MORSE: A 3D Object Recognition System Based on Geometric
Invariants

J.L. Mundy; C. Huang, J. Liu and W. Hoffman
Box 8
G.E. Corporate Research and Development

Schenectady, NY

D.A. Forsyth
U.C. Berkeley
Berkeley, CA

A. Zisserman and S. Utcke
Department of Engineering Science

Oxford University, Oxford, UK

Abstract

MORSE is an object recognition system, based
on geometric invariants of 3D structures taken
from a single 2D intensity view. The system ex-
ploits the geometric constraints inherent in ob-
ject classes such as polyhedra, rotational sym-
metry, bi-lateral symmetry and extruded sur-
faces. Invariants have been used in the past to
index many of these classes, but MORSE is de-
signed to treat multi-class recognition in a un-
form system architecture. The class constraints
are also used to drive image feature extraction
and grouping.

1 Invariant Representation

The computer recognition of objects has attracted con-
siderable research effort over the last 25 years. It is now
widely accepted that object recognition, in the setting of
real world scenes and based on a single perspective view,
is a difficult problem and cannot be achieved without the
use of object models to guide the processing of image
data and to confirm object hypotheses. It is also ac-
cepted that the most reliable information which is avail-
able in a scene is derived from a geometric description
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of the object based on its projection in the form of 2D
geometric image features, as opposed to, for example,
its intensity shading. Thus, object recognition systems
draw on a library of geometric models, which usually
contain information about the shape and appearance of
a set of known objects, to determine which, if any, of
those objects appear in a given image or image sequence.
Recognition is considered successful if the geometric con-
figuration in an image can be explained as a perspective
projection of a geometric model of the object.

A major constraint underlying the work presented here
is that recognition is based on one uncalibrated view
of a scene. Our motivation is that this restriction ap-
plies in many of the current and future applications
for object recognition, such as aerial surveillance, im-
age database query processing, image-hypertext editing,
and scene construction for virtual reality.

Even if more images are available, for example in the
case of video processing, camera calibration will not gen-
erally be known initially. Any grouping, recognition hy-
pothesis, or object recovered up to some ambiguity from
a single image, can be propagated to advantage to sub-
sequent views.

This paper describes a number of examples of 3D ob-
ject classes that can be recognized from a single image.
These classes are defined geometrically, as opposed to
function[16] or other ontological categories. For exam-
ple a surface of revolution is a geometric object class,



as opposed to a type of vase, which would be func-
tional. Rather than identifying a particular model di-
rectly, recognition is class based, proceeding by first clas-
sifying based on image curves, and subsequently identi-
fying a particular object.

We present here a prototype class based recognition
architecture, which integrates these ideas. Class in-
forms each level of the architecture from image grouping
through to organization of the model base and finally the
constraints imposed by object classes on the 3D scene
configuration.

2 The MORSE System

These ideas about 3D invariant class representation and
recognition from a single view form the basis for a new
object recognition system called MORSE!

2.1 The Architecture

Control Representation is organized into a number
of layers as illustrated in figure 1. These stages of rep-
resentation are not very different from other recognition
architectures, however the main principles of class and
global consistency provide a framework for control and
geometric data query management.

Segmentation and grouping  The key to successful
recognition is efficient and robust feature segmentation
and grouping. There are four levels of image feature
representation and grouping:

Level I: Pixel-level features are defined with respect
to an image coordinate system and reflect the quan-
tized nature of pixel coordinates. Typically, features
will be produced using an edge operator with sub-
pixel accuracy, and the resulting edgels linked into
list. This level is topological - linked curves and
vertices are represented.

Level II: Geometric features curves from level 1 are
described in terms of geometric primitives, where
appropriate. For example: algebraic curves, smooth
curves, concavities.

Level III: Generic Grouped features This level
of grouping is applied to all features produced
at level II. The output is a number of groupings
and databases which are used by the class-based
groupers described below. Generic grouping in-
cludes: near incidence (jumping small gaps, com-
pleting corners and junctions); collinearity; marking
bitangent and other distinguished points; affine or
projective equivalence of curve segments (e.g. con-
cavities). Pairing up concavities uses the distin-
guished points provided by bitangents and associ-
ated cast tangents.

Level IV: Class based grouping Each class has an
associated “class based grouper” or agent that in-
terrogates the level III groupings and databases, and
attempts to form groups appropriate for its class. If

!The acronym is Multiple Object Recognition System by
Scene Entailment and is named after an Oxford detective
character.

successful, class based invariants are extracted from
the grouped features and directly index the relevant
class library. An example of the class specific group-
ing mechanism is described in section 3.

Indexing and Hypothesis Combination Index-
ing is handled by a series of hash-tables, one per class,
that take the invariants of a system of generalized fea-
tures and associate with them models in the modelbase.
For complex objects, there may be many feature groups
that index to the object, leading to a situation where a
single instance could cause many verifications. The num-
ber of potential hypotheses can be reduced by forming
joint hypotheses (cliques), based on either topological
or invariant geometric relations between feature groups
that have indexed to the same model instance.

The Modelbase

o Model class properties, which implements the class
constraints to enable grouping, correspondence and
indexing. The invariant properties of the classes
to be implemented in MORSE are summarized in
table 1.

e Object property model base, which contains informa-
tion on object properties that follow from its iden-
tity as an object, such as orientation with respect
to other objects; - it is at this level that scene-level
knowledge is stored.

This has three components:

e Retrieval mechanisms, which will normally consist
of hash-tables, used to associate feature groups with
objects.

The Scene An additional source of constraints and
parameters is the 3D scene, which can also be viewed
as a database which reflects the current configuration
of the world and cameras. It provides a representation
of all information currently available about the common
Euclidean frame in which objects reside.

Verification Verification proceeds at many levels
of the formation of a hypothesis. Many model-based
vision systems only apply verification at the final ob-
ject instance hypothesis level. In MORSE, intermediate
stages of representation and grouping are also verified
with respect to information at lower levels of represen-
tation. For example, a set of polyhedral face hypotheses
can be refined and verified by applying a “snake” defined
by polyhedral incidence and projection constraints. This
idea can be extended even to modeling and verifying lo-
cal image intensity surface events, such as corners.

2.2 Model Acquisition

In MORSE models are directly acquired from multiple
views?. The fact that such models can serve as sufficient
representations for recognition is a major advantage of
the invariant approach. We expect that only a small
number of views will be required for most objects and
that these views will be defined by the extraction of a
sufficient set of stable features over a wide range of view-
points.

2For some classes, such as a rotationally symmetric object,
a single view will suffice.
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Figure 1: The proposed architecture for object recognition. The architecture is organized around geometric classes
which define grouping and indexing mechanisms as well as 3D scene constraints.



Euclidean object descriptions are required for full
scene consistency techniques to work. One approach is to
derive the Euclidean properties from self-calibrated cam-
era views. Recent work on self-calibration [3, 6] demon-
strates that it is possible to derive the internal camera
parameters based on three or more general views with a
single camera. Other assumptions about camera motion
between views can also be used to constraint internal
parameters. With a sufficient number of views, scaled
Euclidean reconstruction appears to be quite practical,
even with no a priori information about the camera ac-
quisition viewpoints and 3D world geometry.

2.3 Implementation

The system is being implemented in C++ using a class
hierarchy closely related to the Image Understanding
Environment (IUE) [7], called Target Jr. The IUE is
an ARPA funded project to produce an object-oriented
programming environment for vision research. A central
object hierarchy in the IUE is the spatial-object which
incorporates many of the descriptive requirements de-
scribed in the previous sections. The IUE also has an
extensive set of classes for object and image transforma-
tions which are a central issue in MORSE. Target Jr.
has a similar class hierarchy and has been under devel-
opment at GE-CRD over the last 5 years. MORSE will
be ported to the IUE when the initial implementation is
available.

3 Class Driven Grouping

We illustrate the idea that class constraints allow specific
grouping mechanisms by describing in detail grouping for
surfaces of revolution. Other grouping mechanisms are
then sketched briefly at the end of this section.

3.1 Surfaces of Revolution

The profile (image outline) of a surface of revolution can
be separated into two ‘sides’ by the projected symmetry
axis. The two sides are tightly constrained - it can be
shown that they are related by a particular four degree of
freedom projective transformation—a planar harmonic
homology [17]. This relationship is exact. Further, un-
der general imaging conditions, this projective relation
can be approximated by a three degree of freedom affine
transformation. This is an excellent approximation (as
shown empirically below), degrading only as the field of
view increases [8].

We next summarize the mathematical properties of
the affine transformation [9], and then show how these
are used to simplify and improve curve grouping.

1. Corresponding points x’ and x on the two profile
sides are related by the affine transformation x’ =
Ax + b. (Corresponding points arise from the same
circular surface cross-section). The transformation
is an involution, so x = Ax' + b.

2. The transformation has three degrees of freedom—
two to specify the “symmetry” line (the projection
of the 3D axis of revolution), and one for the corre-
spondence direction. See figure 2a.

3. The matrix A satisfies A2 = I. It has eigenvectors
a and b (b as above) with eigenvalues +1 and —1
respectively. Vector a is parallel to the symmetry
axis, vector b is parallel to x’ — x - i.e. the corre-
spondence direction.

4. The equation of the symmetry line is: 2ayz —2a,y—
ayby + azby, =0

The transformation between the two sides is deter-
mined using a type of affine snake. This is computed in
two stages: first, an approximate solution is determined
by matching a number of distinguished points (such as
bitangent contact points); second, the approximate so-
lution is used to transform a number of sample points
from one profile side to the other. The squared dis-
tance between the transformed sample points and the
other profile side is then minimized numerically over the
the three parameters of {4, b}. Effectively this uses one
side of the profile to define a snake, and then determines
the affine transformation (constrained to have the above
properties) which most closely aligns it with the other
side. Ten sample points are usually sufficient and the
minimization converges within ten iterations generally
to an average distance of less than a pixel. A typical
example is shown in figure 2b. The transformation is
parameterized by: correspondence angle, 6.; symmetry
line angle, f,; and distance of the symmetry line from
the origin, r;.

After generic grouping, the class based grouper has the
task of determining which curves could have arisen from
a surface of revolution, and repairing, where possible,
missing curve segments due to occlusion and the usual
problems of segmentation. In particular profile curves
are often broken into a number of portions. Since the
image may well contain several surfaces of revolution the
grouper must also partition the profile curves into those
arising from different surfaces.

Grouping proceeds in two stages:

1. Group conjugal curve fragments Initially data
consists of a set of curve fragments with bitangents
identified. The two sides of the profile are affine re-
lated, and consequently corresponding profile curves
have the same affine invariants. Associating conju-
gal (corresponding) curve fragments on both side is
then a matter of matching curve segments with the
same affine invariants. This is an intra-image ver-
sion of the inter-imaging invariant matching used in
model based vision [10]. Currently, area, which is a
relative affine invariant, is used to evaluate pairings.
This matching has complexity n? in the n concav-
ities, where typically n = 25 for a cluttered scene
containing two surfaces of revolution. A number of
these putative matches can then be eliminated be-
cause the affine transformation between the curves
does not have the additional properties listed above.
The transformation is determined using the affine
snake. The conclusion of this stage of grouping is
a set of paired curve fragments with the three pa-
rameters of the transformation (6., s, rs) known in
each case.

2. Group profile fragments It then remains to



Class

Invariant Structure

Polyhedron[14]

When faces have four or more vertices, 3D invariants are derived from the face
incidence structure. Incidence relations are used to eliminate projection parameters.

Rotational Symmetry|[8, 18]

A restricted planar projective homology exists between opposite image curves.
The transformation is approximately affine and defines the central axis in the image.
Invariants are cross-ratios of distinguished points on the axis.

Bilateral Symmetry[14, 18]

Distinguished points on the bi-lateral symmetry plane define planar invariants.
The points are constructed by establishing symmetrical feature correspondences.

Extruded Structures

Invariants are constructed on the line of intersection of the terminal planar
crosssections of the extruded surface. Corresponding points on the crosssectional
curves intersect at a common vertex.

Canal Surfaces[12]

A canal surface is formed by sweeping a sphere along an axis curve. The projection
of the axis curve is the symmetry set of the projected surface outline. Invariants
are defined by projecting the axis curve into a canonical frame.

Repeated Structures[11]

General symmetries can be viewed as a repeated structure. Symmetrical feature
correspondences define 3D invariants of the structure through epipolar
reconstruction.

Algebraic Surfaces[5]

Three dimensional projective invariants of algebraic surfaces of degree 3 or higher
are constructed from the image projective invariants of the surface outline curve

Ruled Surfaces

Two independent ruling systems are constructed from tangents to the image
outline. An invariant projective coordinate frame for surface markings is
established with respect to the rulings.

Table 1: The set of 3D surface classes for which geometric invariants can be computed from a single view.

a b

Figure 2: (a) The two sides of the profile of a surface of revolution are related by a particular type of affine trans-
formation (an involution). Vector a is parallel to the skewed symmetry azis, vector b is parallel to x' — x - i.e. the
correspondence direction. A point on the left side is transformed to the right by translating in the correspondence
direction twice the distance between the left side and the symmetry azis. (b) A typical ezample of the accuracy of
this transformation on real images. The transformation is computed using an affine snake, as described in the text,
and is used to map the left side onto the right. The two curves (original right profile, and transformed left) are
indistinguishable. The parameters of the transformation also define the symmetry line shown. In this example the
three parameters are 8, = 2.7, 8 = 87.4 and r = 329.8.




7£’s areas av. error parameters
pixels? pixels 6./° 05/° r/pixels

16 181.7 190.8 0.23 5.2 96.5 260.1
19 181.7 197.9 | no match

25 | 428.6 442.8 0.43 8.5 98.7 271.3
38 242.9 263.1 | no match

48 275.1 263.1 | no match

410 | 275.1 277.0 | no match

69 190.8 197.9 | no match

810 | 263.1 277.0 0.48 6.5 96.1 257.7

Table 2: Concavities are matched on area (which is a rel-
ative affine invariant), followed by the affine snake which
enforces involution. Only the symmetry related concav-
ities have a low error. The transformation parameters
computed from each matched concavity pair are very
similar. These parameters are used to group the concav-
ities.

group curve fragments which may have arisen from
the same profile curve. Grouping is based on the
similarity of {f.,0,,rs} and corresponding pairs of
matched concavities are aligned along their common
central axis. The associated outline curve fragments
are joined using existing local edgel chain topology
and smooth curve continuation.

An example is shown in figure 3 and table 2 of the
concavities and matching process. The transformation
parameters extracted from different concavity pairings
on the same profile are very stable, varying by less than
5% over the three concavities.

Indexing for surfaces of revolution proceeds by hash-
ing based on invariants [8], and then verifying first by
alignment on the axis distinguished points (generated
by bitangent intersections), then on the profile. The
number of distinguished points is restricted to prevent
a combinatorial explosion in the number of invariants.
The restriction is achieved by only considering bitan-
gents between convex curve portions (convex defined to
be facing out from the symmetry axis). This condition is
preserved under perspective projections. Restricting to
only convex-convex bitangents has an additional advan-
tage - due to self-occlusion concave-concave and concave-
convex bitangents may be missing, since concave profile
portions are the first to be self-occluded. Consequently
distinguished points formed from these bitangents may
well be missing. Typically a model has 5-10 distin-
guished points from convex-convex bitangents out of a
total of 25-50 distinguished points of all types. This bi-
tangent classification scheme has been successfully tested
on object model outline curves, which are well formed
and do not have missing distinguished points. Work is
still in progress on applying the new indexing approach
to complex scenes, where only a subset of the distin-
guished points in a full model can be recovered. .

3.2 Polyhedral grouping

In this initial implementation of MORSE, we have im-
plemented class-based grouping mechanisms for two sub-
classes of polyhedra,

polyhedra which are projectively equivalent to a
cube,

polyhedra projectively equivalent to a triangular
prism.

The grouping process is based on the assumption that
the interior boundaries of a polyhedron are only partially
recovered. The outer, occluding boundaries of an object
usually have more contrast against the background than
the interior boundary edges. For example, the contrast
across a polyhedral edge is small if the light source di-
rection is oriented approximately equally with respect to
the face normals on each side of the edge.

The initial stages of grouping are typical, including
collinear edge extension and vertex definition by inter-
section of nearly incident edge segments. Hypothesized
polyhedral outlines are verified and geometrically refined
by class-specific snakes. For example, only the hexago-
nal outline of a cube may be recovered as shown in Fig-
ure 4a. This outline then generates a cube-class polyhe-
dral snake which incorporates the complete polyhedral
structure, including the missing interior boundaries. The
snake then attempts to optimize on interior boundaries,
using the extremal outline as a constraint, as well as the
projective projection constraints for a cube®. The final,
converged, state of the cube-class snake is shown in Fig-
ure 4b. The fitted polyhedral vertices are then available
for use in establishing the camera model for the scene
and to recover specific polyhedral model instances which
are projectively equivalent to one of the generic classes,
but differ in their Euclidean geometry.

4 Scene Constraints

In the current implementation of MORSE, we exploit
two universal scene constraints which do not depend on
object class or on assumptions about the scene (e.g. ob-
jects have coplanar bases).

Viewpoint Consistency - The image is formed
by a single, uncalibrated camera. Therefore the
camera parameters recovered for a set of objects
should be the same for any combination of objects
in the scene.

Euclidean Consistency - All objects in the scene
share a common Euclidean frame. That is, the scene
is constructed by placing Euclidean models of spe-
cific objects. As a consequence, the transformation
between the exterior orientations of two cameras de-
rived from two different objects should be related
solely by a 3D Euclidean transformation.

Up to this point objects of each class have been recog-
nized using projective invariants. However, using pro-
jective invariants alone it is not possible to distinguish
objects that are projectively equivalent. For example,
the two cuboids shown in figure 4 are Euclidean inequiv-
alent (the sides on one object are a different length to
the sides on another), but projectively equivalent.

3For example, a cube has three major directions which
define a triple of vanishing points in the image. All edges
aligned with a major direction must pass through the same
vanishing point.



Figure 3: Ezample of class based grouping for surfaces of revolution. (a) Original image, 11 concavities are identified.
(b) Detail of edges, showing numbering for concavities. The matched concavities and their parameters are given in

table2.

Figure 4: (a) The straight line segmentation found by edge detection and line fitting. (b) The final state of the
clags-specific snake. Note that all the interior boundaries are now recovered.



model and snake 2 | snake 3
correspondence
1,1 1.66 0.42
1,2 0.68 0.56
1,3 4.73 1.04
1,4 0.49 1.78
1,5 2.94 1.22
1,6 0.80 1.81
2,1 0.89 0.38
2,2 5.56 1.54
2,3 0.49 2.72
3,1 2.38 0.66
3,2 0.76 0.94
3,3 1.49 1.15

Table 3: Aspect ratios for cameras computed using spe-
cific model-to-snake correspondences. The snakes are
numbered from the left; snake 1 is a prism, and so no
effective camera estimate can be made. For snakes 2 and
3, the camera is computed using each of the set of pos-
sible model face to image face correspondences for each
object. Only model-snake pairs with an aspect ratio that
lies between 1.5 and 0.7 are considered further.

For each pair of projectively equivalent objects, spe-
cific Euclidean instances are hypothesized for each of the
two objects. Fully-calibrated cameras are derived for
each object, using the hypothesized Euclidean models. If
these cameras have identical interior calibration param-
eters, then the objects are related in 3D by a Euclidean
transformation, and are thus a consistent interpretation
of the scene.

The intrinsic parameters for each camera are com-
puted by QR decomposition (the product of an upper
triangular and rotation matrix). The aspect ratio is the
ratio of the first and middle diagonal element of the up-
per triangular matrix. The consistency of interior pa-
rameters are shown in Table 3. We base consistency pri-
marily on the pixel aspect ratio, since this parameter is
more stablily recovered, with respect to image feature lo-
cation errors. Model hypothesis pairs are then tested for
consistency with one another by testing whether C;1C;
is nearly Euclidean, where C; is the left 3 x 3 block of a
3 x 4 camera matrix. Pairs that pass this test are used
to estimate a joint camera. If the joint camera yields an
image projection with an average error of less than one
pixel?, the reconstruction is considered consistent and
further hypothesis formation can proceed. From the ex-
periments, it appears that the aspect ratio computation
is often quite unstable. This instability may be due to
the limited number of points, e.g., 7 for a cube, used in
the camera computation. We are currently investigat-
ing this issue in an attempt to discover a more reliable
measure of consistency. The Hessian of the camera opti-
mization function can also be used an expected variance
in the calibration parameters and define a consistency

threshold.

*In the case shown, the average error is 0.64 pixels

The individual camera models are used as an initial
guess for a more accurate joint camera resection solution
which is carried out on both objects simultaneously. The
resection optimizes image projection error subject to the
constraint that the two cameras have identical interior
parameters.

5 Experimental Results

In these experiments, two model classes have been im-
plemented: polyhedral and surface of revolution. The
system is still in the initial stages of implementation
and integration, so a number of steps are carried out
by coupling to external code implementations by file ex-
change. Even so, examples of many of the basic compo-
nents of the MORSE architecture are available and can
carry out automatic scene processing. The polyhedral
section is implemented largely in Lisp and Mathemat-
ica procedures with file transfers to access Target Jr’s
scene data structure. The rotational symmetry portion
is more closely integrated, in C++4, with some external
procedures for optimizing the planar affine transforma-
tion between symmetrical features.

An example is shown in figure 6. Euclidean consis-
tency is used to determine the Euclidean cuboid models
and hence the camera in figure 4. Using the Euclidean
models and camera, the pose is recovered for all the ob-
jects in the scene, and images rendered from a different
viewpoint to illustrate the 3D scene configuration. Prop-
erties of the surface of revolution class have been success-
fully used to automatically identify and group the cor-
responding sides of the boundary and to find the central
axis. However in this result, the final placement of the
object is based on known correspondences on the axis.
Work is still in progress to integrate the model indexing
process for rotationally symmetric objects.

As a further illustration of grouping for surfaces of
revolution, Figure 5 shows the extraction of two profile
curves from a typical image. The matched concavities
are partitioned into sets, and the profile curves corre-
sponding to each set grouped. The entire process is au-
tomatic and relies only on the affine properties of the
homology between symmetrical portions of the outline.

6 Conclusions and Future Extensions

Even at this early stage of implementation, the notion
of class-based grouping and scene consistency analysis
appears promising. The constraints provided by class,
particularly in the case of surfaces of revolution, pro-
vide strong grouping mechanisms. We have successfully
demonstrated that the association of corresponding bi-
tangent concavities can be reliably carried out using sim-
ple affine invariants. This result is encouraging, since
bitangents can be robustly constructed and classified.
The current polyhedral object recognition rate is low
due to a combination of fragile polyhedral face group-
ing and the instability of scene camera recovery. It is
clear that in the case of polyhedra, it is necessary to ex-
ploit sub-classes, such as rectangular or triangular prisms
to gain a sufficient number of constraints to recover or
predict internal boundaries. The experiments have con-



Figure 5: Class based grouping used to automatically extract two profiles of the surfaces of revolution. (a) Original
images. (b) Canny edges. (c) Extracted grouped profiles and skewed symmetry azes. 24 concavities are extracted.
Matching on area gives 48 possible pairings. Of these only two groups also satisfy the affine involution, one group
with two members, the other with three. The ares and outline curves are indicated by a light grey overlay.

Figure 6: Graphic renderings showing recognized Euclidean objects and surface of revolution from the image of
figure 4. The polyhedral objects are recognized and their pose recovered. A consistent camera is automatically derived
for the scene and used to place the rotationally symmetric object, based on manually determined correspondences for
distinguished points on the symmetry azis. Texture is rendered from the original image. Note that part of the surface
texture of the rotationally symmetric object is missing, since it was clipped in the source image of figure 4.



firmed that occluding boundaries are much more reli-
ably recovered than internal edges. The use of polyhe-
dral snakes proved successful in acquiring the complete
boundary of a polyhedron which is difficult to construct
by fully bottom-up methods.

At the scene level, the recognition of even a few simple
polyhedra can be used to construct a camera calibration
which in turn greatly reduces the complexity of search
for additional hypotheses. For example, in the case of
figure 6, the triangular prism was not recognized in the
first pass of hypothesis formation. However, given the
camera derived from the other two rectangular prisms,
the triangular prism could be recovered. A single, rota-
tionally symmetric, object hypothesis does not provide
enough information to fully determine the camera and
thus place the object in 3D space.

A calibrated camera is necessary to place rotationally
symmetric object models in the 3D scene, given distin-
guished points on the axis. It should be noted that all of
the analysis reported here is carried out without any use
of observations of the crosssection curve of the rotation-
ally symmetric object. The crossection curve, a circle in
3D, does provide additional calibration and placement
constraints.

In the near future we will carry out the following ex-
tensions.

1. Exploit the local topology of edgel chains to provide
more complete curve topology in support of feature
extraction for both classes.

2. Improve the scene consistency analysis by provid-
ing tolerances on internal camera parameters and
explore the use of more stable consistency measures.

3. More fully integrate the components for rotationally
symmetric and polyhedral classes into Target Jr.
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