Medvedev degrees of effective subshifts on groups

Nicanor Carrasco-Vargas

njcarrasco@mat.uc.cl

nicanorcarrascovargas.github.io

Phd student under the supervision of Cristóbal Rojas and Sebastián Barbieri, Pontificia Universidad Católica de Chile, joint work

March 31, 2023

A = A = A = A = A < A
</p>

< E ▶ < E ▶ E = のQ (~

Source: 3dgifanimation.blogspot.com

□ > < E > < E > E = のへで

Source: 3dgifanimation.blogspot.com

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\lor,\land)$
- Sends \sqcup and \times to \land and $\lor.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\lor,\land)$
- Sends \sqcup and \times to \land and $\lor.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\lor,\land)$
- Sends \sqcup and \times to \land and $\lor.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M}, \leq_{\mathfrak{M}}, \lor, \land)$
- Sends \sqcup and \times to \land and $\lor.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- Sends \sqcup and imes to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\lor,\land)$
- Sends \sqcup and \times to \land and $\lor.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\lor,\land)$
- Sends \sqcup and \times to \land and $\lor.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},ee,\wedge)$
- Sends \sqcup and \times to \land and $\lor.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\lor,\land)$
- \bullet Sends \sqcup and \times to \wedge and $\lor.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\lor,\land)$
- \bullet Sends \sqcup and \times to \wedge and $\lor.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\lor,\land)$
- \bullet Sends \sqcup and \times to \wedge and $\vee.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

Medvedev degrees (*G* f.g.)

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\vee,\wedge)$

$\bullet~$ Sends $\sqcup~$ and $~\times~$ to $~\wedge~$ and $~\vee.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\vee,\wedge)$
- Sends \sqcup and \times to \wedge and $\vee.$

The evil sister of entropy on A^G

Entropy (Topological, G amenable)

- Measures uncertainty / information / more interpretations
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in $[0,\infty)$
- \bullet Sends \sqcup and \times to max and sum

- Measures the difficulty of a problem
- Nonincreasing by factors
- Conjugacy invariant
- Takes values in a lattice $(\mathfrak{M},\leq_{\mathfrak{M}},\vee,\wedge)$
- Sends \sqcup and \times to \wedge and $\vee.$

We want to classify

Question

What are the possible entropies of this class of subshifts?

Question

What are the possible Medvedev degrees of this class of subshifts?

What is known for SFT's in \mathbb{Z}^d

- On \mathbb{Z}^2 , there are nonempty SFT's with no computable points (Myers 1974; Hanf 1974).
- (a) A set has computable points if and only if it has Medvedev degree 0.
- On Z², there are nonempty SFT's with >_m 0 (Myers 1974; Hanf 1974).
- On Z^d, d ≥ 2 there are nonemtpy SFT's of all Π⁰₁ degrees (Simpson 2014)

A = A = A = A = A = A

^⑤ On \mathbb{Z} , all SFT's are $\equiv_{\mathfrak{M}}$ 0 (Folklore)

What is known for SFT's in \mathbb{Z}^d

- On Z², there are nonempty SFT's with no computable points (Myers 1974; Hanf 1974).
- ② A set has computable points if and only if it has Medvedev degree 0.
- On Z², there are nonempty SFT's with >_M 0 (Myers 1974; Hanf 1974).
- On Z^d, d ≥ 2 there are nonemtpy SFT's of all Π⁰₁ degrees (Simpson 2014)

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

^⑤ On \mathbb{Z} , all SFT's are $\equiv_{\mathfrak{M}}$ 0 (Folklore)

What is known for SFT's in \mathbb{Z}^d

- On Z², there are nonempty SFT's with no computable points (Myers 1974; Hanf 1974).
- **②** A set has computable points if and only if it has Medvedev degree 0.
- On Z², there are nonempty SFT's with >_M 0 (Myers 1974; Hanf 1974).
- On Z^d, d ≥ 2 there are nonemtpy SFT's of all Π⁰₁ degrees (Simpson 2014)

● On \mathbb{Z} , all SFT's are $\equiv_{\mathfrak{M}} 0$ (Folklore)

What is known for SFT's in \mathbb{Z}^d

- On Z², there are nonempty SFT's with no computable points (Myers 1974; Hanf 1974).
- **②** A set has computable points if and only if it has Medvedev degree 0.
- On Z², there are nonempty SFT's with >_m 0 (Myers 1974; Hanf 1974).
- On Z^d, d ≥ 2 there are nonemtpy SFT's of all Π⁰₁ degrees (Simpson 2014)

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

● On \mathbb{Z} , all SFT's are $\equiv_{\mathfrak{M}} 0$ (Folklore)

What is known for SFT's in \mathbb{Z}^d

- On \mathbb{Z}^2 , there are nonempty SFT's with no computable points (Myers 1974; Hanf 1974).
- **②** A set has computable points if and only if it has Medvedev degree 0.
- On Z², there are nonempty SFT's with >_M 0 (Myers 1974; Hanf 1974).
- On Z^d, d ≥ 2 there are nonemtpy SFT's of all Π₁⁰ degrees (Simpson 2014)

໑ On \mathbb{Z} , all SFT's are $\equiv_{\mathfrak{M}} 0$ (Folklore)

What is known for SFT's in \mathbb{Z}^d

- On Z², there are nonempty SFT's with no computable points (Myers 1974; Hanf 1974).
- **②** A set has computable points if and only if it has Medvedev degree 0.
- On Z², there are nonempty SFT's with >_m 0 (Myers 1974; Hanf 1974).
- On Z^d, d ≥ 2 there are nonemtpy SFT's of all Π₁⁰ degrees (Simpson 2014)

• On \mathbb{Z} , all SFT's are $\equiv_{\mathfrak{M}} 0$ (Folklore)

Effective subshifts

Remark

On \mathbb{Z}^d , effective subshifts = subshifts + effectively closed sets.

Theorem (Miller 2012)

On \mathbb{Z} , there are effective subshifts of all Π_1^0 degrees.

Main theorem (N.C. 2023)

The same holds on a finitely generated infinite group with decidable word problem.

<□> < => < => < => < =| = <0 < 0

Effective subshifts

Remark

On \mathbb{Z}^d , effective subshifts = subshifts + effectively closed sets.

Theorem (Miller 2012)

On \mathbb{Z} , there are effective subshifts of all Π_1^0 degrees.

Main theorem (N.C. 2023)

The same holds on a finitely generated infinite group with decidable word problem.

<□> < => < => < => < =| = <0 < 0

Effective subshifts

Remark

On \mathbb{Z}^d , effective subshifts = subshifts + effectively closed sets.

Theorem (Miller 2012)

On \mathbb{Z} , there are effective subshifts of all Π_1^0 degrees.

Main theorem (N.C. 2023)

The same holds on a finitely generated infinite group with decidable word problem.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

Medvedev degrees

Medvedev degrees

Nicanor Carrasco-Vargas njcarrasco@mat.uc.cl nicanorcarrascovargas.github.i Medvedev degrees of effective subshifts on groups

Countable setting

- Let $E, F \subset \mathbb{N}$
- $E \leq_T F$
- *E* ≤_{*m*} *F*
- *E* ≤_? *F*
- $X \leq_{\mathfrak{M}} Y$ we compare subsets of the Cantor space $A^{\mathbb{N}}$ (A finite).

Countable setting

- Let $E, F \subset \mathbb{N}$
- *E* ≤_T *F*
- $E \leq_m F$
- *E* ≤_? *F*

• $X \leq_{\mathfrak{M}} Y$ we compare subsets of the Cantor space $A^{\mathbb{N}}$ (A finite).

Countable setting

- Let $E, F \subset \mathbb{N}$
- *E* ≤_T *F*
- *E* ≤_{*m*} *F*
- *E* ≤_? *F*

• $X \leq_{\mathfrak{M}} Y$ we compare subsets of the Cantor space $A^{\mathbb{N}}$ (A finite).

Countable setting

- Let $E, F \subset \mathbb{N}$
- *E* ≤_T *F*
- *E* ≤_{*m*} *F*
- *E* ≤_? *F*

• $X \leq_{\mathfrak{M}} Y$ we compare subsets of the Cantor space $A^{\mathbb{N}}$ (A finite).

Countable setting

- Let $E, F \subset \mathbb{N}$
- *E* ≤_T *F*
- *E* ≤_{*m*} *F*
- *E* ≤_? *F*
- $X \leq_{\mathfrak{M}} Y$ we compare subsets of the Cantor space $A^{\mathbb{N}}$ (A finite).

★ E ▶ ★ E ▶ E = 9 Q Q

The definition of $(\mathfrak{M}, \leq_{\mathfrak{M}})$

Definition

Let P, Q be subsets of $A^{\mathbb{N}}$. We write

 $P\leq_{\mathfrak{M}} Q$

if there is a computable function Φ such that $\Phi(Q) \subset P$.

We define $\equiv_{\mathfrak{M}}$ by $\leq_{\mathfrak{M}}$ and $\geq_{\mathfrak{M}}$. Medvedev degrees = equivalence classes under $\equiv_{\mathfrak{M}}$.

Remark

The definition of $(\mathfrak{M}, \leq_{\mathfrak{M}})$

Definition

Let P, Q be subsets of $A^{\mathbb{N}}$. We write

 $P \leq_{\mathfrak{M}} Q$

if there is a computable function Φ such that $\Phi(Q) \subset P$. We define $\equiv_{\mathfrak{M}}$ by $\leq_{\mathfrak{M}}$ and $\geq_{\mathfrak{M}}$. Medvedev degrees = equivalence classes under $\equiv_{\mathfrak{M}}$.

Remark

The definition of $(\mathfrak{M}, \leq_{\mathfrak{M}})$

Definition

Let P, Q be subsets of $A^{\mathbb{N}}$. We write

 $P \leq_{\mathfrak{M}} Q$

A = A = A = E =
 O Q O

if there is a computable function Φ such that $\Phi(Q) \subset P$. We define $\equiv_{\mathfrak{M}}$ by $\leq_{\mathfrak{M}}$ and $\geq_{\mathfrak{M}}$. Medvedev degrees = equivalence classes under $\equiv_{\mathfrak{M}}$.

Remark

The definition of $(\mathfrak{M}, \leq_{\mathfrak{M}})$

Definition

Let P, Q be subsets of $A^{\mathbb{N}}$. We write

 $P \leq_{\mathfrak{M}} Q$

A = A = A = A = A < A
</p>

if there is a computable function Φ such that $\Phi(Q) \subset P$. We define $\equiv_{\mathfrak{M}}$ by $\leq_{\mathfrak{M}}$ and $\geq_{\mathfrak{M}}$. Medvedev degrees = equivalence classes under $\equiv_{\mathfrak{M}}$.

Remark
Graph theory: infinite paths, matchings, colorings,

- Invariant measures associated to dynamical systems
- Solutions to some equation
- Subshifts!

Remark

These sets are effectively closed

Definition

 Π^0_1 Medvedev degrees = degrees of nonempty effectively closed sets.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

- Graph theory: infinite paths, matchings, colorings,
- Invariant measures associated to dynamical systems
- Solutions to some equation
- Subshifts!

Remark

These sets are effectively closed

Definition

 ${\sf \Pi}^0_1$ Medvedev degrees = degrees of nonempty effectively closed sets.

- Graph theory: infinite paths, matchings, colorings,
- Invariant measures associated to dynamical systems
- Solutions to some equation
- Subshifts!

Remark

These sets are effectively closed

Definition

 $\mathsf{\Pi}^0_1$ Medvedev degrees = degrees of nonempty effectively closed sets.

- Graph theory: infinite paths, matchings, colorings,
- Invariant measures associated to dynamical systems
- Solutions to some equation
- Subshifts!

Remark

These sets are effectively closed

Definition

 Π^0_1 Medvedev degrees = degrees of nonempty effectively closed sets.

- Graph theory: infinite paths, matchings, colorings,
- Invariant measures associated to dynamical systems
- Solutions to some equation
- Subshifts!

Remark

These sets are effectively closed

Definition

 $\mathsf{\Pi}^0_1$ Medvedev degrees = degrees of nonempty effectively closed sets.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

- Graph theory: infinite paths, matchings, colorings,
- Invariant measures associated to dynamical systems
- Solutions to some equation
- Subshifts!

Remark

These sets are effectively closed

Definition

 Π^0_1 Medvedev degrees = degrees of nonempty effectively closed sets.

For the relation $\leq_{\mathfrak{M}}$:

• The empty set is maximal

• If P has a computable element, it is minimal for $\leq_{\mathfrak{M}}$. We write

 $P \equiv_{\mathfrak{M}} 0.$

▶ ★ E ▶ ★ E ▶ E = • • • •

- $(\mathfrak{M}, \leq_{\mathfrak{M}})$ is a lattice!
- $X \lor Y = X \times Y$
- $X \wedge Y = X \sqcup Y$
- Π_1^0 degrees are a countable sublattice

For the relation $\leq_{\mathfrak{M}}$:

- The empty set is maximal
- If P has a computable element, it is minimal for $\leq_{\mathfrak{M}}$. We write

$$P \equiv_{\mathfrak{M}} 0.$$

•
$$(\mathfrak{M}, \leq_{\mathfrak{M}})$$
 is a lattice!

•
$$X \lor Y = X \times Y$$

•
$$X \wedge Y = X \sqcup Y$$

• Π_1^0 degrees are a countable sublattice

For the relation $\leq_{\mathfrak{M}}$:

- The empty set is maximal
- If P has a computable element, it is minimal for $\leq_{\mathfrak{M}}$. We write

$$P \equiv_{\mathfrak{M}} 0.$$

▶ ★ E ▶ ★ E ▶ E = • • • •

- $(\mathfrak{M}, \leq_{\mathfrak{M}})$ is a lattice!
- $X \lor Y = X \times Y$
- $X \wedge Y = X \sqcup Y$
- Π_1^0 degrees are a countable sublattice

For the relation $\leq_{\mathfrak{M}}$:

- The empty set is maximal
- If P has a computable element, it is minimal for $\leq_{\mathfrak{M}}$. We write

$$P \equiv_{\mathfrak{M}} 0.$$

▶ ★ E ▶ ★ E ▶ E = • • • •

- $(\mathfrak{M}, \leq_{\mathfrak{M}})$ is a lattice!
- $X \vee Y = X \times Y$
- $X \wedge Y = X \sqcup Y$
- Π_1^0 degrees are a countable sublattice

For the relation $\leq_{\mathfrak{M}}$:

- The empty set is maximal
- If P has a computable element, it is minimal for $\leq_{\mathfrak{M}}$. We write

$$P \equiv_{\mathfrak{M}} 0.$$

- $(\mathfrak{M}, \leq_{\mathfrak{M}})$ is a lattice!
- $X \lor Y = X \times Y$
- $X \wedge Y = X \sqcup Y$
- Π_1^0 degrees are a countable sublattice

For the relation $\leq_{\mathfrak{M}}$:

- The empty set is maximal
- If P has a computable element, it is minimal for $\leq_{\mathfrak{M}}$. We write

$$P \equiv_{\mathfrak{M}} 0.$$

A = A = A = A = A = A

- $(\mathfrak{M}, \leq_{\mathfrak{M}})$ is a lattice!
- $X \vee Y = X \times Y$
- $X \wedge Y = X \sqcup Y$
- Π_1^0 degrees are a countable sublattice

The lattice of Π_1^0 degrees

 Π^0_1 degrees form a sublattice of $(\mathfrak{M},\leq_\mathfrak{M})$

< E ▶ < E ▶ E H つへ()

Problem

Define Medvedev degrees on A^{G} .

If G is f.g. infinite with decidable word problem, it admits a computable bijection $\nu : \mathbb{N} \to G$. We obtain a homeomorphism

$A^{\mathbb{N}} \to A^{G}.$

This transfers all computability notions from *A*^ℕ to *A^G*, in particular Medvedev degrees.

Remark

If G is as above, then effective subshift = subshift + effectively closed set. This coincides with notions already present.

□ > < E > < E > E = のへの

Problem

Define Medvedev degrees on A^G .

If G is f.g. infinite with decidable word problem, it admits a computable bijection $\nu:\mathbb{N}\to G.$

We obtain a homeomorphism

 $A^{\mathbb{N}} \to A^{G}.$

This transfers all computability notions from $A^{\mathbb{N}}$ to A^{G} , in particular Medvedev degrees.

Remark

If G is as above, then effective subshift = subshift + effectively closed set. This coincides with notions already present.

Problem

Define Medvedev degrees on A^G .

If G is f.g. infinite with decidable word problem, it admits a computable bijection $\nu:\mathbb{N}\to G.$ We obtain a homeomorphism

$A^{\mathbb{N}} \to A^{G}.$

This transfers all computability notions from $A^{\mathbb{N}}$ to A^{G} , in particular Medvedev degrees.

Remark

If G is as above, then effective subshift = subshift + effectively closed set. This coincides with notions already present.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

Problem

Define Medvedev degrees on A^G .

If G is f.g. infinite with decidable word problem, it admits a computable bijection $\nu:\mathbb{N}\to G.$ We obtain a homeomorphism

$$A^{\mathbb{N}} \to A^{G}.$$

This transfers all computability notions from $A^{\mathbb{N}}$ to A^{G} , in particular Medvedev degrees.

Remark

If G is as above, then effective subshift = subshift + effectively closed set. This coincides with notions already present.

▲□ ▶ ▲ ∃ ▶ ▲ ∃ ▶ 三 目目 つくべ

Problem

Define Medvedev degrees on A^G .

If G is f.g. infinite with decidable word problem, it admits a computable bijection $\nu:\mathbb{N}\to G.$ We obtain a homeomorphism

$$A^{\mathbb{N}} \to A^{G}.$$

This transfers all computability notions from $A^{\mathbb{N}}$ to A^{G} , in particular Medvedev degrees.

Remark

If G is as above, then effective subshift = subshift + effectively closed set. This coincides with notions already present.

▲□ ▶ ▲ ∃ ▶ ▲ ∃ ▶ 三 目目 つくべ

Proof sketch for Main Theorem:

Proof sketch for Main Theorem: Suppose first that *G* contains \mathbb{Z} , and try to deduce the classification from that for \mathbb{Z} .

↓ ⇒ ↓ ≤ ↓ ≤ | ≤ √Q ()

Special case: *G* contains \mathbb{Z} .

In this case, we can write G as union of copies of \mathbb{Z} . Given $X \subset A^{\mathbb{Z}}$, we can define $Y = \{x \in A^G \mid \forall g \in G, gx | z \in X\}$.

Special case: *G* contains \mathbb{Z} .

In this case, we can write G as union of copies of \mathbb{Z} . Given $X \subset A^{\mathbb{Z}}$, we can define $Y = \{x \in A^G \mid \forall g \in G, gx|_{\mathbb{Z}} \in X\}$.

Special case: *G* contains \mathbb{Z} .

In this case, we can write G as union of copies of \mathbb{Z} . Given $X \subset A^{\mathbb{Z}}$, we can define $Y = \{x \in A^G \mid \forall g \in G, gx|_{\mathbb{Z}} \in X\}$.

$Y \geq_{\mathfrak{M}} X$ is easy

The function $A^{G} \to A^{\mathbb{Z}}, y \mapsto y|_{\mathbb{Z}}$ is computable. This proves that $Y \ge_{\mathfrak{M}} X$.

$$Y \geq_{\mathfrak{M}} X$$
 is easy

▲御▶ ▲臣▶ ▲臣▶ 臣国 のへで

The function $A^{\mathcal{G}} \to A^{\mathbb{Z}}, y \mapsto y|_{\mathbb{Z}}$ is computable. This proves that $Y \ge_{\mathfrak{M}} X$.

$$X \geq_{\mathfrak{M}} Y$$
?

• To compute an Y configuration from an X configuration, we need $\mathbb{Z} \leq G$ to have decidable **subgroup membership problem**.

□ > < E > < E > E = のへで

• Under the extra hypothesis, we have $X \equiv_{\mathfrak{M}} Y$.

$$X \geq_{\mathfrak{M}} Y$$
?

• To compute an Y configuration from an X configuration, we need $\mathbb{Z} \leq G$ to have decidable **subgroup membership problem**.

• Under the extra hypothesis, we have $X \equiv_{\mathfrak{M}} Y$.

$$X \geq_{\mathfrak{M}} Y$$
?

• To compute an Y configuration from an X configuration, we need $\mathbb{Z} \leq G$ to have decidable **subgroup membership problem**.

↓ ⇒ ↓ ≤ ↓ ≤ | ≤ √Q ()

• Under the extra hypothesis, we have $X \equiv_{\mathfrak{M}} Y$.

Problem

Problem

Some groups do not contain \mathbb{Z} .

Solution

Reformulate things geometrically

Problem

Problem

Some groups do not contain \mathbb{Z} .

Solution

Reformulate things geometrically

An example on \mathbb{Z}^2

< E ▶ < E ▶ E H のQ (~

Nicanor Carrasco-Vargas njcarrasco@mat.uc.cl nicanorcarrascovargas.github.i Medvedev degrees of effective subshifts on groups

Translation-like actions

Definition

Let G be a f.g. group, and d be a word length metric on G. A group action $\mathbb{Z} \curvearrowright G$ is called translation-like if

- All orbits are infinite
- 2 There is $J \in \mathbb{N}$ such that $d(g, g * 1) \leq J$

An example on \mathbb{Z}^2

ミト ▲ ミト 三日日 つへぐ

Translation-like actions can be coded as subshifts!

Nicanor Carrasco-Vargas njcarrasco@mat.uc.cl nicanorcarrascovargas.github.i Medvedev degrees of effective subshifts on groups

An example on \mathbb{Z}^2

▶ ★ 분 ▶ 분 = 9 Q Q

Translation-like actions can be coded as subshifts!

Seward's result

Theorem (Seward 2014)

Every finitely generated group admits a translation-like action by \mathbb{Z} .

We need a computable version:

Main Lemma (N.C. 2023)

With the adittional hypothesis of decidable word problem, there is a computable translation-like action, and with decidable orbit membership problem.

This means that it is decidable whether a pair of groups elements are in the same orbit.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

Seward's result

Theorem (Seward 2014)

Every finitely generated group admits a translation-like action by \mathbb{Z} .

We need a computable version:

Main Lemma (N.C. 2023)

With the adittional hypothesis of decidable word problem, there is a computable translation-like action, and with decidable orbit membership problem.

This means that it is decidable whether a pair of groups elements are in the same orbit.

Seward's result

Theorem (Seward 2014)

Every finitely generated group admits a translation-like action by \mathbb{Z} .

We need a computable version:

Main Lemma (N.C. 2023)

With the adittional hypothesis of decidable word problem, there is a computable translation-like action, and with decidable orbit membership problem.

This means that it is decidable whether a pair of groups elements are in the same orbit.
Seward's result

Theorem (Seward 2014)

Every finitely generated group admits a translation-like action by \mathbb{Z} .

We need a computable version:

Main Lemma (N.C. 2023)

With the adittional hypothesis of decidable word problem, there is a computable translation-like action, and with decidable orbit membership problem.

This means that it is decidable whether a pair of groups elements are in the same orbit.

Proof of Main Theorem

Given $X \subset A^{\mathbb{Z}}$, we can construct $Y \subset (A \times B)^{G}$ which describes translation-like actions, and elements of *X*.

⇒ ★ ≡ ★ ≡ ⊨ √Q ∩

The proof of Main Theorem

□ > < E > < E > E = の < ○

The proof of Main Theorem

▶ ★ 差 ▶ ★ 差 ▶ 差 분 ● 9 Q @

The proof of Main Theorem

< E ▶ < E ▶ E = のQ (~

The proof of Main Theorem

< E ▶ < E ▶ E = のQ (~

This finishes the proof

$$X\equiv_{\mathfrak{M}} Y$$

From the classification for \mathbb{Z} we obtain:

Theorem

Let G be finitely generated, infinite, and with decidable word problem. There are effective subshifts of all Π_1^0 degrees.

∃ ► ▲ 분 ► 분 Ε ■ ○ Q Q

This finishes the proof

$$X \equiv_{\mathfrak{M}} Y$$

From the classification for $\ensuremath{\mathbb{Z}}$ we obtain:

Theorem

Let G be finitely generated, infinite, and with decidable word problem. There are effective subshifts of all Π_1^0 degrees.

() Best case possible: G admits a transitive translation-like actions by \mathbb{Z}

- Seward 2014: G admits a transitive translation-like action by Z if and only if G has one or two ends.
- Inds = geometric property of a graph (or Cayley graph)
- Ends = Maximum number of infinite connected components that we can obtain erasing a finite set of vertices

- In the second secon
- Bound on d(g, g * 1) depends linearly on the vertex degree of Cay(G, S).

- **(**) Best case possible: G admits a transitive translation-like actions by $\mathbb Z$
- **②** Seward 2014: *G* admits a transitive translation-like action by \mathbb{Z} if and only if *G* has one or two ends.
- Inds = geometric property of a graph (or Cayley graph)
- Ends = Maximum number of infinite connected components that we can obtain erasing a finite set of vertices

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

- In the second secon
- Bound on d(g, g * 1) depends linearly on the vertex degree of Cay(G, S).

- **(**) Best case possible: G admits a transitive translation-like actions by $\mathbb Z$
- **②** Seward 2014: *G* admits a transitive translation-like action by \mathbb{Z} if and only if *G* has one or two ends.
- Solution Ends = geometric property of a graph (or Cayley graph)
- Ends = Maximum number of infinite connected components that we can obtain erasing a finite set of vertices

- 💿 Non computable proof 🖂
- Bound on d(g, g * 1) depends linearly on the vertex degree of Cay(G, S).

- **(**) Best case possible: G admits a transitive translation-like actions by $\mathbb Z$
- Seward 2014: G admits a transitive translation-like action by Z if and only if G has one or two ends.
- Solution Ends = geometric property of a graph (or Cayley graph)
- Ends = Maximum number of infinite connected components that we can obtain erasing a finite set of vertices

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

- 🧿 Non computable proof ⊠
- Bound on d(g, g * 1) depends linearly on the vertex degree of Cay(G, S).

- $\textcircled{O} \text{ Best case possible: } G \text{ admits a transitive translation-like actions by } \mathbb{Z}$
- Seward 2014: G admits a transitive translation-like action by Z if and only if G has one or two ends.
- Solution Ends = geometric property of a graph (or Cayley graph)
- Ends = Maximum number of infinite connected components that we can obtain erasing a finite set of vertices

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

- In the second secon
- Bound on d(g, g * 1) depends linearly on the vertex degree of Cay(G, S).

- **(**) Best case possible: G admits a transitive translation-like actions by $\mathbb Z$
- Seward 2014: G admits a transitive translation-like action by Z if and only if G has one or two ends.
- Solution Ends = geometric property of a graph (or Cayley graph)
- Ends = Maximum number of infinite connected components that we can obtain erasing a finite set of vertices

- In the second secon
- Bound on d(g, g * 1) depends linearly on the vertex degree of Cay(G, S).

Ingredients to prove Main Lemma

(N.C. 2023): a different proof of Seward's result

- We define transitive translation-like actions locally, i.e. by finite pieces.
- Karaganis 1968: any finite and connected graph admits a Hamiltonian 3-path, i.e. a path which does jumps of length at most 3, and visits every vertex exactly once

- Computable proof Ø
- Bound on d(g, g * 1) is 3 🗹

Ingredients to prove Main Lemma

- (N.C. 2023): a different proof of Seward's result
- We define transitive translation-like actions locally, i.e. by finite pieces.
- Karaganis 1968: any finite and connected graph admits a Hamiltonian 3-path, i.e. a path which does jumps of length at most 3, and visits every vertex exactly once

- Computable proof I
- Bound on d(g, g * 1) is 3 🗹

Ingredients to prove Main Lemma

- (N.C. 2023): a different proof of Seward's result
- We define transitive translation-like actions locally, i.e. by finite pieces.
- Karaganis 1968: any finite and connected graph admits a Hamiltonian 3-path, i.e. a path which does jumps of length at most 3, and visits every vertex exactly once

- Computable proof Ø
- Bound on d(g, g * 1) is 3 \square

Ingredients to prove Main Lemma

- (N.C. 2023): a different proof of Seward's result
- We define transitive translation-like actions locally, i.e. by finite pieces.
- Karaganis 1968: any finite and connected graph admits a Hamiltonian 3-path, i.e. a path which does jumps of length at most 3, and visits every vertex exactly once

伺 ト イヨ ト イヨ ト ヨ ヨ つくや

- Computable proof Ø
- Bound on d(g, g * 1) is 3 \square

Ingredients to prove Main Lemma

- (N.C. 2023): a different proof of Seward's result
- We define transitive translation-like actions locally, i.e. by finite pieces.
- Karaganis 1968: any finite and connected graph admits a Hamiltonian 3-path, i.e. a path which does jumps of length at most 3, and visits every vertex exactly once

A = A = A = E =
 O Q O

- Computable proof Ø
- Sound on d(g, g * 1) is 3 \square

The end

▲ 臣 ▶ 三 目 = → の Q ()

References I

- Hanf, William (1974). "Nonrecursive Tilings of the Plane. I". In: The Journal of Symbolic Logic 39.2. Publisher: Association for Symbolic Logic, pp. 283–285. ISSN: 0022-4812. DOI: 10.2307/2272640. URL: https://www.jstor.org/stable/2272640 (visited on 04/14/2022).
- Karaganis, Jerome J. (June 1968). "On the Cube of a Graph". en. In: Canadian Mathematical Bulletin 11.2. Publisher: Cambridge University Press, pp. 295–296. ISSN: 0008-4395, 1496-4287. DOI: 10.4153/CMB-1968-037-0. URL: http://www.cambridge.org/core/journals/canadianmathematical-bulletin/article/on-the-cube-of-agraph/68859A50329EC56D2E3A2B92A8289D60 (visited on 03/09/2023).

A = A = A = A = A = A

References II

 Miller, Joseph S. (2012). "Two notes on subshifts". English. In: Proceedings of the American Mathematical Society 140.5, pp. 1617–1622. ISSN: 0002-9939. DOI: 10.1090/S0002-9939-2011-11000-1.

- Myers, Dale (June 1974). "Nonrecursive tilings of the plane. II". en. In: Journal of Symbolic Logic 39.2, pp. 286-294. ISSN: 0022-4812, 1943-5886. DOI: 10.2307/2272641. URL: https://www.cambridge.org/core/product/identifier/ S0022481200064458/type/journal_article (visited on 12/10/2021).
- Seward, Brandon (2014). "Burnside's problem, spanning trees and tilings.". English. In: *Geometry & Topology* 18.1, pp. 179–210. ISSN: 1465-3060. DOI: 10.2140/gt.2014.18.179.

A = A = A = A = A = A

Simpson, Stephen G. (2014). "Medvedev degrees of two-dimensional subshifts of finite type". English. In: Ergodic Theory and Dynamical Systems 34.2, pp. 679-688. ISSN: 0143-3857. DOI: 10.1017/etds.2012.152. URL: semanticscholar.org/paper/497c2893bfe9f4bcdffae35a859bc2072f2c976d.

ヨト イヨト ヨヨ のへつ