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Motivation

Ordinary differential equations

Let y : [a, b] → E ⊆ Rn be the unique solution of:{
y ′ = f (y(t))
y(a) = y0

• Obtain y : if f is continuous, limit of sequence of continuous functions

• Compute y : if f is continuous, Ten thousand monkeys [CG09]

Question 1:
Relaxing continuity for f , when can we obtain y from f ?

Question 2:
What is the set theoretical complexity of y relative to f ? Borel hierarchy,
arithmetical hierarchy etc
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Antidifferentiation

Antidifferentiation is a particular type of ODE solving when the derivative
is known explicitely

• Let F : [a, b] ⊆ R → R be a function differentiable on [a, b]

• Let f : [a, b] ⊆ R → R be such that F ′(x) = f (x) for all x ∈ [a, b]

Goal 1:
Obtain F from f

Goal 2:
Describe the set theoretical complexity of F relative to f
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Integration

Conditions on the derivative

If f satisfies (A) then by (B) we get:

F (x) = F (a) +
∫ x
a f (t)dt for x ∈ [a, b]

• (A) f continuous
(B) Fundamental theorem of calculus
F ∈ C 1([a, b])

• (A) f bounded, continuous almost everywhere (µL(Df ) = 0)
(B) Lebesgue-Vitali theorem
F ∈ C 1([a, b]) almost everywhere

• (A) f Lebesgue integrable
(B) Lebesgue differentiation theorem
F ∈ BV , Bounded variation
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Integration

Lebesgue integral is not enough

Goal: generalize integration

Investigate antidifferentiation for non-Lebesgue integrable derivatives

Function Ω

Ω(x) =

{
x2 sin( 1

x2
) if x ̸= 0

0 if x = 0
Ω′(x) =

{
2x sin( 1

x2
)− 2

x cos(
1
x2
) if x ̸= 0

0 if x = 0

Figure: Function Ω Figure: Function Ω′
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Integration

Two problematic discontinuities

• Function with derivative with unbounded discontinuities in two points:

Ω2(x) =

{
x2(1− x)2 sin( 1

x2(1−x)2
) if 0 < x < 1

0 if x = 0, 1
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Denjoy totalization

Extension of Lebesgue integral

Question:
Is there a way to obtain such antiderivatives?

• Denjoy, 1912, [Den12], iterative process, transfinite induction

• Perron, 1914, [Per14], equivalent to Denjoy

• Luzin, 1915, variation absolute continuity

• Kurzveil, 1957, [Kur57], gauge integral, similar to Riemann

• Henstock, 1957, [Hen57], equivalent to Kurzveil
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Denjoy totalization

Denjoy totalization

• Condition on f : f is a derivative

Definition 1 (Nonsummable points of f )

Let E be a closed set E ⊆ [a, b] and f a Lebesgue measurable function. A
point x ∈ E is a nonsummable point of f on E if f is not Lebesgue
integrable in every I ∈ E , I an open interval containing x .

Theorem 2
If F is a differentiable function on [a, b] and E ⊆ [a, b] is closed, then the
nonsummable points of f on E form a closed nowhere dense set1 in E

1A subset A of a topological space X is nowhere dense in X if the closure of A has
empty interior
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Denjoy totalization

Takeaway message

• Bad behaved points are few in the domain

• Outside of them we can simply integrate

Procedure:
We can obtain F (d)− F (c) for all [c , d ] ⊆ [a, b], c < d disjoint with this
set of bad behaved points,take the limits and then describe a new set of
bad behaved points within the previous one

Intuition:

1. Lebesgue integration

2. Limits

3. Transfinite induction
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Denjoy totalization

Transfinite process

• Let E1 = {x ∈ [a, b] such that x is a nonsummable point of f on
[a, b]}, and let {(ai , bi )}i be its contiguous intervals

• Obtain F (d)− F (c) for all [c , d ] ⊆ [a, b] such that [c , d ] ∩ E1 = ∅
• Since F is continuous, take limits to obtain F (bi )− F (ai ) for all i .

Inductive step

Let E2 = {x ∈ [a, b] such that x is a nonsummable point of f on E1}
• We know by the same theorem that E2 is nowhere dense in E1

• Repeat the above for E2

• Proceed by transfinite induction, taking intersections at limit ordinals
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Denjoy totalization

Theorem 3 (Cantor-Baire Stationary Principle, [EV10])

Let {Eα}α<Ω be a family of closed subsets of Rn, indexed by the
countable ordinal numbers. Suppose {Eα}α<Ω is decreasing; i.e., Eα ⊆ Eβ

if α ≥ β. Then there exists α∗ < Ω such that Eα = Eα∗ for α ≥ α∗.

• If Eα+1 ⊆ Eα with Eα+1 nowhere dense in Eα, ⇒ Eα+1 ⊂ Eα ⇒
Eα∗ = ∅

• The process converges, Eα∗ = ∅ ⇒ F (d)− F (c) for all [c , d ] ⊆ [a, b];
Totalization

Theorem 4 ([DK91])

The operation of antidifferentiation is not Borel. 2

Theorem 5 ([Wes20])

The operation of antidifferentiation is Π1
1-complete.

2More precisely, there is no Borel set B ⊆ C [a, b]N such that for f derivative
f ∈ B ⇐⇒ F (b)− F (a) > 0.
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ODEs totalization

Back to ordinary differential equations

Let y : [a, b] → E ⊆ Rn be the unique solution of:{
y ′ = f (y(t))
y(0) = y0

(1)

Question 1:
When can we obtain y from f with a totalization?

Question 2:
What is the complexity of such procedure?
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ODEs totalization

Lebesgue integration Ten Thousand Monkeys

Nonsummability points Discontinuity points for f

Definition 6 (sequence of f -removed sets on E )

Let {Eα}α<ω1 be a transfinite sequence of sets and {fα}α<ω1 a transfinite
sequence of functions fα = f ↾Eα : Eα → Rr defined as following:

• Let E0 = E

• For every α successor ordinal, let Eα be:
Eα = {x ∈ Eα−1 : fα−1 is discontinuous in x} = Dfα−1

• For every α limit ordinal, let Eα be Eα = ∩βEβ with β < α
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ODEs totalization

Conditions on right-hand term f

• Every derivative is a Baire one function, i.e. it is the limit of a
sequence of continuous functions. 3

Hypothesis on f

Let f be Baire one and such that for every closed set K ⊆ E the set of
discontinuity points of function f ↾K is a closed set

Theorem 7 (Bournez, Gozzi)

If f satisifies the hypothesis then there exists an ordinal α < ω1 such that
Eβ = ∅ for all β ≥ α.

3Let X , Y be two separable, complete metric spaces. A function f : X → Y is Baire
one if there exists a sequence of continuous functions from X to Y , {fm}m, such that
limm→∞ fm(x) = f (x) for all x ∈ X .
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ODEs totalization

Main claim

Theorem 8 (Bournez, Gozzi)

If f satisifies the hypothesis then we can obtain the solution from f and
the initial condition via transfinite induction up to an ordinal number α
such that α < ω1.

• The induction works for each Eα using a Ten thousand monkeys
approach where fα = f ↾Eα is continuous and taking limits

• The method is bound to terminate for some countable ordinal due to
previous theorem

• The transfinite number of steps corresponds to the first ordinal α such
that Eα = ∅ and represents the complexity of ODEs solving for f on E
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ODEs totalization

Example
Let E = [−5, 5]× [−5, 5] and let f : ([−5, 5]× [−5, 5]) → R2 be
f (x , y) = (1, 2x sin 1

x − cos 1
x ) if x ̸= 0 and f (x , y) = (1, 0) otherwise.

Consider the IVP on [−2, 2]:

z ′(t) = f (z(t)) =


z ′1(t) = 1

z ′2(t) =

{
2z1(t) sin

1
z1(t)

− cos 1
z1(t)

if z1(t) ̸= 0

0 otherwise{
z1(−2) = −3

z2(−2) = 9 sin(−1
3)

• Unique solution z1(t) = t − 1 and z2(t) = (t − 1)2 sin( 1
t−1) for t ̸= 1

and z2(1) = 0
• Df = E1 = {(0, y) : y ∈ [−5, 5]} nowhere dense in E
• f Baire one, f (E1) = (1, 0) and Df ↾K closed for K closed
• Since f (E1) = (1, 0) then Df ↾E1

= E2 = ∅
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ODEs totalization

Conclusions and open problems

• We can construct more complex cases based on the previous example
with Eα ̸= ∅ for all α < ω1

• In parallel with results from [DK91] and [Wes20] for antidifferentiation
we expect to obtain similar complexity results for ODEs solving

• Connection with ITTMs [HL00]
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