Totalization of ODEs

Olivier Bournez
Riccardo Gozzi

Toulouse SDA2
March 31, 2023

Ordinary differential equations

Let $y:[a, b] \rightarrow E \subseteq \mathbb{R}^{n}$ be the unique solution of:

$$
\left\{\begin{array}{l}
y^{\prime}=f(y(t)) \\
y(a)=y_{0}
\end{array}\right.
$$

- Obtain y : if f is continuous, limit of sequence of continuous functions
- Compute y : if f is continuous, Ten thousand monkeys [CG09]

Question 1:
Relaxing continuity for f, when can we obtain y from f ?
Question 2:
What is the set theoretical complexity of y relative to f ? Borel hierarchy, arithmetical hierarchy etc

Antidifferentiation

Antidifferentiation is a particular type of ODE solving when the derivative is known explicitely

- Let $F:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a function differentiable on $[a, b]$
- Let $f:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be such that $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$

Goal 1:

Obtain F from f
Goal 2:
Describe the set theoretical complexity of F relative to f

Conditions on the derivative

$$
\begin{aligned}
& \text { If } f \text { satisfies }(A) \text { then by }(B) \text { we get: } \\
& F(x)=F(a)+\int_{a}^{x} f(t) d t \text { for } x \in[a, b]
\end{aligned}
$$

- $(A) f$ continuous
(B) Fundamental theorem of calculus
$F \in C^{1}([a, b])$
- $(A) f$ bounded, continuous almost everywhere $\left(\mu_{L}\left(D_{f}\right)=0\right)$
(B) Lebesgue-Vitali theorem
$F \in C^{1}([a, b])$ almost everywhere
- (A) f Lebesgue integrable
(B) Lebesgue differentiation theorem
$F \in B V$, Bounded variation

Lebesgue integral is not enough

Goal: generalize integration Investigate antidifferentiation for non-Lebesgue integrable derivatives Function Ω
$\Omega(x)=\left\{\begin{array}{l}x^{2} \sin \left(\frac{1}{x^{2}}\right) \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array} \quad \Omega^{\prime}(x)=\left\{\begin{array}{l}2 x \sin \left(\frac{1}{x^{2}}\right)-\frac{2}{x} \cos \left(\frac{1}{x^{2}}\right) \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right.\right.$

Two problematic discontinuities

- Function with derivative with unbounded discontinuities in two points:

$$
\Omega_{2}(x)=\left\{\begin{array}{l}
x^{2}(1-x)^{2} \sin \left(\frac{1}{x^{2}(1-x)^{2}}\right) \text { if } 0<x<1 \\
0 \text { if } x=0,1
\end{array}\right.
$$

Extension of Lebesgue integral

Question:

Is there a way to obtain such antiderivatives?

- Denjoy, 1912, [Den12], iterative process, transfinite induction
- Perron, 1914, [Per14], equivalent to Denjoy
- Luzin, 1915, variation absolute continuity
- Kurzveil, 1957, [Kur57], gauge integral, similar to Riemann
- Henstock, 1957, [Hen57], equivalent to Kurzveil

Denjoy totalization

- Condition on $f: f$ is a derivative

Definition 1 (Nonsummable points of f)

Let E be a closed set $E \subseteq[a, b]$ and f a Lebesgue measurable function. A point $x \in E$ is a nonsummable point of f on E if f is not Lebesgue integrable in every $I \in E$, I an open interval containing x.

Theorem 2

If F is a differentiable function on $[a, b]$ and $E \subseteq[a, b]$ is closed, then the nonsummable points of f on E form a closed nowhere dense set ${ }^{1}$ in E

[^0]
Takeaway message

- Bad behaved points are few in the domain
- Outside of them we can simply integrate

Procedure:
We can obtain $F(d)-F(c)$ for all $[c, d] \subseteq[a, b], c<d$ disjoint with this set of bad behaved points, take the limits and then describe a new set of bad behaved points within the previous one

Intuition:

1. Lebesgue integration
2. Limits
3. Transfinite induction

Transfinite process

- Let $E_{1}=\{x \in[a, b]$ such that x is a nonsummable point of f on $[a, b]\}$, and let $\left\{\left(a_{i}, b_{i}\right)\right\}_{i}$ be its contiguous intervals
- Obtain $F(d)-F(c)$ for all $[c, d] \subseteq[a, b]$ such that $[c, d] \cap E_{1}=\emptyset$
- Since F is continuous, take limits to obtain $F\left(b_{i}\right)-F\left(a_{i}\right)$ for all i.

Inductive step

Let $E_{2}=\left\{x \in[a, b]\right.$ such that x is a nonsummable point of f on $\left.E_{1}\right\}$

- We know by the same theorem that E_{2} is nowhere dense in E_{1}
- Repeat the above for E_{2}
- Proceed by transfinite induction, taking intersections at limit ordinals

Theorem 3 (Cantor-Baire Stationary Principle, [EV10])
Let $\left\{E_{\alpha}\right\}_{\alpha<\Omega}$ be a family of closed subsets of \mathbb{R}^{n}, indexed by the countable ordinal numbers. Suppose $\left\{E_{\alpha}\right\}_{\alpha<\Omega}$ is decreasing; i.e., $E_{\alpha} \subseteq E_{\beta}$ if $\alpha \geq \beta$. Then there exists $\alpha^{*}<\Omega$ such that $E_{\alpha}=E_{\alpha^{*}}$ for $\alpha \geq \alpha^{*}$.

- If $E_{\alpha+1} \subseteq E_{\alpha}$ with $E_{\alpha+1}$ nowhere dense in $E_{\alpha} \Rightarrow E_{\alpha+1} \subset E_{\alpha} \Rightarrow$ $E_{\alpha^{*}}=\emptyset$
- The process converges, $E_{\alpha^{*}}=\emptyset \Rightarrow F(d)-F(c)$ for all $[c, d] \subseteq[a, b]$; Totalization

Theorem 4 ([DK91])
The operation of antidifferentiation is not Borel. ${ }^{2}$
Theorem 5 ([Wes20])
The operation of antidifferentiation is Π_{1}^{1}-complete.

[^1]
Back to ordinary differential equations

Let $y:[a, b] \rightarrow E \subseteq \mathbb{R}^{n}$ be the unique solution of:

$$
\left\{\begin{array}{l}
y^{\prime}=f(y(t)) \tag{1}\\
y(0)=y_{0}
\end{array}\right.
$$

Question 1:
When can we obtain y from f with a totalization?
Question 2:
What is the complexity of such procedure?

Lebesgue integration \longrightarrow Ten Thousand Monkeys

Nonsummability points \longrightarrow Discontinuity points for f

Definition 6 (sequence of f-removed sets on E)
Let $\left\{E_{\alpha}\right\}_{\alpha<\omega_{1}}$ be a transfinite sequence of sets and $\left\{f_{\alpha}\right\}_{\alpha<\omega_{1}}$ a transfinite sequence of functions $f_{\alpha}=f{ }_{E_{\alpha}}: E_{\alpha} \rightarrow \mathbb{R}^{r}$ defined as following:

- Let $E_{0}=E$
- For every α successor ordinal, let E_{α} be:
$E_{\alpha}=\left\{x \in E_{\alpha-1}: f_{\alpha-1}\right.$ is discontinuous in $\left.x\right\}=D_{f_{\alpha-1}}$
- For every α limit ordinal, let E_{α} be $E_{\alpha}=\cap_{\beta} E_{\beta}$ with $\beta<\alpha$

Conditions on right-hand term f

- Every derivative is a Baire one function, i.e. it is the limit of a sequence of continuous functions. ${ }^{3}$

Hypothesis on f

Let f be Baire one and such that for every closed set $K \subseteq E$ the set of discontinuity points of function $f \upharpoonright_{K}$ is a closed set

Theorem 7 (Bournez, Gozzi)
If f satisifies the hypothesis then there exists an ordinal $\alpha<\omega_{1}$ such that $E_{\beta}=\emptyset$ for all $\beta \geq \alpha$.

[^2]
Main claim

Theorem 8 (Bournez, Gozzi)
If f satisifies the hypothesis then we can obtain the solution from f and the initial condition via transfinite induction up to an ordinal number α such that $\alpha<\omega_{1}$.

- The induction works for each E_{α} using a Ten thousand monkeys approach where $f_{\alpha}=f \upharpoonright_{E_{\alpha}}$ is continuous and taking limits
- The method is bound to terminate for some countable ordinal due to previous theorem
- The transfinite number of steps corresponds to the first ordinal α such that $E_{\alpha}=\emptyset$ and represents the complexity of ODEs solving for f on E

Example

Let $E=[-5,5] \times[-5,5]$ and let $f:([-5,5] \times[-5,5]) \rightarrow \mathbb{R}^{2}$ be $f(x, y)=\left(1,2 x \sin \frac{1}{x}-\cos \frac{1}{x}\right)$ if $x \neq 0$ and $f(x, y)=(1,0)$ otherwise. Consider the IVP on [-2, 2]:

$$
\begin{gathered}
z^{\prime}(t)=f(z(t))=\left\{\begin{array}{l}
z_{1}^{\prime}(t)=1 \\
z_{2}^{\prime}(t)=\left\{\begin{array}{l}
2 z_{1}(t) \sin \frac{1}{z_{1}(t)}-\cos \frac{1}{z_{1}(t)} \\
0 \\
\text { otherwise }
\end{array} \quad \text { if } z_{1}(t) \neq 0\right. \\
\left\{\begin{array}{l}
z_{1}(-2)=-3 \\
z_{2}(-2)=9 \sin \left(-\frac{1}{3}\right)
\end{array}\right.
\end{array} .\left\{\begin{array}{l}
\end{array}\right.\right.
\end{gathered}
$$

- Unique solution $z_{1}(t)=t-1$ and $z_{2}(t)=(t-1)^{2} \sin \left(\frac{1}{t-1}\right)$ for $t \neq 1$ and $z_{2}(1)=0$
- $D_{f}=E_{1}=\{(0, y): y \in[-5,5]\}$ nowhere dense in E
- f Baire one, $f\left(E_{1}\right)=(1,0)$ and $D_{\left.f\right|_{K}}$ closed for K closed
- Since $f\left(E_{1}\right)=(1,0)$ then $D_{f{ }_{E_{1}}}=E_{2}=\emptyset$

Conclusions and open problems

- We can construct more complex cases based on the previous example with $E_{\alpha} \neq \emptyset$ for all $\alpha<\omega_{1}$
- In parallel with results from [DK91] and [Wes20] for antidifferentiation we expect to obtain similar complexity results for ODEs solving
- Connection with ITTMs [HLOO]

References I

P．Collins and D．S．Graça，Effective computability of solutions of differential inclusions－the ten thousand monkeys approach，Journal of Universal Computer Science 15 （2009），no．6，1162－1185．
圊 A．Denjoy，Une extension de l＇intÃ©grale de m．lebesgue．，CR Acad． Sci．Paris 154 （1912），859－862．
R R．Dougherty and A．S．Kechris，The complexity of antidifferentiation．，Advances in Mathematics 88 （1991），145－169．

围 R．Estrada and J．Vindas，On romanovski＇s lemma，Real Analysis Exchange 35 （2010），431－444．

R R．Henstock，On ward＇s perron－stieltjes integral．，Canadian Journal of Mathematics． 9 （1957），96－109．

雷 Joel David Hamkins and Andy Lewis，Infinite time turing machines， The Journal of Symbolic Logic 65 （2000），no．2，567－604．

References II

园 J. Kurzwei, Generalized ordinary differential equations and continuous dependance on a parameter., Czechoslovak Math. J. 7 (1957), 418-446.
O. Perron, Ueber den integralbegriff., Sitzungsber. Heidelberg. Akad. Wiss. (1914), 1-16.
Linda Westrick, An effective analysis of the denjoy rank.

Thank you!

[^0]: ${ }^{1}$ A subset A of a topological space X is nowhere dense in X if the closure of A has empty interior

[^1]: ${ }^{2}$ More precisely, there is no Borel set $B \subseteq C[a, b]^{\mathbb{N}}$ such that for f derivative $f \in B \Longleftrightarrow F(b)-F(a)>0$.

[^2]: ${ }^{3}$ Let X, Y be two separable, complete metric spaces. A function $f: X \rightarrow Y$ is Baire one if there exists a sequence of continuous functions from X to $Y,\left\{f_{m}\right\} m$, such that $\lim _{m \rightarrow \infty} f_{m}(x)=f(x)$ for all $x \in X$.

