
Feder and Vardi’s Non-Dichotomy Theorem
Revisited

Alexey Barsukov

Toulouse, 31.03.2023

1/50

Table of Contents

1 Background

2 Feder and Vardi’s Theorem

3 Construction

4 Backwards Direction

2/50

Background

Background 3/50

Monotone Monadic SNP without Inequality

Definition

The MMSNP logic consists of ESO sentences of the form

∃X1, . . . ,Xs ∀x1, . . . , xn
m∧
i=1

¬
(
αi ∧ βi ∧ εi

)
, where

every αi is a conjunction of input atomic formulas,

every βi is a conjunction of existential atomic formulas,

every εi is a conjunction of inequalities (xi ̸= xj),

all atomic formulas of αi must be non negated (monotone),

all existential relations X1, . . . ,Xs have arity 1 (monadic),

every εi is empty (without inequality).

Background 4/50

CSP is a Subclass of MMSNP

K3G h

Example

The decision problem of mapping a digraph to K3 is described by
the following MMSNP sentence:

∃R,G,B ∀x, y
¬
(
¬R(x) ∧ ¬G(x) ∧ ¬B(x)

)
∧

¬
(
R(x) ∧ G(x)

)
∧ ¬

(
G(x) ∧ B(x)

)
∧ ¬

(
B(x) ∧ R(x)

)
∧

¬
(
E(x, y) ∧ R(x) ∧ R(y)

)
∧

¬
(
E(x, y) ∧ G(x) ∧ G(y)

)
∧ ¬

(
E(x, y) ∧ B(x) ∧ B(y)

)
Background 5/50

Fagin’s Theorem

NP

ESOSNP

Monadic SNP

MMSNP̸=

Monotone SNP

MMSNPCSP

Theorem ([Fagin, 1974])

Any ESO sentence describes a problem in NP, and any NP problem
can be described by an ESO sentence.

Background 6/50

MMSNP and CSP

NP

ESOSNP

Monadic SNP

MMSNP̸=

Monotone SNP

MMSNPCSP

Theorem ([Feder, Vardi, 1998])

For any MMSNP problem there is an equivalent finite CSP
problem up to polynomial time equivalences.

Background 7/50

Superclasses of MMSNP

NP

ESOSNP

Monadic SNP

MMSNP̸=

Monotone SNP

MMSNPCSP

Theorem ([Feder, Vardi, 1998])

For any NP problem there are sentences in each of the three
superclasses of MMSNP that describe Ptime equivalent problems.

Background 8/50

NP has no (P vs NP-complete) Dichotomy

NP

ESOSNP

Monadic SNP

MMSNP̸=

Monotone SNP

MMSNPCSP

Theorem ([Ladner, 1975])

If P ̸=NP, then NP contains a problem which is neither solvable in
polynomial time nor NP-complete.

Background 9/50

CSP has a (P vs NP-complete) Dichotomy

NP

ESOSNP

Monadic SNP

MMSNP̸=

Monotone SNP

MMSNPCSP

Theorem ([Zhuk, 2020])

Any finite CSP problem is either solvable in polynomial time or
NP-complete.

Background 10/50

Feder and Vardi’s Theorem

Feder and Vardi’s Theorem 11/50

MMSNP with Inequality

NP

ESOSNP

Monadic SNP

MMSNP̸=

Monotone SNP

MMSNPCSP

Theorem ([Feder, Vardi, 1998])

For any NP problem there is a sentence in MMSNP with inequality
that describes a polynomial time equivalent problem.

Feder and Vardi’s Theorem 12/50

Oblivious Turing Machines

Definition

A (non deterministic) Turing machine M is oblivious if the head
movement depends only on the input size, i.e., if for any two input
strings s1, s2 of the same length,

the execution times for s1, s2 are the same and

at any moment t of the execution for s1, the head of M is at
the same position as at the moment t of the execution for s2.

Theorem ([Pippenger, Fischer, 1979])

Any non deterministic Turing machine can be simulated by an
oblivious Turing machine.

Feder and Vardi’s Theorem 13/50

Proof Sketch

Proof.

Any oblivious Turing machine is simulated by an MMSNP ̸=
sentence such that

the movement of the head is given as part of the input,

only the states of the machine and cell values used during the
computation are quantified existentially,

it rejects an instance if it does not describe an input followed
by the correct movement of the head,

it accepts the instance if the number of cells allowed for the
computation is smaller than the execution time,

otherwise it accepts precisely when the machine accepts.

Feder and Vardi’s Theorem 14/50

Holes in the Proof

The precise composition (relations, construction) of the input
is not provided.

It is unclear how do they manage to reject an instance when
the head movement is not correct.

To sum up, Feder and Vardi showed that any NP problem can
be reduced in polynomial time to a problem in MMSNP̸= but
the backwards direction is unclear.

Feder and Vardi’s Theorem 15/50

Construction

Construction 16/50

Input Relations

▷ aH b d

...
...

...
...

· · ·

· · ·

An input string is reduced to a two dimensional grid, where the ith
line represents the string at the time i. The input relations are

■ – the constant highlighting the first element of the first line,

for any s ∈ Σ there are two input relations s(·), sH(·), the
H-superscript keeps the head position of the original machine,

Construction 17/50

Input Relations

▷ aH b d

...
...

...
...

· · ·

· · ·

An input string is reduced to a two dimensional grid, where the ith
line represents the string at the time i. The input relations are

E→, E↓ – the grid arcs representing space and time,

there is a ternary relation row(x, y, z), it means that y is
somewhere in the row that starts at x and ends at z,

Construction 18/50

Existential Relations

⇒ ⇒
Init Init InitInit

The Init elements represent the first row of the grid. The Head is
positioned right next to ■.

¬
(
■(x) ∧ E→(x, y) ∧ E↓(x, z) ∧ row(x, y, z) ∧ ¬Init(y)

)
(
■(x) ∧ E→(x, y) ∧ E↓(x, z) ∧ row(x, y, z)

)
⇒ Head(y)

Construction 19/50

Existential Relations

Mrk is set by Init:
(
Init(x)∧ s(x)

)
⇒ Mrk(x), and spreads like that:

Mrk MrkMrk Mrk Mrk

Mrk MrkMrk Mrk Mrk

⇓ ⇓ ⇓ ⇓

Mrk Mrk Mrk Mrk Mrk

Mrk

MrkMrk

Mrk

MiddleLeft End Right, No Head Right, Head

Mrk

Mrk

Mrk Mrk

MrkMrk

Construction 20/50

Existential Relations

Head

The Head is obliged to move further only if it is at a Mrk element.
It starts at the top-left corner and moves bottom-right until no
longer possible, then starts moving bottom-left, etc.

Symbols of the Alphabet

For every input s(·) there is s(·), it is launched by Init:(
s(x) ∧ Init(x)

)
⇒ s(x), and spreads down unless Head rewrites it.

Machine States

For every state q there is q(·). All points of the same row must
have the same state:

(
row(x, y, z) ∧ row(x, y′, z) ∧ q(y)

)
⇒ q(y′).

The Head cannot be in a rejecting state: ¬
(
Head(x) ∧ qreject(x)

)
.

Construction 21/50

Example of a Construction

▷ a b c d

▷ e b c d

▷ e f c d

Let M be a Turing machine that does these two transitions.

Construction 22/50

Example of a Construction

▷ aH b c d

Construction 23/50

Example of a Construction

▷ aH b c d
Init

Construction 24/50

Example of a Construction

▷ aH b c d
Init Init

Construction 25/50

Example of a Construction

▷ aH b c d
Init Init Init

Construction 26/50

Example of a Construction

▷ aH b c d
Init Init Init Init

Construction 27/50

Example of a Construction

▷ aH b c d

Construction 28/50

Example of a Construction

▷ aH b c d

▷ aH b c d

Construction 29/50

Example of a Construction

▷ aH b c d

▷ aH b c d

▷ aH b c d

Construction 30/50

Example of a Construction

▷ aH b c d

▷ aH b c d

▷ aH b c d

▷ aH b c d

Construction 31/50

Example of a Construction

▷ aH b c d

▷ aH b c d

▷ aH b c d

▷ aH b c d

▷ aH b c d ⊔

Construction 32/50

Example of a Construction

▷ aH b c d

▷ aH b c d

▷ aH b c d

▷ aH b c d

▷ aH b c d ⊔

▷ aH b c d ⊔

Construction 33/50

Example of a Construction

▷ aH b c d

▷ aH b c d

▷ aH b c d

▷ aH b c d

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ aH b c d ⊔

Construction 34/50

Example of a Construction

▷ aH b c d

▷ aH b c d

▷ aH b c d

▷ aH b c d

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ e b c d ⊔

Construction 35/50

Example of a Construction

▷ aH b c d

▷ aH b c d

▷ aH b c d

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ e b c d ⊔

▷ bH c d ⊔e

Construction 36/50

Example of a Construction

▷ aH b c d

▷ aH b c d

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ e b c d ⊔

▷ bH c d ⊔e

▷ bH c d ⊔e

Construction 37/50

Example of a Construction

▷ aH b c d

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ e b c d ⊔

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e

Construction 38/50

Example of a Construction

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ e b c d ⊔

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e ⊔

Construction 39/50

Example of a Construction

▷ aH b c d ⊔

▷ aH b c d ⊔

▷ e b c d ⊔

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e ⊔

▷ bH c d ⊔e ⊔

Construction 40/50

Example of a Construction

▷ aH b c d ⊔

▷ e b c d ⊔

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e ⊔

▷ bH c d ⊔e ⊔

▷ bH c d ⊔e ⊔

Construction 41/50

Example of a Construction

▷ e b c d ⊔

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e ⊔

▷ bH c d ⊔e ⊔

▷ bH c d ⊔e ⊔

▷ f c d ⊔e ⊔

Construction 42/50

Example of a Construction

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e

▷ bH c d ⊔e ⊔

▷ bH c d ⊔e ⊔

▷ bH c d ⊔e ⊔

▷ f c d ⊔e ⊔

▷ f c d ⊔eH ⊔

Construction 43/50

Forward Direction Proof

If an oblivious Turing machine runs in time f(n) for any input
string of length n, then we reduce it to the grid with f(n)
rows, where the length of each row corresponds to the number
of round trips of the head: first n rows have length n+ 1,
next 2n− 1 rows have length n+ 2, etc.

The input symbol relations correspond to the symbols written
on the string. Every element of the first row is Init, and every
element of the structure is Mrk.

If, at the end, Head is in a rejecting state, then the sentence
is not satisfied. Otherwise, the sentence is satisfied.

Construction 44/50

Backwards Direction

Backwards Direction 45/50

Ugly Input Types

Over-Complete Input

The input contains loops or more relations than needed: the E→-
or E↓-degrees are greater than 1, or many different ■ elements, or
a cell with 2 different symbols s(x), s′(x).

Incomplete Input

The input size does not permit to simulate the machine run: the
rows are too short or there are too few of them.

Complete Input

The input contains sufficiently many rows of the right size so that
the machine run can be simulated.

Backwards Direction 46/50

Over-Complete Input is Rejected

¬((x) ∧ (x′) ∧ x ̸= x′)

¬(E→(x, y) ∧ E→(x, y′) ∧ y ̸= y′)

¬(row(x, y, z) ∧ row(x′, y, z′) ∧ x ̸= x′)

¬(E↓(x, y) ∧ E↓(x, y
′) ∧ y ̸= y′)

x
y

z

x′ z′

x

x′

y

y
y′

y′

v wy
x

z
¬(row(x, y, z) ∧ row(y, v,w))

a b ¬(sa(x) ∧ sb(x))

Backwards Direction 47/50

Incomplete Input

Lemma

One can find in Ptime choices for the relations Init, Mrk, and Head
such that if the input instance is accepted, then it is accepted with
this choice of relations.

Claim

Each of the sets of possible choices of Init, Mrk, Head contains a
unique choice minimal by inclusion. These minimal choices satisfy
the lemma above.

Dealing with Incomplete Input

Knowing which elements are Init and Mrk, and knowing the
positions of the Head, we understand whether the execution can be
finished. If it cannot be finished, then the Head never falls into a
rejecting state, so every incomplete input is accepted.

Backwards Direction 48/50

Complete Input

If the input can simulate the execution, then we reduce it to the
string of symbols of Init elements (the first row of the grid).

Mrk

Init

Backwards Direction 49/50

References

▶ Ronald Fagin
Generalized first-order spectra, and polynomial-time recognizable sets
SIAM-AMS Proc., 1974

▶ Tomás Feder and Moshe Y. Vardi
The Computational Structure of Monotone Monadic SNP and Constraint
Satisfaction: A Study through Datalog and Group Theory
SIAM J. Comput., 1998, 10.1137/S0097539794266766

▶ Richard E. Ladner
On the Structure of Polynomial Time Reducibility
J. ACM, 1975, 10.1145/321864.321877

▶ Dmitriy Zhuk
A Proof of the CSP Dichotomy Conjecture
J. ACM, 2020, 10.1145/3402029

▶ Nicholas Pippenger and Michael J. Fischer
Relations Among Complexity Measures
J. ACM, 1979, 10.1145/322123.322138

Backwards Direction 50/50

	Background
	Feder and Vardi's Theorem
	Construction
	Backwards Direction

