı)
where K

≤n = {x ∈ K
∗ | |x| ≤ n}, Q = ∃ if ı is odd and Q = ∀ otherwise.

The class Πı
K is defined replacing the third line above by x ∈ S ⇔ ∀y1 ∈

K
≤p1(|x|)∃y2 ∈ K

≤p2(|x|) . . .Qyı ∈ K
≤pı(|x|), Mp accepts (x, y1, . . . , yı).

In addition, we define 2
ı
K = Σı

K ∪ Πı
K.

Clearly the polynomial hierarchy satisfies PHK =
⋃∞

ı=0 Σı
K =

⋃∞
ı=0 Πı

K =
⋃∞

ı=0 2
ı
K.

The first levels of this hierarchy are known: Σ0
K = Π0

K = PK, Σ1
K = NPK

and Π1
K = coNPK.

4.2 Safe Recursion with Predicative Minimization

Based on [Bel94], we now introduce the notion of predicative minimization.

Definition 4.2 Given h : K
∗ × (K∗)2 → K

∗, we define f : K
∗ × K

∗ → K by
predicative minimization:

f(x; a) = µb(h(x; a, b)) =

cons(; 1, mint{b : |b| = t ∧ h(x; a, b) = ε})

if there is such a b ∈ K
∗

ε otherwise.

Remark 4.3 This minimization is a non-deterministic one, as opposed to
the minimization defined in [BdNM02]. It is used to capture one (possibly
among several) existential witness for some property. Therefore, it can cap-
ture languages recognized by BSS-machines with different levels of quantifier

8

alternation. This notion is in essence non-deterministic and may well, on
a structure without quantifier elimination, be not computable by BSS ma-
chines without quantifier alternation. On the other hand, the minimization
of [BdNM02] is a deterministic one: it can not capture any quantification, but
can denote the computation length needed to reach some node in a BSS ma-
chine, hence capturing the whole class of BSS computable functions (without
quantifier).

Remark 4.4 As stated in [Bel94], it may seem surprising to obtain 1 if no
minimal b exists. When we deal with partial recursive functions, the operation
of minimization is a non-halting process when no minimal solution exists.
Here however, since we use the operation of safe recursion instead of primitive
recursion, we know, as proved in [BdNM02], that, when h is a safe recursive
function, the computation time of h(x; a, b) does not depend on b. Therefore,
on a structure with quantifier elimination, this predicative minimization is
computable in finite time.

We now introduce a new set of functions.

Definition 4.5 The set µPHK of functions is the closure of the set of safe
recursive functions over K under the application of predicative minimization
and safe composition.

In order to give a rigorous formalism for our statement below, let us define
the following:

Definition 4.6 For any function f : (K∗)n × (K∗)m → K
∗,

Charf(x1, . . . , xn; y1, . . . , ym) =

1 if f(x1, . . . , xn; y1, . . . , ym) 6= ε

ε otherwise

We denote by CharPHK the set {Charf , f ∈ µPHK}. Theorem 1.2 is
formally the following:

Theorem 4.7 A decision problem over K belongs to PHK if and only if its
characteristic function belongs to CharPHK.

5 A Characterization of DPHK

5.1 Digital Polynomial hierarchy over a structure K

In this section, we assume that our structure K contains at least two constants,
denoted by 0 and 1. Then we can define the notion of digital polynomial
hierarchy over K:

Definition 5.1 The digital polynomial time hierarchy over K is DPHK =
⋃∞

ı=0 DΣı
K, where DΣı

K is the class of problems defined in the following way:
S ∈ DΣı

K if and only if

9

• there exists a polynomial time BSS machine Mp over K

• there exist polynomial functions p1, . . . , pı : N → N

• x ∈ S ⇔ ∃y1 ∈ {0, 1}≤p1(|x|) ∀y2 ∈ {0, 1}≤p2(|x|) . . .Qyı ∈ {0, 1}≤pı(|x|) ,

Mp accepts (x, y1, . . . , yı)

where {0, 1}≤n = {x ∈ {0, 1}∗ | |x| ≤ n}, Q = ∃ if ı is odd and Q = ∀
otherwise.

The class DΠı
K is defined replacing the third line above by x ∈ S ⇔ ∀y1 ∈

{0, 1}≤p1(|x|) ∃y2 ∈ {0, 1}≤p2(|x|) . . .Qyı ∈ {0, 1}≤pı(|x|) , Mp accepts (x, y1, . . . , yı).

In addition, we define D2
ı
K = DΣı

K ∪ DΠı
K and the digital polynomial

hierarchy satisfies DPHK =
⋃∞

ı=0 DΣı
K =

⋃∞
ı=0 DΠı

K =
⋃∞

ı=0 D2
ı
K.

5.2 Safe Recursion with Digital Predicative Minimization

Similarly to the notion of predicative minimization of previous section, we
introduce the notion of digital predicative minimization:

Definition 5.2 Given h : K
∗ × (K∗)2 → K

∗, we define f : K
∗ × K

∗ → K by
digital predicative minimization:

f(x; a) = dµb(h(x; a, b)) =

cons(; 1, mint{b : |b| = t&h(x; a, b) = ε})

if there is such a b ∈ {0, 1}∗

ε otherwise.

Theorem 1.3 is formally the following:

Theorem 5.3 A decision problem over K belongs to DPHK if and only if its
characteristic function belongs to CharDPHK.

6 Conclusion and discussion

In this paper, we proved that parallel polynomial time, as well as the polyno-
mial hierarchy, including the digital version can be characterized in a machine
independent way.

Future work include extending these results to other classes. In particu-
lar, when dealing with the real numbers, the following inclusions are known
[BCSS98]:

DPATR PATR

↗ ↘ ↗ ↘
DPHR PARR PEXPR

↘ ↗ ↘ ↗
PHR EXPR

10

where an arrow means inclusion, EXPR denotes exponential time, PEXPR

parallel exponential time, PATR polynomial alternating time, and DPATR

digital polynomial alternating time. The two inclusions PARR ⊂ PATR and
PARR ⊂ EXPR are known to be strict [BCSS98].

Observe that PSPACE, PATK, DPATK, PARK yield the same class when
restricted to finite structure (i.e. in classical complexity), whereas over arbi-
trary structure they are a priori all distinct.

Can we characterize PATK and DPATK implicitly over arbitrary struc-
tures?

References

[BC92] S. Bellantoni and S. Cook. A new recursion-theoretic characterization
of the poly-time functions. Computational Complexity, 2:97–110, 1992.

[BCdNM03] Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and Jean-
Yves Marion. Safe recursion over an arbitrary structure. sequential
and parallel polynomial time. In Foundations of Software Science
and Computational Structures 6th International Conference, FOSSACS
2003, number 2620 in Lecture Notes in Computer Science, pages 185–
199. Springer, 2003.

[BdNM02] Olivier Bournez, Paulin Jacobé de Naurois and Jean-Yves Marion
Safe recursion and calculus over an arbitrary structure. In Implicit
Computational Complexity, ICC 2002, Copenhagen, Denmark, 20-21
June 2002.

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real
Computation. Springer-Verlag, 1998.

[Bel94] S. Bellantoni. Predicative recursion and the polytime hiearchy. In
Peter Clote and Jeffrey B. Remmel, editors, Feasible Mathematics II,
Perspectives in Computer Science. Birkhaüser, 1994.

[BSS89] L. Blum, M. Shub, and S. Smale. On a theory of computation and
complexity over the real numbers: NP-completeness, recursive functions
and universal machines. Bulletin of the American Mathematical
Society, 21:1–46, 1989.

[Clo95] P. Clote. Computational models and function algebras. In D. Leivant,
editor, LCC’94, volume 960 of Lecture Notes in Computer Science,
pages 98–130. Springer-Verlag, 1995.

[Cob62] A. Cobham. The intrinsic computational difficulty of functions. In
Y. Bar-Hillel, editor, Proceedings of the International Conference on
Logic, Methodology, and Philosophy of Science, pages 24–30. North-
Holland, Amsterdam, 1962.

11

[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in
Mathematical Logic. Springer-Verlag, Berlin, 1995.

[Fag74] R. Fagin. Generalized first order spectra and polynomial time
recognizable sets. In R. Karp, editor, Complexity of Computation,
pages 43–73. SIAM-AMS, 1974.

[GG98] Erich Grädel and Yuri Gurevich. Metafinite model theory. Information
and Computation, 140(1):26–81, 10 January 1998.

[GM95] Erich Grädel and Klaus Meer. Descriptive complexity theory over the
real numbers. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on the Theory of Computing, pages 315–324, Las Vegas,
Nevada, 29 May–1 June 1995.

[Goo94] J. B. Goode. Accessible telephone directories. Journal of Symbolic
Logic, 59(1):92–105, 1994.

[Gur83] Y. Gurevich. Algebras of feasible functions. In Twenty Fourth
Symposium on Foundations of Computer Science, pages 210–214. IEEE
Computer Society Press, 1983.

[Hof99] M. Hofmann. Type systems for polynomial-time computation, 1999.
Habilitation.

[Imm99] N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.

[Jon01] N. Jones. The expressive power of higher order types. J. of Functional
Programming, 11:55–94, 2001.

[Lei95] D. Leivant. Intrinsic theories and computational complexity. In
LCC’94, volume 960 of Lecture Notes in Computer Science, pages 177–
194. Springer-Verlag, 1995.

[LM95] D. Leivant and J.-Y. Marion. Ramified recurrence and computational
complexity II: substitution and poly-space. In L. Pacholski and
J. Tiuryn, editors, Computer Science Logic, 8th Workshop, CSL’94,
volume 933 of Lecture Notes in Computer Science, pages 369–380,
Kazimierz, Poland, 1995. Springer-Verlag.

[Mic89] C. Michaux. Une remarque à propos des machines sur R introduites
par Blum, Shub et Smale. C. R. Acad. Sci. Paris, 309, Série I:435–437,
1989.

[MM00] J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program
interpreter with time bound certifications. In LPAR, volume 1955 of
Lecture Notes in Computer Science, pages 25–42. Springer-Verlag, Nov
2000.

[Poi95] B. Poizat. Les Petits Cailloux. Aléas, 1995.

12

[Saz80] V. Sazonov. Polynomial computability and recursivity in finite
domains. Elektronische Informationsverarbeitung und Kybernetik,
7:319–323, 1980.

13

	Introduction
	Preliminaries
	A Characterization of the Parallel Class FPARK
	A Parallel Model of Computation
	Safe Recursion with Substitutions

	A Characterization of PHK
	Polynomial hierarchy over a structure K
	Safe Recursion with Predicative Minimization

	A Characterization of DPHK
	Digital Polynomial hierarchy over a structure K
	Safe Recursion with Digital Predicative Minimization

	Conclusion and discussion
	References

