
An Analog Characterization of Elementarily

Computable Functions Over the Real Numbers

Olivier Bournez and Emmanuel Hainry

LORIA/INRIA, 615 Rue du Jardin Botanique, BP101
54602 Villers lès Nancy, France

{Olivier.Bournez,Emmanuel.Hainry}@loria.fr

Abstract We present an analog and machine-independent algebraic char-
acterization of elementarily computable functions over the real numbers
in the sense of recursive analysis: we prove that they correspond to the
smallest class of functions that contains some basic functions, and closed
by composition, linear integration, and a simple limit schema.
We generalize this result to all higher levels of the Grzegorczyk Hierarchy.
Concerning recursive analysis, our results provide machine-independent
characterizations of natural classes of computable functions over the real
numbers, allowing to define these classes without usual considerations
on higher-order (type 2) Turing machines. Concerning analog models,
our results provide a characterization of the power of a natural class of
analog models over the real numbers.

1 Introduction

Several approaches have been proposed to model computations over real num-
bers. Recursive analysis or computable analysis, was introduced by Turing [28],
Grzegorczyk [12], Lacombe [15]. Alternative discrete-time computational models
have also been investigated: see e.g. [4].

These models concern discrete time computability. Models of machines where
the time is continuous can also be considered. The first ever built computers were
continuous time machines: e.g. Blaise Pascal’s pascaline or Lord Kelvin’s model
of Differential Analyzer [27], that gave birth to a real machine, built in 1931 at
the MIT to solve differential equations [7], and which motivated Shannon’s Gen-
eral Purpose Analog Computer (GPAC) model [25], whose computational power
was characterized algebraically in terms of solutions of polynomial differential
equations [25,23,16,11]. Continuous time machines also include analog neural
networks [26], hybrid systems [3,5], or theoretical physical models [21,14,10]: see
also survey [22].

The relations between all the models are not fully understood. One can say,
that the theory of analog computations has not yet experienced the unification
that digital discrete time computations have experienced through Turing work
and the so-called Church thesis [9,22].

This however becomes a crucial matter since the progress of electronics makes
the construction of some of the machines realistic, whereas some models were



recently proved very (far too?) powerful: using the so-called Zeno’s paradox,
some models make it possible to compute non-Turing computable functions in a
constant time: see e.g. [17,6,3,14,10].

In [17], Moore introduced a class of functions over the reals inspired from the
classical characterization of computable functions over integers: observing that
the continuous analog of a primitive recursion is a differential equation, Moore
proposes to consider the class of R-recursive functions, defined as the the smallest
class of functions containing some basic functions, and closed by composition,
differential equation solving (called integration), and minimization.

This class of functions, also investigated in [18,19], can be related to GPAC
computable functions: see [17], corrected by [11]. The original definitions of this
class in [17] suffer from several technical problems, as well as also from some
physical realizability problems providing the possibility of using super-Turing
“compression tricks”.

In his PhD dissertation, Campagnolo [9] proposes to restrict to the better-
defined subclass L of R-recursive functions corresponding to the smallest class
of functions containing some basic functions and closed by composition and
linear integration. Class L is related to functions elementarily computable over
integers in classical recursion theory and functions elementarily computable over
the real numbers in recursive analysis (discussed in [30]): any function of class L
is elementarily computable in the sense of recursive analysis, and conversely, any
function over the integers computable in the sense of classical recursion theory
is the restriction to integers of a function that belongs to L [9,8].

However, the previous results do not provide a characterization of all func-
tions over the reals that are computable in the sense of recursive analysis. This
paper provides one: for functions over the reals of class C2 defined on a product
of compact intervals with rational endpoints, f is elementarily computable in the
sense of recursive analysis iff it belongs to the smallest class of functions con-
taining some basic functions and closed by composition, linear integration and a
simple limit schema. This can be extended to characterize all higher levels of the
Grzegorczyk hierarchy: for functions over the reals of class C2 defined on a prod-
uct of compact intervals with rational endpoints, f is computable in the sense of
recursive analysis in level n ≥ 3 of the Grzegorczyk hierarchy iff f belongs to the
smallest class of functions containing some (other) basic functions and closed by
composition, linear integration and a simple limit schema.

Concerning analog models, these results have several impacts: first, they con-
tribute to understand analog models, in particular the relations between GPAC
computable functions, R-recursive functions, and computable functions in the
sense of recursive analysis. Furthermore, they prove that no Super-Turing phe-
nomena can occur for these classes of functions. In particular we have a “robust”
class of functions in the sense of [13,2].

Concerning recursive analysis, our theorems provide a purely algebraic and
machine independent characterization of elementarily computable functions over
the reals. Observe the potential benefits offered by these characterizations com-
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pared to classical definitions of these classes in recursive analysis, involving dis-
cussions about higher-order (type 2) Turing machines: see e.g. [29].

In Section 2, we start by some mathematical preliminaries. In Section 3, we
recall some notions from classical recursion theory. We present basic definitions
of recursive analysis in Section 4. Previous known results are recalled in Section
5. Our characterizations are presented in Section 6. The proofs are given in
remaining sections.

2 Mathematical preliminaries

Let N, Q, R, R>0 denote the set of natural integers, the set of rational numbers,
the set of real numbers, and the set of positive real numbers respectively. Given
x ∈ Rn, we write −→x to emphasize that x is a vector.

We will use the following simple mathematical result.

Lemma 1. Let F : R×V ⊂ R2 → Rl be a function of class1 C1, and β(x) : V →

R be some continuous function. Assume that for all t and x, ∂2F
∂t∂x (t, x) exists

and ‖∂F
∂t (t, x)‖ ≤ K exp(−tβ(x)), and ‖ ∂2F

∂t∂x (t, x)‖ ≤ K exp(−tβ(x)) for some
constant K > 0.

For all x ∈ D, where D is the subset of the x ∈ V with β(x) > 0, F (t, x) has
a limit L(x) in t = +∞. Function L(x) is of class C1, and its derivative L′ is

the limit of ∂F (t,x)
∂x (t, x) in t = +∞. Furthermore

‖F (t, x) − L(x)‖ ≤ K exp(−tβ(x))
β(x) and ‖∂F

∂x (t, x) − L′(x)‖ ≤ K exp(−tβ(x))
β(x) .

The following result2, with previous lemma, is a key to provide upper bounds
on the growth of functions of our classes (c.f. Lemma 4).

Lemma 2 (Bounding Lemma for Linear Differential Equations [1]).
For linear differential equation −→x ′ = A(t)−→x , if A is defined and continuous on
interval I = [a, b], where a ≤ 0 ≤ b, then, for all −→x 0, the solution of −→x ′ = A(t)−→x
with initial condition −→x (0) = −→x 0 is defined and unique on I. Furthermore, the
solution satisfies

‖−→x (t)‖ ≤ ‖−→x 0‖ exp( sup
τ∈[0,t]

‖A(τ)‖t).

3 Classical Recursion Theory

Classical recursion theory deals with functions over integers. Most classes of clas-
sical recursion theory can be characterized as closures of a set of basic functions
by a finite number of basic rules to build new functions [24,20]: given a set F of

1 Recall that function f : D ⊂ Rk
→ Rl, k, l ∈ N, is said to be of class C

r if it is
r-times continuously differentiable on D.

2 As it was already the case in Campagnolo’s Dissertation.
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functions and a set O of operators on functions (an operator is an operation that
maps one or more functions to a new function), [F ;O] will denote the closure of
F by O.

Proposition 1 (Classical settings: see e.g. [24,20]). Let f be a function
from Nk to N for k ∈ N. Function f is

– elementary iff it belongs to E = [0, S, U,+,	; COMP,BSUM,BPROD];
– in class En of the Grzegorczyk Hierarchy (n ≥ 3) iff it belongs to En =

[0, S, U,+,	, En−1; COMP,BSUM,BPROD];
– primitive recursive iff it belongs to PR = [0, U, S; COMP,REC];
– recursive iff it belongs to Rec = [0, U, S; COMP,REC,MU].

A function f : Nk → Nl is elementary (resp: primitive recursive, recursive)
iff its projections are elementary (resp: primitive recursive, recursive).

The base functions 0, (Um
i )i,m∈N, S,+,	 and the operators COMP, BSUM,

BPROD, REC, MU are given by

1. 0 : N → N, 0 : n 7→ 0; Um
i : Nm → N, Um

i : (n1, . . . , nm) 7→ ni; S : N →
N, S : n 7→ n + 1; + : N2 → N, + : (n1, n2) 7→ n1 + n2; 	 : N2 → N,
	 : (n1, n2) 7→ max(0, n1 − n2);

2. BSUM : bounded sum. Given f , h = BSUM(f) is defined by h : (−→x , y) 7→
∑

z<y f(−→x , z); BPROD : bounded product. Given f , h = BPROD(f) is de-
fined by h : (−→x , y) 7→

∏

z<y f(−→x , z);
3. COMP : composition. Given f and g, h = COMP(f, g) is defined as the

function verifying h(−→x ) = g(f(−→x ));
4. REC : primitive recursion . Given f and g, h = REC(f, g) is defined as the

function verifying h(−→x , 0) = f(−→x ) and h(−→x , n+ 1) = g(−→x , n, h(−→x , n)).
5. MU : minimization. The minimization of f is h : −→x 7→ inf{y : f(−→x , y) = 0}.

Functions En, involved in the definition of the classes En of the Grzegorczyk
Hierarchy, are defined by induction as follows (when f is a function, f [d] denotes
its d-th iterate: f [0](−→x ) = x, f [d+1](−→x ) = f(f [d](−→x ))):

1. E0(x, y) = x+ y, E1(x, y) = (x + 1) × (y + 1), E2(x) = 2x;

2. En+1(x) = E
[x]
n (1) for n ≥ 2.

We have E ⊆ PR ⊆ Rec, and the inclusions are known to be strict [24,20].
It is also known that E3 = E and PR = ∪iEi [24,20]. If TIME(t) and SPACE(t)
denote the classes of functions that are computable with time and space t,
then, for all n ≥ 3, En = TIME(En) = SPACE(En), and PR = TIME(PR) =
SPACE(PR) [24,20]. PR corresponds to functions computable using loop pro-
grams. E corresponds to computable functions bounded by some iterate of the
exponential function [24,20].

In classical computability, more general objects than functions over the inte-
gers can be considered, in particular functionals, i.e. functions Φ : (NN)m×Nk →
Nl. A functional will be said to be elementary (respectively. En, primitive recur-
sive, recursive) when it belongs to the corresponding3 class.

3 Formally, a function f over the integers can be considered as functional f :
(V1, . . . , Vm,−→n ) 7→ f(−→n ). Similarly, an operator Op on functions f1, . . . , fm
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4 Computable Analysis

The idea sustaining Computable analysis, also called recursive analysis, is to
define computable functions over real numbers by considering functionals over
fast-converging sequences of rationals [28,15,12,29].

Formally, assume that a representation of rational numbers by integers is
fixed4: let νQ(r) be the rational represented by integer r. A product C = [a1, b1]×
. . .× [ak, bk] of compact intervals with rational endpoints can be encoded by an
integer ν(C) encoding the list 〈νQ(a1), νQ(b1), . . . , νQ(ak), νQ(bk)〉.

A sequence of integers (xi) ∈ NN represents a real number x if it converges
quickly toward x (denoted by (xi) x) in the following sense: ∀i, |νQ(xi) − x| <
exp(−i). For X = ((x1), . . . , (xk)) ∈ (NN)k, −→x ∈ Rk, we write X  −→x for
(xi) Uk

i (−→x ) for i = 1, . . . , k.

Definition 1 (Recursive analysis). A function f : D → R, where D ⊂ Rk is a
product of compact intervals with rationals endpoints, is said to be computable (in

the sense of recursive analysis) if there exists a recursive functional φ : (NN)
k
×

N → N such that for all −→x ∈ D, for all X ∈ (NN)k, we have (φ(X, j))j  f(−→x )
whenever X  −→x .

A function f : D → R, where D ⊂ Rk is not necessarily compact, is said
to be computable if there exists a recursive functional φ : (NN)k × N2 → N such
that for all product C of compact intervals with rational endpoints included in D,
∀−→x ∈ C, for all X ∈ (NN)k, we have (φ(X, ν(C), j))j  f(−→x ) whenever X  −→x .

A function f : D → Rl, with l > 1, is said to be computable if all its projec-
tions are.

A function f will be said to be elementarily (respectively En) computable
whenever the corresponding functional Φ is. The class of elementarily (respec-
tively En) computable functions over the reals will be denoted by E(R) (resp.
En(R)). Observe that elementarily computable functions were discussed in [30].

5 Real-recursive and recursive functions

Following the original ideas from [17], but avoiding the minimization schema,
Campagnolo proposed in [9] to consider the following class, built in analogy
with elementarily computable functions over the integers (a real extension of a
function f : Nk → Nl is a function f̃ from Rk to Rl whose restriction to Nk is
f).

over the integers can be extended to Op(F1, . . . , Fm) : (V1, . . . , Vm,−→n ) 7→

Op(F1(V1, . . . , Vm, .), . . . , Fm(V1, . . . , Vm, .))(−→n ). We will still (abusively) denote by
[f1, . . . , fp; O1, . . . , Oq ] for the smallest class of functionals that contains basic
functions f1, . . . , fp, plus the functionals Mapi : (V1, . . . , Vm, n) → (Vi)n, the
nth element of sequence Vi, and which is closed by the operators O1, . . . , Oq .
For example, a functional will be said to be elementary iff it belongs to E =
[Map, 0, S, U, +,	; COMP, BSUM, BPROD].

4 We will assume that in this representation, the basic functions on rationals +, −, ×,
/ are elementarily computable.
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Definition 2 ([9,8]). Let L and Ln be the classes of functions f : Rk →
Rl, for some k, l ∈ N, defined by L = [0, 1,−1, π, U, θ3; COMP,LI] and Ln =
[0, 1,−1, π, U, θ3, En−1; COMP,LI] where the base functions 0, 1, −1, π, (Um

i )i,m∈N,
θ3, En and the schemata COMP and LI are defined as follows:

1. 0, 1,−1, π are the corresponding constant functions; Um
i : Rm → R are, as

in the classical settings, projections: Um
i : (x1, . . . , xm) 7→ xi;

2. θ3 : R → R is defined as θ3 : x 7→ x3 if x ≥ 0, 0 otherwise.
3. En: for n ≥ 3, let En denote a monotone real extension of the function expn

over the integers defined inductively by exp2(x) = 2x, expi+1(x) = exp
[x]
i (1).

4. COMP: composition is defined as in the classical settings: Given f and g,
h = COMP(f, g) is the function verifying h(−→x ) = g(f(−→x ));

5. LI: linear integration. From g and h, LI(g, h) is the maximal solution of
the linear differential equation ∂f

∂y (−→x , y) = h(−→x , y)f(−→x , y) with f(−→x , 0) =

g(−→x ).
In this schema, if g goes to Rn, f = LI(g, h) also goes to Rn and h(−→x , y) is
a n× n matrix with elements in L.

These classes contain functions id : x 7→ x, sin, cos, exp, +,×, x 7→ r for all
rational r, as well as for all f ∈ L, or f ∈ L∗, its primitive function F equal to
−→
0 at

−→
0 , denoted by

∫

(f). Indeed, function id is given by LI(1, 0). Function Θ :

t 7→ (sin(t), cos(t)) can be defined by LI

([

0
1

]

,

[

0 1
−1 0

])

. Project this function

on each of its two variables to get sinus and cosinus function. Function exp is
given by LI(1, id). Addition is given by x + 0 = x, ∂x+y

∂y = 1. Multiplication is

given by x×0 = 0, ∂x×y
∂y = x.

∫

(f) can be defined by

(

F
1

)

= LI

([

0
1

]

,

[

0 f
0 0

])

.

Given p, q ∈ N with q > 0, Function x 7→ p, is 1 + 1 + . . .+1, function x 7→ xq−1

is x× . . .× x, and p×
∫

(x 7→ xq−1) is x 7→ pxq/q whose value in 1 is p/q.

Proposition 2 ([8]). All functions from L are continuous, defined everywhere,
and of class C2.

The previous classes can be partially related to classes E(R) and En(R):

Proposition 3 ([9,8]).

– 1. L ⊂ E(R): any function from L is elementarily computable over real
numbers.

2. “E ⊂ L”: any elementarily computable function over the integers, has a
real extension that belongs to L.

– 1. Ln ⊂ En(R): any function from Ln is En-computable.
2. “En ⊂ Ln”: any En-computable function over the integers, has a real

extension that belongs to Ln.

Although Proposition 3 gives the inclusions L ⊂ E(R) and Ln ⊂ En(R),
it fails to characterize completely E(R) and En(R): these inclusions are strict.
Indeed, x 7→ 1/x is elementarily computable while Proposition 2 says that all
functions from L are defined everywhere. A similar argument works for En(R).
We conjecture the inclusions to be strict even when restricting to total functions.
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6 Real-recursive and recursive functions revisited

We now propose to consider new classes of functions that we will prove to cor-
respond precisely to E(R) and En(R).

First, we modify a little bit the composition schema, since (non-total) ele-
mentarily computable functions are not stable by composition.

Definition 3 (COMP schema). Given f ,g, if there is a product of closed in-
tervals5 C with rational or infinite endpoints with Range(f) ⊂ C ⊂ Domain(g),
then function COMP(f, g) is defined. It is defined by COMP(f, g) : −→x 7→
g(f(−→x )) on all −→x where f(−→x ) and g(f(−→x )) exist.

Now, we suggest to add a limit operator denoted by LIM, inspired by Lemma
1: a polynomial β over R is a function of the form β : R → R, β : x 7→

∑n
i=0 aix

i

for some a0, . . . , an ∈ R.

Definition 4 (LIM schema). Let f : R × D ⊂ R2 → R, and β : D → R a
polynomial with the following hypothesis: there exists a constant K such that

for all t, x, ‖∂f
∂t (t, x)‖ ≤ K exp(−tβ(x)), ∂2f

∂t∂x (t, x) exists, and ‖ ∂2f
∂t∂x (t, x)‖ ≤

K exp(−tβ(x)).
Then, for every interval I ⊂ R on which β(x) > 0, F = LIM(f, β) is defined

as the function F : I → R, with F (x) = limt→+∞ f(t, x), under the condition
that it is of class6 C2.

We are ready to define our classes:

Definition 5 (Classes L∗, L∗
n ). The class L∗, and L∗

n, for n ≥ 3, of functions
from Rk to Rl, for k, l ∈ N, are following classes:

– L∗ = [0, 1,−1, U, θ3; COMP,LI,LIM].
– L∗

n = [0, 1,−1, U, θ3, En−1; COMP,LI,LIM].

Example 1. Previous classes can easily be shown stable by the primitive operator
that sends a function f to its primitive

∫

(f) equal to
−→
0 at

−→
0 .

Class L∗ also includes some non-total functions, in particular the function 1
x :

R>0 → R, 1
x : x 7→ 1

x : indeed,
∫

(exp(−tx)) is function E : (t, x) 7→ (1−exp(−tx))
x

for x 6= 0, t for x = 0 (of class Ck for all k). Now 1
x = LIM(E, id).

Proposition 4. L ( L∗, Ln ( L∗
n for all n ≥ 3.

Proof. The function x 7→ π is actually in L∗. Indeed, from x 7→ 1
1+x2 in the

class, we have arctanx =
∫

( 1
1+x2 ), and π = 4 arctan(1). Observing that our

composition schema for total functions subsumes the composition schema of
class L, the result follows.

5 That can be Rk when g is total.
6 If f is of class C

1, function F exists and is at least of class C
1 by Lemma 1.
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The main results of this paper are the following (proved in following two
sections):

Theorem 1 (Characterization of E(R)). Let f : D ⊂ Rk → Rl be some
function over the reals of class C2, with D product of compact intervals with
rational endpoints. f is in E(R) iff it belongs to L∗.

Theorem 2 (Characterization of En(R)). Let f : D ⊂ Rk → Rl be some
function over the reals of class C2, with D product of compact intervals with
rational endpoints. Let n ≥ 3. f is in En(R) iff it belongs to L∗

n.

7 Upper bounds

We now prove the upper bound L∗ ⊂ E(R). As one may expect, this direction of
the proof has many similarities with the proof L ⊂ E in [9,8]: main differences
lie in the presence of non-total functions and of schema LIM.

A structural induction shows:

Lemma 3. All functions from L∗ are of class C2 and defined on a domain of
the form I1 × I2 . . .× Ik where each Ii is an interval.

We propose to introduce the following notation: given a ∈ R, let ρa be the
function x 7→ 1

x−a . Let ρ+∞ and ρ−∞ be the function identity x 7→ x.
Given I real interval with bounds a, b ∈ R ∪ {−∞,+∞}, ρI(x) = |ρa(x)| +

|ρb(x)|. For D = I1 × I2 . . . × Ik, let ρD(x) = ρI1(U
k
1 (x)) + . . .+ ρIk

(Uk
k (x)). In

any case, ρD(x) is elementarily computable and grows to +∞ when x gets close
to a bound of domain D.

The following Lemma is an extension of a Lemma of [9,8] (it is proved by
structural induction using Lemma 1 for schema LIM, Lemma 2 for schema LI,
plus the fact that it is always possible to assume that the degree of a product or
a sum of two functions f and g is less than the maximum of their degrees).

Lemma 4. Let f : D ⊂ Rk → Rl be a function of L∗. There exist some in-
teger d, and some constants A and B such that for all −→x ∈ D, ‖f(−→x )‖ ≤
A exp[d](BρD(−→x )). Call the smallest such integer d the degree of f . All the par-
tial derivatives of f also have a finite degree.

We are ready to prove the upper bound.

Proposition 5. L∗ ⊆ E(R).

Proof. – The basic functions 0, 1,−1, U, θ3 are easily shown elementarily com-
putable.

– When h = COMP(f, g), f and g elementarily computable, then h is also ele-
mentarily computable: indeed, there exists some closed set F with Range(f)
⊂ F ⊂ Domain(g). Adapting the constructions in [29], given a product of
compact intervals C with rational endpoints included in Domain(f), we can
compute elementarily a product of compact intervals C ′ with rational end-
points with f(C) ⊂ C′. Now, for x ∈ C, compose the functional that computes
g on C′ ∩ F with the one that computes f on C.
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– Let g = LIM(f, β), with f computed by elementary functional φ. We give
the proof for f defined on R × C where C is a compact interval of R. The
general case is easy to obtain.
Let x ∈ R, with β(x) > 0. Since β(x) is a polynomial, 1/β(x) can be bounded
elementarily by some computable integer N in some computable neighbor-
hood of x.
Let (xn) x. For all i, j ∈ N, if we write (i) for the constant sequence k 7→ i,
we have |νQ(φ((i), (xn), j)) − f(i, x)| < exp(−j).

By Lemma 1, we have ‖f(i, x) − g(x)‖ ≤ K exp(−β(x)i)
β(x) ≤ KN exp(−β(x)i).

Hence, |νQ(φ((i), (xn), j)) − g(x)| < exp(−j) +KN exp(−β(x)i).
If we take j′ = j + 1, i′ = N(j + 1 + dln(KN)e), we have exp(−j ′) ≤
exp(−j)/2, and KN exp(−β(x)i′) ≤ exp(−j)/2. Hence g is computed by
the functional ψ : ((xn), j) 7→ φ((N(j + 1 + dln(KN)e)), (xn), j + 1).

– Let f = LI(g, h). The proof for this case is very similar to [9,8].
This ends the proof.

Replacing in previous proofs the bounds of Lemma 4 by bounds of type

‖f(−→x )‖ ≤ AE
[d]

n−1(BρD(−→x )), one can also obtain.

Proposition 6. ∀n ≥ 3, L∗
n ⊆ En(R).

8 Lower bounds

We will now consider the opposite inclusion: E(R) ⊆ L∗, proved for functions of
class C2 on compact domains with rational endpoints.

Let ε > 0 be some real. We write Nε for the set of reals of the form iε for
some integer i. Given y ∈ R, write bycε for the unique jε with j integer and
y ∈ [jε, jε+ ε).

Lemma 5. Let ε : R → R be some decreasing elementarily computable function,
with ε(x) > 0 for all x and going to 0 when x goes to +∞. Write εi for ε(bic).

Given f : R2 → Rl in L∗, there exists F : R2 → Rl in L∗ with the following
properties:

– For all i ∈ N, x ∈ Nεi, F (i, x) = f(i, x)
– For all i ∈ N, x ∈ R, ‖F (i, x) − f(i, bxcεi

)‖ ≤ ‖f(i, bxcεi
+ εi) − f(i, bxcεi

)‖
– For all i ∈ R, x ∈ R, ‖ ∂F

∂i (i, x)‖ ≤ 5‖f(bi + 1c, bxcεi
) − f(bic, bxcεi

)‖ +
25‖f(bic, bxcεi

+ εi) − f(bic, bxcεi
)‖ + 25‖f(bi+ 1c, bxcεi+1

+ εi+1) − f(bi+
1c, bxcεi+1

)‖.

Proof (Sketch). Let ζ = 3π
2 . Let ω : x 7→ ζθ3(sin(2πx)). ∀i,

∫ i+1

i ω = 1 and

ω is equal to 0 on [i + 1
2 , i + 1] for every i ∈ N. Let Ω =

∫

(ω) its primitive,
and int : x 7→ Ω(x − 1

2 ). The function int is similar to the integer part: ∀i,
∀x ∈ [i, i+ 1

2 ], int(x) = i = bxc. Let ∆(i, x) = f(i, x+ ε(i)) − f(i, x).
Let G be the solution of the linear differential equation G(i, 0) = f(i, 0),

∂G
∂x (i, x) = ω(x/ε(i))

ε(i) ∆(i, ε(i)int(x/ε(i))). An easy induction on j then shows that

G(i, jε(i)) = f(i, jε(i)) for all integer j.
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Then, let ∆′(i, x) = G(i+ 1, x) −G(i, x).
Let F be the solution of the linear differential equation F (0, x) = G(0, x),

∂F
∂i = ω(i)∆′(int(i), x). By induction, we have F (i, x) = f(i, x) for all i ∈ N,
x ∈ Nεi.

Some technical computations allow to conclude that function F satisfies all
the claims.

We are now ready to prove the missing inclusion of Theorem 1.

Proposition 7. Let f : D ⊂ Rk → Rl be some function over the reals of class
C2, with D product of compact intervals with rational endpoints. If f is E(R),
then it belongs to L∗.

Proof. We give the proof for a function f defined on interval [0, 1] to R. The
general case is easy to obtain.

Since f ′′ is continuous on a compact set, f ′′ is bounded by some constant M .
By mean value theorem, we have |f ′(x) − f ′(y)| ≤M |x− y| for all x, y.

Given i, consider n with exp(n) exp(−i) ≥ 4M and exp(−n) ≤ 1/4. For all j,
consider xj = j exp(−n), so that for all x, y ∈ [xj , xj+1] we have |f ′(x)−f ′(y)| ≤
exp(−i)/4.

For all j, let yj be some rational number at most exp(−i)/2 far from f(xj) and
zj = (yj+1 − yj) exp(−n). By mean value theorem, there exists χj ∈ [xj , xj+1]
such that f ′(χj) = (f(xj+1) − f(xj))/ exp(n). So, |zj − f ′(χj)| ≤ exp(−i)/4 for
some χj ∈ [xj , xj+1], which implies |f ′(χj)−f

′(xj)| < exp(−i)/4, and so, zj is at
most exp(−i)/2 far from f ′(xj). Let pj , qj ∈ N such that pj×exp(−qj) is at most
exp(−i)/2 far from zj , hence, at most exp(−i) far from f ′(xj). Observing that
the yj , and so the zj can be elementarily obtained from i and j, the functions
pN : N2 → N, and qN : N2 → N that map (i, j) to corresponding pj and qj are
elementarily computable. By Proposition 3, they can be extended to function
p : R2 → R and q : R2 → R in L. Consider function g : R × [0, 1] → R

defined on all (i, x) ∈ R × [0, 1] by g(i, x) = p(i, exp(n)x) exp(−q(i, exp(n)x)).
By construction, for i, j integer, we have g(i, xj) = pj exp(−qj).

Consider the function F given by Lemma 5 for function g and ε : n 7→
exp(−n). We have F (i, xj) = zj for all i, j ∈ N.

For all integer i, and all x ∈ R, we have

‖F (i, x) − f ′(x)‖ ≤ ‖F (i, x) − F (i, bxcε)‖ + ‖F (i, bxcε − g(i, bxcε)‖
+‖g(i, bxcε) − f ′(bxcε)‖ + ‖f ′(bxcε) − f ′(x)‖

≤ ‖F (i, bxcε + εi) − F (i, bxcε)‖ + 0 + exp(−i) +Mεi
≤ ‖f ′(xj+1) − g(i, xj+1)‖ + ‖f ′(xj) − g(i, xj)‖

+‖f ′(xj+1) − f ′(xj)‖ + exp(−i) + exp(−i)/4
≤ 3 × exp(−i) + exp(−i) + exp(−i)/4
≤ 5 × exp(−i)

Consider the function G : R2 → R defined for all i, x ∈ R by the linear
differential equation G(i, 0) = f(0)7 and ∂G

∂x (i, x) = F (i, x). For all integer i, we

7 A technique similar to the one we use here to get function f ′, can be used to show
that f(0) is always in L

∗.
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have G(i, 0)−f(0) = 0 and ‖ ∂G
∂x (i, x)−f ′(x)‖ = ‖F (i, x)−f ′(x)‖ ≤ 5×exp(−i).

By mean value theorem on function G(i, x) − f(x), we get ‖G(i, x) − f(x)‖ ≤
5 × exp(−i) on [0, 1]. Hence, f(x) is the limit of G(i, x) when i goes to +∞
with integer values. We just need to check that schema LIM can be applied to
function G of L∗ to conclude: indeed, the limit of G(i, x) when i goes to +∞
will exist and coincide with this value, i.e. f(x).

Since ∂G
∂x = F , and hence ‖ ∂2G

∂i∂x‖ = ‖∂F
∂i ‖ and since ∂G

∂i =
∫ x

0
∂F
∂i (i, x)dx

implies ‖∂G
∂i ‖ ≤

∫ 1

0 ‖∂F
∂i ‖dx ≤ ‖∂F

∂i ‖ we only need to prove that we can bound

‖∂F
∂i ‖ by K × exp(−i) for a constant K. But from Lemma 5, we know that for

all i, x, ‖∂F
∂i (i, x)‖ ≤ 5‖g(bi+ 1c, bxcεi

) − g(bic, bxcεi
)‖ + 25‖g(bic, bxcεi

+ εi) −
g(bic, bxcεi

)‖+ 25‖g(bi+ 1c, bxcεi+1
+ εi+1)− g(bi+ 1c, bxcεi+1

)‖. First term can
be bounded by 5 × exp(−i) + 5 × exp(−i) = 10 × exp(−i). Second term can be
bounded by 25(‖g(bic, bxcεi

+ εi)−f
′(bxcεi

+ εi)‖+‖f ′(bxcεi
+ εi)−f

′(bxcεi
)‖+

‖g(bic, bxcεi
) − f ′(bxcεi

)‖) ≤ 25 × exp(−i) + 25 × exp(−i) + 25 × exp(−i) =
75 × exp(−i). Similarly for third term, replacing i by i+ 1.

Hence ‖∂F
∂i (i, x)‖ ≤ 160 × exp(−i), and so schema LIM can be applied on

function G of L∗ to get function f . This ends the proof.

The missing inclusion of Theorem 2 can be proved similarly for all levels
n ≥ 3 of the Grzegorczyk hierarchy.

Proposition 8. Let f : D ⊂ Rk → Rl be some function over the reals of class
C2, with D product of compact intervals with rational endpoints. If f is En(R),
for n ≥ 3, then it belongs to L∗

n.

Remark 1. – We have actually a normal form theorem: previous proof shows
that every function of L∗ and L∗

n can be defined using only 1 schema LIM.
– A corollary of this remark is that composing several LIM schemata is always

equivalent to at most two for functions of our classes.
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