Totalization of ODEs

Olivier Bournez Riccardo Gozzi

Toulouse SDA2

March 31, 2023

Olivier Bournez Riccardo Gozzi

Totalization of ODEs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Motivation

Ordinary differential equations

Let $y : [a, b] \to E \subseteq \mathbb{R}^n$ be the unique solution of:

 $\begin{cases} y' = f(y(t)) \\ y(a) = y_0 \end{cases}$

- Obtain y: if f is continuous, limit of sequence of continuous functions
- Compute y: if f is continuous, Ten thousand monkeys [CG09]

Question 1:

Relaxing continuity for f, when can we obtain y from f?

Question 2:

What is the set theoretical complexity of y relative to f? Borel hierarchy, arithmetical hierarchy etc

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Antidifferentiation

Antidifferentiation is a particular type of ODE solving when the derivative is known explicitely

- Let $F : [a, b] \subseteq \mathbb{R} \to \mathbb{R}$ be a function differentiable on [a, b]
- Let $f : [a,b] \subseteq \mathbb{R} \to \mathbb{R}$ be such that F'(x) = f(x) for all $x \in [a,b]$

Goal 1:

Obtain F from f

Goal 2:

Describe the set theoretical complexity of F relative to f

Integration

Conditions on the derivative

If f satisfies (A) then by (B) we get:

 $F(x) = F(a) + \int_{a}^{x} f(t) dt$ for $x \in [a, b]$

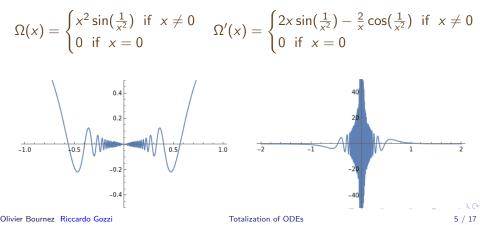
- (A) f continuous
 (B) Fundamental theorem of calculus
 F ∈ C¹([a, b])
- (A) f bounded, continuous almost everywhere (µ_L(D_f) = 0)
 (B) Lebesgue-Vitali theorem
 F ∈ C¹([a, b]) almost everywhere
- (A) f Lebesgue integrable
 (B) Lebesgue differentiation theorem
 F ∈ BV, Bounded variation

Integration

Lebesgue integral is not enough

Goal: generalize integration

Investigate antidifferentiation for non-Lebesgue integrable derivatives Function $\boldsymbol{\Omega}$

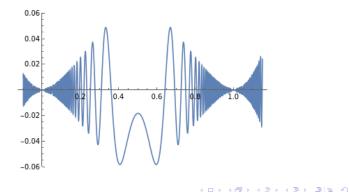


Integration

Two problematic discontinuities

• Function with derivative with unbounded discontinuities in two points:

$$\Omega_2(x) = \begin{cases} x^2(1-x)^2 \sin(\frac{1}{x^2(1-x)^2}) & \text{if } 0 < x < 1 \\ 0 & \text{if } x = 0, 1 \end{cases}$$



Olivier Bournez Riccardo Gozzi

Extension of Lebesgue integral

Question:

Is there a way to obtain such antiderivatives?

- Denjoy, 1912, [Den12], iterative process, transfinite induction
- Perron, 1914, [Per14], equivalent to Denjoy
- Luzin, 1915, variation absolute continuity
- Kurzveil, 1957, [Kur57], gauge integral, similar to Riemann
- Henstock, 1957, [Hen57], equivalent to Kurzveil

Deniov totalization

Denjoy totalization

Condition on f: f is a derivative

Definition 1 (Nonsummable points of f)

Let *E* be a closed set $E \subseteq [a, b]$ and *f* a Lebesgue measurable function. A point $x \in E$ is a nonsummable point of f on E if f is not Lebesgue integrable in every $I \in E$, I an open interval containing x.

Theorem 2

If F is a differentiable function on [a, b] and $E \subseteq [a, b]$ is closed, then the nonsummable points of f on E form a closed nowhere dense set¹ in E

¹A subset A of a topological space X is nowhere dense in X if the closure of A has empty interior ▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ Olivier Bournez Riccardo Gozzi

Takeaway message

- Bad behaved points are few in the domain
- Outside of them we can simply integrate

Procedure:

We can obtain F(d) - F(c) for all $[c, d] \subseteq [a, b]$, c < d disjoint with this set of bad behaved points,take the limits and then describe a new set of bad behaved points within the previous one

Intuition:

- 1. Lebesgue integration
- 2. Limits
- 3. Transfinite induction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のなの

Transfinite process

- Let E₁ = {x ∈ [a, b] such that x is a nonsummable point of f on [a, b]}, and let {(a_i, b_i)}_i be its contiguous intervals
- Obtain F(d) F(c) for all $[c,d] \subseteq [a,b]$ such that $[c,d] \cap E_1 = \emptyset$
- Since F is continuous, take limits to obtain $F(b_i) F(a_i)$ for all i.

Inductive step

Let $E_2 = \{x \in [a, b] \text{ such that } x \text{ is a nonsummable point of } f \text{ on } E_1\}$

- We know by the same theorem that E_2 is nowhere dense in E_1
- Repeat the above for E₂
- Proceed by transfinite induction, taking intersections at limit ordinals

Theorem 3 (Cantor-Baire Stationary Principle, [EV10])

Let $\{E_{\alpha}\}_{\alpha < \Omega}$ be a family of closed subsets of \mathbb{R}^n , indexed by the countable ordinal numbers. Suppose $\{E_{\alpha}\}_{\alpha < \Omega}$ is decreasing; i.e., $E_{\alpha} \subseteq E_{\beta}$ if $\alpha \geq \beta$. Then there exists $\alpha^* < \Omega$ such that $E_{\alpha} = E_{\alpha^*}$ for $\alpha \geq \alpha^*$.

- If $E_{\alpha+1} \subseteq E_{\alpha}$ with $E_{\alpha+1}$ nowhere dense in E_{α} , $\Rightarrow E_{\alpha+1} \subset E_{\alpha} \Rightarrow E_{\alpha^*} = \emptyset$
- The process converges, E_{α*} = Ø ⇒ F(d) − F(c) for all [c, d] ⊆ [a, b]; Totalization

Theorem 4 ([DK91])

The operation of antidifferentiation is not Borel. ²

Theorem 5 ([Wes20])

The operation of antidifferentiation is Π_1^1 -complete.

²More precisely, there is no Borel set $B \subseteq C[a, b]^{\mathbb{N}}$ such that for f derivative $f \in B \iff F(b) - F(a) > 0$.

Olivier Bournez Riccardo Gozzi

Back to ordinary differential equations

Let $y : [a, b] \to E \subseteq \mathbb{R}^n$ be the unique solution of:

$$\begin{cases} y' = f(y(t)) \\ y(0) = y_0 \end{cases}$$
(1)

Question 1:

When can we obtain y from f with a totalization?

Question 2:

What is the complexity of such procedure?

Lebesgue integration \longrightarrow Ten Thousand Monkeys

Nonsummability points \longrightarrow Discontinuity points for f

Definition 6 (sequence of *f*-removed sets on *E*)

Let $\{E_{\alpha}\}_{\alpha < \omega_1}$ be a transfinite sequence of sets and $\{f_{\alpha}\}_{\alpha < \omega_1}$ a transfinite sequence of functions $f_{\alpha} = f \upharpoonright_{E_{\alpha}} : E_{\alpha} \to \mathbb{R}^r$ defined as following:

- Let $E_0 = E$
- For every α successor ordinal, let E_{α} be: $E_{\alpha} = \{x \in E_{\alpha-1} : f_{\alpha-1} \text{ is discontinuous in } x\} = D_{f_{\alpha-1}}$
- For every α limit ordinal, let E_{α} be $E_{\alpha} = \cap_{\beta} E_{\beta}$ with $\beta < \alpha$

Conditions on right-hand term f

• Every derivative is a Baire one function, i.e. it is the limit of a sequence of continuous functions. ³

Hypothesis on f

Let f be Baire one and such that for every closed set $K \subseteq E$ the set of discontinuity points of function $f \upharpoonright_K$ is a closed set

Theorem 7 (Bournez, Gozzi)

If f satisifies the hypothesis then there exists an ordinal $\alpha < \omega_1$ such that $E_{\beta} = \emptyset$ for all $\beta \ge \alpha$.

³Let X, Y be two separable, complete metric spaces. A function $f : X \to Y$ is Baire one if there exists a sequence of continuous functions from X to Y, $\{f_m\}_m$, such that $\lim_{m\to\infty} f_m(x) = f(x)$ for all $x \in X$.

Main claim

Theorem 8 (Bournez, Gozzi)

If f satisifies the hypothesis then we can obtain the solution from f and the initial condition via transfinite induction up to an ordinal number α such that $\alpha < \omega_1$.

- The induction works for each E_{α} using a Ten thousand monkeys approach where $f_{\alpha} = f \upharpoonright_{E_{\alpha}}$ is continuous and taking limits
- The method is bound to terminate for some countable ordinal due to previous theorem
- The transfinite number of steps corresponds to the first ordinal α such that $E_{\alpha} = \emptyset$ and represents the complexity of ODEs solving for f on E

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Example

Let $E = [-5,5] \times [-5,5]$ and let $f : ([-5,5] \times [-5,5]) \to \mathbb{R}^2$ be $f(x,y) = (1,2x \sin \frac{1}{x} - \cos \frac{1}{x})$ if $x \neq 0$ and f(x,y) = (1,0) otherwise. Consider the IVP on [-2,2]:

$$z'(t) = f(z(t)) = \begin{cases} z'_1(t) = 1\\ z'_2(t) = \begin{cases} 2z_1(t)\sin\frac{1}{z_1(t)} - \cos\frac{1}{z_1(t)} & \text{if } z_1(t) \neq 0\\ 0 & \text{otherwise} \end{cases}$$
$$\begin{cases} z_1(-2) = -3\\ z_2(-2) = 9\sin(-\frac{1}{3}) \end{cases}$$

• Unique solution $z_1(t) = t - 1$ and $z_2(t) = (t - 1)^2 \sin(\frac{1}{t-1})$ for $t \neq 1$ and $z_2(1) = 0$

• $D_f = E_1 = \{(0, y) : y \in [-5, 5]\}$ nowhere dense in E

- f Baire one, $f(E_1) = (1,0)$ and $D_{f\restriction_K}$ closed for K closed
- Since $f(E_1) = (1,0)$ then $D_{f \upharpoonright_{E_1}} = E_2 = \emptyset$

Olivier Bournez Riccardo Gozzi

Totalization of ODEs

Conclusions and open problems

- We can construct more complex cases based on the previous example with $E_{\alpha} \neq \emptyset$ for all $\alpha < \omega_1$
- In parallel with results from [DK91] and [Wes20] for antidifferentiation we expect to obtain similar complexity results for ODEs solving
- Connection with ITTMs [HL00]

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

References

References I

- P. Collins and D. S. Graça, Effective computability of solutions of differential inclusions — the ten thousand monkeys approach, Journal of Universal Computer Science 15 (2009), no. 6, 1162–1185.
- A. Denjoy, Une extension de l'intégrale de m. lebesgue., CR Acad.
 Sci. Paris 154 (1912), 859–862.
- R. Dougherty and A. S. Kechris, *The complexity of antidifferentiation.*, Advances in Mathematics 88 (1991), 145–169.
- R. Estrada and J. Vindas, On romanovski's lemma, Real Analysis Exchange 35 (2010), 431–444.
- R. Henstock, On ward's perron-stieltjes integral., Canadian Journal of Mathematics. 9 (1957), 96–109.
- Joel David Hamkins and Andy Lewis, *Infinite time turing machines*, The Journal of Symbolic Logic **65** (2000), no. 2, 567–604.

Olivier Bournez Riccardo Gozzi

References

References II

- J. Kurzwei, *Generalized ordinary differential equations and continuous dependance on a parameter.*, Czechoslovak Math. J. **7** (1957), 418–446.
- O. Perron, Ueber den integralbegriff., Sitzungsber. Heidelberg. Akad.
 Wiss. (1914), 1–16.
- Linda Westrick, An effective analysis of the denjoy rank.

References

Thank you!

Olivier Bournez Riccardo Gozzi

Totalization of ODEs