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1.1 Description of the problem

A set F = {A1, . . . , Am} of n × n matrices is said to be mortal if there exist
integers k ≥ 1 and i1, i2, . . . , ik ∈ {1, . . . , m} such that Ai1Ai2 · · ·Aik

= 0. In
that case F is also said to be k-length mortal.

We use Mortality(n) to denote the class of decision problems “Is a given
set F consisting of n×n matrices mortal?”and Mortality(n, m) to denote “Is
a given set F of m n × n matrices mortal?”. We also use Pair-Mortality(n)
as a synonym for Mortality(n, 2). Unless otherwise noted, all matrices are
assumed to have integer-valued entries. But Mortality(n, m; IR), for example,
denotes the third problem class for matrices with real-valued entries.

Evidently, Mortality(1) and Mortality(n, 1) are efficiently decidable.
However, the general complexity of Mortality(2) and
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Pair-Mortality(n), n < 27, remains unknown—despite a lot of interest (see
[5, 6], which contain some related results, and the references therein).

1.2 Motivation

Such problems arise as follows:

1. Controllability of switched linear systems. Given a system of the form
x(t + 1) = A(t, u)x(t), where for all t the set of possible values of A(t, u)
is a finite set F , the questions above correspond to the controllability (to
the origin) of such a system. Cf. [2].

2. Mortality(2) is also equivalent to the following problem [8]: Find an
algorithm which, given a finite set H of non-singular linear transformations
of the complex plane, and lines L and M through the origin, determines
whether some product from H maps L onto M .

1.3 Available results

1. Mortality(3) is recursively unsolvable [7]: the proof relies on a reduc-
tion of this problem to the Post Correspondence Problem (PCP). It is
constructive, using 2p + 2 matrices if PCP is undecidable with p “rules.”
By considering Modified PCP it is possible to prove undecidability using
only p + 2 matrices [3]. Current bounds on p lie in {3, . . . , 7} (see [1, p.
12] for references and a discussion).

2. Mortality and pair-mortality can be related: if Mortality(n, m) is un-
decidable, then Pair-Mortality(nm) is undecidable [1, 4].

3. Pair-Mortality(2) is decidable [3, 4]. However, the proof uses elemen-
tary number theoretic arguments for matrices with complex eigenvalues
that do not generalize to matrices with real entries: Pair-Mortality(2; IR)
has been proved BSS-undecidable [3], yielding Mortality(n, m) BSS-
undecidable for all n ≥ 2, m ≥ 2. Nevertheless, Pair-Mortality(2; IR)
is BSS-decidable for matrices with real eigenvalues [3].

4. Pair-Mortality(n) is decidable and NP-complete when restricted to
matrices with non-negative entries [1]. The same argument can be used
to show that Mortality(n, m) restricted to non-negative matrices is de-
cidable. The problem of deciding whether a given pair of n × n matrices
is k-length mortal, with integer k encoded in unary, is NP-complete; it
remains so when the matrices are restricted to have entries in {0, 1} [1].
The conclusion of NP-completeness in [1] can be more easily obtained
using Paterson’s construction and reduction to Bounded PCP [3]. The
boolean entry case does then not follow, but NP-completeness of “Given
a set F of 3 × 3 matrices and positive integer K ≤ |F |, is F k-mortal for
some k ≤ K?” does.
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