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General context

With no contests, models, and approaches from deep learning have revolutionized machine learning.

At this date, a nice and robust associated complexity theory is missing. One first reason why such a theory
is not existing is because the involved models are not classical models of computation over the discrete, but
using real numbers. The complexity and computability theory for models over the continuum is far from
being as clear as the classical one over the discrete.

About computation theory over the continuum:

Indeed, the very basics of classical computation theory are based on the (possibly effective) Church-Turing thesis
[25, 23, 7]. It states that all discrete models that all (sufficiently powerful) reasonable computable models,
or even reasonable machines, are equivalent to Turing machines. This means that we can abstract from the
model of computation, both when talking about computability (what can be solved by algorithms), and when
talking about complexity (what can be solved efficiently by algorithms). This leads to very famous questions
such as P= NP asking whether non-determinism helps, independently of the programming language, model
of computation, or machine. ..

However, it is important to realize that the above statements restrict to discrete-time and discrete-space
models: it is assumed that we restrict to computational models and machines working in steps (i.e. clock, or
a discrete time) over discrete data, such as words, or integers.

When discussing computations over the reals, the situation is far from clear. Models of computations or
machines, such as systems built using analog electronics, do not fall under the previous hypothesis [26, 27].
Various models of computation have been introduced to discuss computability and complexity, with various
motivations. They are sometimes provably not equivalent.

This includes:

e Computable analysis (see e.g. [28, 10]) considers that a real is computable if there is an algorithm that
produces its decimal representation. A function f : R — R is considered to be computable if there is
an algorithm that maps a (suitable) encoding of x to the encoding of f(x). Computable functions in
this model must be continuous. It also permits us to discuss complexity: one assumes to produce digit
number n in a time polynomial in n. Many statements from the classical analysis have been analyzed
using this approach. Many questions from computational complexity can be related to questions about
the complexity of continuous operators in the model of computable analysis [28, 19].



e Algebraic models such as Blum-Shub-Smale model [5, 4] or Valiant's model consider models of com-
putation operating directly over real numbers: some given operations are assumed to be computable in
unit time. For examples, it can be the operations +, —, x, = and the relations < and =: the ordered field
R with its natural operations. It is then possible to discuss the class Pg, and the class NP r where non-
determinism is allowed, and this leads to the question whether PR=NPg. This question possibly differs
from the classical question P = NP. This concept of complexity permits for example to discuss natu-
rally the complexity of problems in computer algebra about polynomials. For example, telling whether a
degree 4 polynomial has a real root is a NPr-complete problem. While this model focuses on decision
problems, Valiant’s model focuses more on evaluation problems. It considers families of multivariate
polynomials, and the complexity of such families can be measured by the size of the arithmetic circuits
that compute them. This leads to the question VP = VNP.

e Numerical analysis and Computer algebra [6] has its own way of measuring the complexity of problems,
which still differs. It is sometimes possible to relate the approaches as in [2], relating numerical analysis
to questions about arithmetic circuits.

e Analog computing: An analogue computer is a type of computer that uses continuous quantities to
compute [26, 27]. This includes for example machines built using analogue electronics, using operational
amplifiers: they act on voltage and act according to some programmable Ordinary Differential Equation
(ODE). A famous model is the General Purpose Analog Computer model from Claude Shannon [24],
which has been proved to correspond to (vectorial) polynomial ordinary differential equations [15]. A
natural question is whether we can compute faster using such models [9].

Of course, these are sometimes rather old models. But recent developments have been obtained, and some
recently surprising relations have been obtained, and can possibly be used in the context of this proposal.

Deep learning and computation theory:

A second deep reason is that many of the natural questions involved in deep learning applications are not
decision problems or approximation or counting problems and that classical complexity has been developed
mainly focusing only on these aspects. Classical complexity does not seem directly relevant to discuss the
complexity of involved problems. In addition, to previous issues, in particular, many of the problems considered
are not well captured by decision problems, but rather (local) optimisation problems, and the way the complexity
is measured seems often non-relevant to discuss the efficiency of considered methods and algorithms.

We can of course mention many recent results. For example, the question of the learning of deciding whether
we can learn a neural network is ETR-complete [1]. The class ETR, sometimes denoted, IR, is between NP
and PSPACE . It corresponds to the class NP of BSS model mentioned above but without irrational constants.
We are here in the context of decision problems. Some complexity classes have been introduced to discuss
search problems, not covered by decision problems. This includes classes such as PPAD, PLS or CLS. Using
this approach, the complexity of performing gradient descent has been characterized recently [13] by proving
that this corresponds to complexity class CLS = PPAD N PLS.

However, all of this is obtained at the price of assuming very specific activation function, such as the
ReLU(z) = max(0, z) function, or piecewise algebraic/polynomial functions, in order to fall in the framework
of existing complexity theory. The questions about what happens for the actual activation functions that are
used in practice (see e.g. https://en.wikipedia.org/wiki/Activation_function), for example based on tanh is not
covered. We believe that, using our expertise on models over the continuum, this is possible to extend some
of these results, and furthermore to develop a robust and more suitable complexity theory.

Very deep learning vs deep learning:

We can also mention very deep learning models, by opposition to deep learning models: It is well known
that when the number of layers increases (so-called very deep models, with sometimes more that 100 or 1000
layers), the models become very hard to train. Among a plethora of options that have been considered, Residual
Neural Networks (ResNets) [16] have very clearly emerged as an important subclass of models. They mitigate
the gradient issues [3] arising when training the deep neural networks. The idea in these particular models is to
add skip connections between the successive layers, an idea partially bio-inspired. Since residual neural network
was used and won the ImageNet 2015 competition, this particular architecture became the most cited neural
network of the 21st century according to some studies (see references in wikipedia). Up to this date, winners
of this competition are variations of such models.

Some authors, such as [29], proved that there is a mathematical explanation for their performance in
practice, as the discrete-time process used in these models can be proved to be the Euler discretization of



some continuous time Ordinary Differential Equation (ODE). The observed obtained robustness and training
properties, come then from the well-known robustness of ODEs with respect to perturbation and with respect
to perturbation of their initial conditions.

It was later realized and proved mathematically that various efficient models are actually nothing but
reformulations of discretization schemes for ODEs. For example, following [21], the architecture of PolyNet
[31] can be viewed as an approximation to the backward Euler scheme solving the ODE u; = f(u). Fractalnet
[20] can be read as a well-known Runge-Kutta scheme in numerical analysis. RevNet [14] can be interpreted
as a simple forward Euler approximation of some simple continuous dynamical system. All these models are
very deep models, but this remains true for simpler models. For example, following [18], it transpires that the
key features of well-known GRU [12] or an LSTM [17], over generic recurrent networks, are updates rules that
look suspiciously like discretized differential equations.

This leaded to consider some models such as neural ODE [11], which can be seen as continuous versions
of ResNet. While Neural ODEs do not necessarily improve upon the sheer predictive performance of ResNets,
they offer the vast knowledge of ODE theory to be applied to deep learning research. For instance, the authors
in [30] discovered that Neural ODEs are more robust for specific perturbations than convolutional neural
networks. Moreover, inspired by the theoretical properties of the solution curves, they proposed a regularizer
that improved the robustness of Neural ODE models even further. We do not intend to be exhaustive on the
various applications of this new point of view on deep learning models.

Description of the work

We are experts of computability and complexity issues related to models of computation over the reals, covering
discrete time or continuous time-models.

According to the taste of the candidate, we will either focus on models from deep learning, or very deep
learning. For the first, we believe this is possible to adapt some of the constructions about the continumum to
the framework of neural networks. For example, while it is well known that neural networks can approximate
any function over a compact domain, we believe t is possible to actually discuss the complexity of the question
from a computable analysis point of view, and get a way to analyse the complexity of the process or of functions.
As an other example, we believe that several of the above mentioned results can be extended to deal with other
functions than Relu or piecewise polynomial functions, using some constructions from computable analysis.

For the latter (very deep learning models), continuous time models includes models based on ordinary
differential equations. In particular, we know how to program with ordinary differential equations, and how to
measure complexity for such models: see e.g. [9, 8, 22] for surveys. We used this knowledge in various contexts
to solve some open problems in bioinformatics, applied mathematics, and other contexts. We propose here to
develop this approach to the above models of very deep learning.

At the end, the purpose of the internship is to discuss complexity and computability issues for models of
deep learning and very deep learning. While most of the approaches in the context of deep learning try to learn
models, without clear understanding of what is feasible and what is not, the fact that we can actually build
on purpose particular ordinary differential solving a given problem do provide some lower and upper bounds on
the hardness of the learning process.

The objective will be to develop such results, and provide the basis for a theory for models of (very )deep
learning.

Notice that this is the fact that these very deep models are very close to models based on ordinary differential
equations that make this analysis feasible, while complexity theory is not well adapted to discuss classical models
from (not very deep) deep learning.

Comments

The actual topic of the work is related to computability and complexity theory. The very deep learning part
requires only common and basic knowledge in ordinary differential equations. Most of the intuitions of today's
constructions come from classical computability and complexity.

There is no specific prerequisite for this internship, except some knowledge about computability theory.
This subject can be extended to a PhD. Possibilities of funding according to the administrative situation of
candidates.

The subject can also be adapted according to the requests, knowledge, and skills of candidates. Please
contact me if interested or in case of questions.
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