Computability of the attractors

M. Sablik

IMT, Université Paul Sabatier

12 january 2024

Dynamical Systems

Discrete dynamical Systems: $F: X \longrightarrow X$ where X is compact and F continuous Continuous dynamical Systems: $\varphi: \mathbb{R} \times \mathcal{X} \longrightarrow X$ where X is compact and F continuous

It is possible to compute the asymptotic behavior (i.e. attractor)?

Dynamical Systems

Discrete dynamical Systems: $F: X \longrightarrow X$ where X is compact and F continuous Continuous dynamical Systems: $\varphi: \mathbb{R} \times \mathcal{X} \longrightarrow X$ where X is compact and F continuous

It is possible to compute the asymptotic behavior (i.e. attractor)?

D. Graça, C. Rojas, and N. Zhong. Computing geometric lorenz attractors with arbitrary precision, 2018.

Introduction

Algorithmical complexity of entropy

Entropy is the most popular dynamical invariant, it measures the quantity of information to encode a trajectory. Two point of view to link with computability:

• Natural question of *Milnor-2002:*

"given an explicit (finitely described) dynamical system and given $\epsilon > 0$, is it possible to compute the associated topological entropy with a maximum error of ϵ ?"

- Uncomputability of the entropy for different classes of dynamical systems (cellular automata (*Hurd-Kari-Culik-92*), iterated piecewise affine maps (*Koiran-01*)...)
- Upper and lower bounds for computable dynamical systems(Gangloff-Herrera-Rojas-S-2019)

Algorithmical complexity of entropy

Entropy is the most popular dynamical invariant, it measures the quantity of information to encode a trajectory. Two point of view to link with computability:

• Natural question of *Milnor-2002:*

"given an explicit (finitely described) dynamical system and given ε > 0, is it possible to compute the associated topological entropy with a maximum error of ε?"

- Uncomputability of the entropy for different classes of dynamical systems (cellular automata (*Hurd-Kari-Culik-92*), iterated piecewise affine maps (*Koiran-01*)...)
- Upper and lower bounds for computable dynamical systems(Gangloff-Herrera-Rojas-S-2019)
- Characterization of the possible entropies of a countable class of dynamical systems
 - Characterization of the possible entropy of multidimensional SFT (Hochaman-Meyerovitch-2009)
 - Characterization of the possible entropy of multidimensional SFT under some dynamical conditions (Gangloff-20)

- (X, d, S) is a *Computable space* if
 - (X, d) metric space;
 - $S = \{s_i : i \in \mathbb{N}\}$ countable dense set of X;
 - there exists an algorithm $\mathcal{T}:\mathbb{N}^3\longrightarrow\mathbb{Q}$ such that

 $|d(s_i, s_j) - \mathcal{T}(i, j, n)| \leq 2^{-n}$

- (X, d, S) is a *Computable space* if
 - (X, d) metric space;
 - $S = \{s_i : i \in \mathbb{N}\}$ countable dense set of X;

$$|d(s_i,s_j) - \mathcal{T}(i,j,n)| \le 2^{-n}$$

• Ideal Ball: B(x, r) where $x \in S$ and $r \in \mathbb{Q}_+$ Denote $(B_n)_{n \in \mathbb{N}}$ an enumeration of the ideal balls

- (X, d, S) is a *Computable space* if
 - (X, d) metric space;
 - $S = \{s_i : i \in \mathbb{N}\}$ countable dense set of X;

$$|d(s_i,s_j)-\mathcal{T}(i,j,n)|\leq 2^{-n}$$

- Ideal Ball: B(x, r) where $x \in S$ and $r \in \mathbb{Q}_+$ Denote $(B_n)_{n \in \mathbb{N}}$ an enumeration of the ideal balls
- $x \in X$ is *computable* if $\{x\} = \bigcap_{n \in I} B_n$ for some I r.e.

- (X, d, S) is a *Computable space* if
 - (X, d) metric space;
 - $S = \{s_i : i \in \mathbb{N}\}$ countable dense set of X;
 - + there exists an algorithm $\mathcal{T}:\mathbb{N}^3\longrightarrow\mathbb{Q}$ such that

$$|d(s_i, s_j) - \mathcal{T}(i, j, n)| \leq 2^{-n}$$

- Ideal Ball: B(x, r) where $x \in S$ and $r \in \mathbb{Q}_+$ Denote $(B_n)_{n \in \mathbb{N}}$ an enumeration of the ideal balls
- $x \in X$ is *computable* if $\{x\} = \bigcap_{n \in I} B_n$ for some I r.e.

Examples:

•
$$(\mathcal{A}^{\mathbb{N}}, d, \mathcal{S})$$
 where \mathcal{A} is a finite alphabet, $d(x, y) = 2^{\{-\min n: x_n \neq y_n\}}$ and $\mathcal{S} = \{ua^{\infty} : u \in \mathcal{A}^*\}$

- (X, d, S) is a *Computable space* if
 - (X, d) metric space;
 - $S = \{s_i : i \in \mathbb{N}\}$ countable dense set of X;
 - there exists an algorithm $\mathcal{T}:\mathbb{N}^3\longrightarrow\mathbb{Q}$ such that

$$|d(s_i,s_j) - \mathcal{T}(i,j,n)| \le 2^{-n}$$

- Ideal Ball: B(x, r) where $x \in S$ and $r \in \mathbb{Q}_+$ Denote $(B_n)_{n \in \mathbb{N}}$ an enumeration of the ideal balls
- $x \in X$ is *computable* if $\{x\} = \bigcap_{n \in I} B_n$ for some I r.e.

Examples:

- $(\mathcal{A}^{\mathbb{N}}, d, \mathcal{S})$ where \mathcal{A} is a finite alphabet, $d(x, y) = 2^{\{-\min n: x_n \neq y_n\}}$ and $\mathcal{S} = \{ua^{\infty} : u \in \mathcal{A}^*\}$
- $([0,1], d, [0,1] \cap \mathbb{Q})$ where d(x, y) = |x y|

 $F: X \longrightarrow X$ is *computable* if there exists an algorithm which given as input some integer *n*, enumerates a set I_n such that

$$F^{-1}(B_n) = \bigcup_{i \in I_n} B_i$$

 $F: X \longrightarrow X$ is *computable* if there exists an algorithm which given as input some integer *n*, enumerates a set I_n such that

$$F^{-1}(B_n) = \bigcup_{i \in I_n} B_i$$

Equivalently, there exists two algorithms: $\mathcal{T}_1 : \mathbb{N} \to \mathbb{N}$ and $\mathcal{T}_2 : \mathbb{N} \times \mathbb{N} \to \mathcal{S}$ such that

•
$$d(x,y) \leq \mathcal{T}_1(n) \Longrightarrow d(F(x),F(y)) \leq n$$

• $d(F(s_i), \mathcal{T}_2(i, n)) \le 2^{-n}$

 $F: X \longrightarrow X$ is *computable* if there exists an algorithm which given as input some integer *n*, enumerates a set I_n such that

$$F^{-1}(B_n) = \bigcup_{i \in I_n} B_i$$

Equivalently, there exists two algorithms: $\mathcal{T}_1 : \mathbb{N} \to \mathbb{N}$ and $\mathcal{T}_2 : \mathbb{N} \times \mathbb{N} \to \mathcal{S}$ such that

•
$$d(x,y) \leq \mathcal{T}_1(n) \Longrightarrow d(F(x),F(y)) \leq n$$

•
$$d(F(s_i), \mathcal{T}_2(i, n)) \leq 2^{-n}$$

Examples:

F: A^N → A^N is computable if to know F(x)_[0,n], there exists an algorithm which say how many bit of x and then with these bits compute F(x)_[0,n].

 $F: X \longrightarrow X$ is *computable* if there exists an algorithm which given as input some integer *n*, enumerates a set I_n such that

$$F^{-1}(B_n) = \bigcup_{i \in I_n} B_i$$

Equivalently, there exists two algorithms: $\mathcal{T}_1 : \mathbb{N} \to \mathbb{N}$ and $\mathcal{T}_2 : \mathbb{N} \times \mathbb{N} \to \mathcal{S}$ such that

•
$$d(x,y) \leq \mathcal{T}_1(n) \Longrightarrow d(F(x),F(y)) \leq n$$

•
$$d(F(s_i), \mathcal{T}_2(i, n)) \leq 2^{-n}$$

Examples:

- F: A^N → A^N is computable if to know F(x)_[0,n], there exists an algorithm which say how many bit of x and then with these bits compute F(x)_[0,n].
- A cellular automata is a computable map

 $F: X \longrightarrow X$ is *computable* if there exists an algorithm which given as input some integer *n*, enumerates a set I_n such that

$$F^{-1}(B_n) = \bigcup_{i \in I_n} B_i$$

Equivalently, there exists two algorithms: $\mathcal{T}_1 : \mathbb{N} \to \mathbb{N}$ and $\mathcal{T}_2 : \mathbb{N} \times \mathbb{N} \to \mathcal{S}$ such that

•
$$d(x,y) \leq \mathcal{T}_1(n) \Longrightarrow d(F(x),F(y)) \leq n$$

•
$$d(F(s_i), \mathcal{T}_2(i, n)) \leq 2^{-n}$$

Examples:

- F: A^N → A^N is computable if to know F(x)_[0,n], there exists an algorithm which say how many bit of x and then with these bits compute F(x)_[0,n].
- A cellular automata is a computable map

•
$$F:[0,1] \longrightarrow [0,1], F(x) = \begin{cases} 2x & \text{if } x < \frac{1}{2} \\ 2 - 2x & \text{if } x \ge \frac{1}{2} \end{cases}$$

Accumulation points of an orbit:

$$\omega(x) = \bigcap_N \overline{\bigcup_{n \ge N} F^n(x)}$$

Realm of topological attraction of the closed set $A \subset X$:

$$\rho(A) = \{x \in X : \omega(x) \subset A\}$$

Accumulation points of an orbit:

$$\omega(x) = \bigcap_N \overline{\bigcup_{n \ge N} F^n(x)}$$

Realm of topological attraction of the closed set $A \subset X$:

$$\rho(A) = \{x \in X : \omega(x) \subset A\}$$

A closed set $A \subset X$ is

- a metric attractor if
 - $\mu(\rho(A)) = 1$
 - ▶ there is no strictly smaller closed set $A' \subset A$ such that $\mu(\rho(A')) > 0$

Accumulation points of an orbit:

$$\omega(x) = \bigcap_N \overline{\bigcup_{n \ge N} F^n(x)}$$

Realm of topological attraction of the closed set $A \subset X$:

$$\rho(A) = \{x \in X : \omega(x) \subset A\}$$

A closed set $A \subset X$ is

- a metric attractor if
 - $\mu(\rho(A)) = 1$
 - there is no strictly smaller closed set $A' \subset A$ such that $\mu(\rho(A')) > 0$
- a topological attractor if
 - $\rho(A)$ is generic
 - ▶ there is no strictly smaller closed set $A' \subset A$ such that $\rho(A')$ is not meager

Accumulation points of an orbit:

$$\omega(x) = \bigcap_N \overline{\bigcup_{n \ge N} F^n(x)}$$

Realm of topological attraction of the closed set $A \subset X$:

$$\rho(A) = \{x \in X : \omega(x) \subset A\}$$

A closed set $A \subset X$ is

- a metric attractor if
 - $\mu(\rho(A)) = 1$
 - ▶ there is no strictly smaller closed set $A' \subset A$ such that $\mu(\rho(A')) > 0$
- a topological attractor if
 - $\rho(A)$ is generic
 - ▶ there is no strictly smaller closed set $A' \subset A$ such that $\rho(A')$ is not meager

• a statistical attractor if there exists μ a *F*-invariant measure such that

- $\operatorname{supp}(\mu) = A$
- $\mu = \lim_{N \leq N} \delta_{F^n(x)}$ for μ -almost $x \in X$.

$$\mathcal{B}_{in}(K) = \left\{ i \in \mathbb{N} : B_i \cap K \neq \emptyset \right\} \qquad \text{and} \qquad \overline{\mathcal{B}_{out}}(K) = \left\{ i \in \mathbb{N} : \overline{B_i} \cap K \neq \emptyset \right\}$$

- K is \sum_{n} -computable if $\mathcal{B}_{in}(K)$ is \sum_{n} -computable
- *K* is \sum_{n} -complete if $\mathcal{B}_{in}(K)$ is \sum_{n} -complete

$$\mathcal{B}_{in}(K) = \left\{ i \in \mathbb{N} : B_i \cap K \neq \emptyset \right\} \quad \text{and} \quad \overline{\mathcal{B}_{out}}(K) = \left\{ i \in \mathbb{N} : \overline{B_i} \cap K \neq \emptyset \right\}$$

- K is \sum_{n} -computable if $\mathcal{B}_{in}(K)$ is \sum_{n} -computable
- K is \sum_{n} -complete if $\mathcal{B}_{in}(K)$ is \sum_{n} -complete
- K is \prod_{n} -computable if $\mathcal{B}_{out}(K)$ is \prod_{n} -computable
- *K* is \prod_{n} -complete if $\mathcal{B}_{out}(K)$ is \prod_{n} -complete

$$\mathcal{B}_{in}(K) = \left\{ i \in \mathbb{N} : B_i \cap K \neq \emptyset \right\} \qquad \text{and} \qquad \overline{\mathcal{B}_{out}}(K) = \left\{ i \in \mathbb{N} : \overline{B_i} \cap K \neq \emptyset \right\}$$

- K is \sum_{n} -computable if $\mathcal{B}_{in}(K)$ is \sum_{n} -computable
- K is \sum_{n} -complete if $\mathcal{B}_{in}(K)$ is \sum_{n} -complete
- K is \prod_{n} -computable if $\mathcal{B}_{out}(K)$ is \prod_{n} -computable
- *K* is \prod_{n} -complete if $\mathcal{B}_{out}(K)$ is \prod_{n} -complete
- K is Δ_n -computable if K is Σ_n -computable and Π_n -computable

$$\mathcal{B}_{in}(K) = \left\{ i \in \mathbb{N} : B_i \cap K \neq \emptyset \right\} \qquad \text{and} \qquad \overline{\mathcal{B}_{out}}(K) = \left\{ i \in \mathbb{N} : \overline{B_i} \cap K \neq \emptyset \right\}$$

- K is \sum_{n} -computable if $\mathcal{B}_{in}(K)$ is \sum_{n} -computable
- K is \sum_{n} -complete if $\mathcal{B}_{in}(K)$ is \sum_{n} -complete
- K is \prod_{n} -computable if $\mathcal{B}_{out}(K)$ is \prod_{n} -computable
- *K* is \prod_{n} -complete if $\mathcal{B}_{out}(K)$ is \prod_{n} -complete
- K is Δ_n -computable if K is Σ_n -computable and Π_n -computable

Remarque: If X is the Cantor space then $\mathcal{B}_{in}(\mathcal{K}) = \overline{\mathcal{B}_{out}}(\mathcal{K})$.

Theorem Rojas-S-23

Let $F : X \longrightarrow X$ be a computable map, λ a computable reference measure and A be a closed subset of X which is invariant by T.

- If A is a topological attractor, then it is a Π_2 set.
- If A is a metric attractor, then it is a Π_2 set.
- If A is a statistical attractor, then it is Σ_2 .

Moreover the bounds are tight in the class of the action on a Cantor set.

Proposition *Rojas-S-23*

Let A be a metric or a topological attractor

- If A is strongly attracting, then it is Π_1 .
- If the action of T is minimal on A and A is Π_i computable then it is also Σ_i .

Strongly attracting set: Upper bound

A is strongly attracting if there exists a neighborhood U of A such that

$$F(\overline{U}) \subset U$$
 and $A = \bigcap_n F^n(A)$

Proposition

Let A be a topological or metric attractor, if A is strongly attracting, then it is Π_1 .

Since A is compact, there exists a finite set I such that

$$A \subset \bigcup_{i \in I} B_i \subset \bigcup_{i \in I} \overline{B_i} \subset U$$

Thus

$$B \cap A \neq \emptyset \iff \forall n, \quad B \cap F^n\left(\bigcup_{i \in I} \overline{B_i}\right) \neq \emptyset$$

Strongly attracting set: the bound is tight

Theorem

There exists a computable map $F: \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ and $A \subset X$ such that:

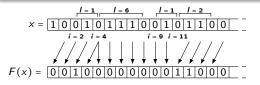
- i) A is Π_1 -complete.
- ii) A is the topological and metric attractor of F which are strongly attracting.
- iii) A is the statistical attractor of F. In particular, the unique physical measure of the system is non computable.

Strongly attracting set: the bound is tight

Theorem

There exists a computable map $F : \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ and $A \subset X$ such that:

- i) A is Π_1 -complete.
- ii) A is the topological and metric attractor of F which are strongly attracting.
- iii) A is the statistical attractor of F. In particular, the unique physical measure of the system is non computable.



F shift the block $01^{l}0$ at position *i* iff l > i or M_l does not halt in less than *i* steps.

Strongly attracting set: the bound is tight

Theorem

There exists a computable map $F : \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ and $A \subset X$ such that:

- i) A is Π_1 -complete.
- ii) A is the topological and metric attractor of F which are strongly attracting.
- iii) A is the statistical attractor of F. In particular, the unique physical measure of the system is non computable.

F shift the block $01^{l}0$ at position *i* iff l > i or M_l does not halt in less than *i* steps.

The topological and metric attractor strongly attracting of F is

$$A = \bigcap_{n} F^{n}(X) = \left\{ x \in \{0,1\}^{\mathbb{N}} : 01'0 \notin x \text{ iff } \mathcal{M}_{I} \text{ halts} \right\}$$

In particular

$$A \cap [01^n 0]_0 \neq \emptyset \Longleftrightarrow n \in \overline{\mathcal{H}alt}.$$

General upper bounds

Proposition

If A is a topological attractor, then it is a Π_2 set.

Let B_i be an ideal ball, denote $\rho(B_i) = \bigcap_n \bigcup_{t \ge n} F^{-t}(B_i)$

Proposition

If A is a topological attractor, then it is a Π_2 set.

Let B_i be an ideal ball, denote $\rho(B_i) = \bigcap_n \bigcup_{t \ge n} F^{-t}(B_i)$

• $B_i \cap A = \emptyset \Longrightarrow \rho(B_i) \cap \rho(A) = \emptyset \overset{\text{Baire}}{\Longrightarrow} \rho(B_i)$ not dense

Proposition

If A is a topological attractor, then it is a Π_2 set.

Let B_i be an ideal ball, denote $\rho(B_i) = \bigcap_n \bigcup_{t \ge n} F^{-t}(B_i)$

•
$$B_i \cap A = \emptyset \Longrightarrow \rho(B_i) \cap \rho(A) = \emptyset \overset{\text{Baire}}{\Longrightarrow} \rho(B_i) \text{ not dense}$$

 Reciprocally if ρ(B_i) is not dense, there exists a ball B such that B ∩ ρ(B_i) = Ø. But B ∩ ρ(A) is not meager so by minimality of A one has ω(B ∩ ρ(A)) = A. One deduces the B_i ∩ A = Ø since element of B visit B_i finitely many time.

Proposition

If A is a topological attractor, then it is a Π_2 set.

Let B_i be an ideal ball, denote $\rho(B_i) = \bigcap_n \bigcup_{t \ge n} F^{-t}(B_i)$

•
$$B_i \cap A = \emptyset \Longrightarrow \rho(B_i) \cap \rho(A) = \emptyset \overset{\text{Baire}}{\Longrightarrow} \rho(B_i) \text{ not dense}$$

 Reciprocally if ρ(B_i) is not dense, there exists a ball B such that B ∩ ρ(B_i) = Ø. But B ∩ ρ(A) is not meager so by minimality of A one has ω(B ∩ ρ(A)) = A. One deduces the B_i ∩ A = Ø since element of B visit B_i finitely many time.

Thus

$$\overline{B} \cap A \neq \emptyset \iff \forall i, \quad \overline{B} \subset B_i \text{ and } B_i \cap A \neq \emptyset$$

$$\iff \forall i \quad \overline{B} \subset B_i \text{ and } \rho(B_i) \text{ dense}$$

$$\iff \forall i, j \quad \overline{B} \subset B_i \text{ and } \rho(B_i) \cap B_j \neq \emptyset$$

$$\iff \forall i, j, n \exists m \quad \overline{B} \subset B_i \text{ and } \bigcup_{t=n}^m F^{-t}(B_i) \cap B_j \neq \emptyset$$

Upper bound: metric attractor

Proposition

If A is a metric attractor, then it is a Π_2 set.

Let B_i be an ideal ball, denote $\rho(B_i) = \bigcap_n \bigcup_{t \ge n} F^{-t}(B_i)$

Upper bound: metric attractor

Proposition

If A is a metric attractor, then it is a Π_2 set.

Let B_i be an ideal ball, denote $\rho(B_i) = \bigcap_n \bigcup_{t \ge n} F^{-t}(B_i)$

• $B_i \cap A = \emptyset \Longrightarrow \rho(B_i) \cap \rho(A) = \emptyset \Longrightarrow \mu(\rho(B_i)) = 0$

Upper bound: metric attractor

Proposition

If A is a metric attractor, then it is a Π_2 set.

Let B_i be an ideal ball, denote $\rho(B_i) = \bigcap_n \bigcup_{t \ge n} F^{-t}(B_i)$

- $B_i \cap A = \emptyset \Longrightarrow \rho(B_i) \cap \rho(A) = \emptyset \Longrightarrow \mu(\rho(B_i)) = 0$
- if B_i ∩ A ≠ Ø, since A is the only metric attractor ∀_µx, ω(x) = A and visit B_i, so μ(ρ(Bi)) > 0

Thus

$$\begin{array}{rcl} \overline{B} \cap A \neq \varnothing & \iff & \forall i, & \overline{B} \subset B_i \text{ and } B_i \cap A \neq \varnothing \\ & \iff & \forall i, & \overline{B} \subset B_i \text{ and } \mu(\rho(B_i)) > 0 \\ & \iff & \forall i, j, n, \exists m, & \overline{B} \subset B_i \text{ and } \mu\left(\bigcup_{t=n}^m F^{-t}(B_i) \cap B_j\right) > 0 \end{array}$$

These bounds are tight for Cantor

Theorem

There exists a computable map $F : X \to X$ with a Π_2 -complete invariant subset A which is the unique attractor of F in both, the topological and metric sense.

Let $X = \{0, 1, S\}^{\mathbb{N}}$ and $F : X \to X$ which acts on $x = u_0 Su_1 Su_2 Su_3 Su_4 Su_5 \dots$ by

Theorem

There exists a computable map $F : X \to X$ with a Π_2 -complete invariant subset A which is the unique attractor of F in both, the topological and metric sense.

Let $X = \{0, 1, S\}^{\mathbb{N}}$ and $F : X \to X$ which acts on $x = u_0 S u_1 S u_2 S u_3 S u_4 S u_5 \dots$ by • u_0 is shifted to the left;

Theorem

There exists a computable map $F : X \to X$ with a Π_2 -complete invariant subset A which is the unique attractor of F in both, the topological and metric sense.

Let $X = \{0, 1, S\}^{\mathbb{N}}$ and $F : X \to X$ which acts on $x = u_0 Su_1 Su_2 Su_3 Su_4 Su_5 \dots$ by

- u_0 is shifted to the left;
- the first *S* travels to the right at speed one pouching the rest of the configuration;

Theorem

There exists a computable map $F : X \to X$ with a Π_2 -complete invariant subset A which is the unique attractor of F in both, the topological and metric sense.

Let $X = \{0, 1, S\}^{\mathbb{N}}$ and $F : X \to X$ which acts on $x = u_0 Su_1 Su_2 Su_3 Su_4 Su_5 \dots$ by

- u_0 is shifted to the left;
- the first *S* travels to the right at speed one pouching the rest of the configuration;
- if there is no 1 in u_0 , the first S let a block of 1 pass;

Theorem

There exists a computable map $F : X \to X$ with a Π_2 -complete invariant subset A which is the unique attractor of F in both, the topological and metric sense.

Let $X = \{0, 1, S\}^{\mathbb{N}}$ and $F : X \to X$ which acts on $x = u_0 Su_1 Su_2 Su_3 Su_4 Su_5 \dots$ by

- u_0 is shifted to the left;
- the first *S* travels to the right at speed one pouching the rest of the configuration;
- if there is no 1 in u_0 , the first S let a block of 1 pass;
- the $k^{\text{th}} S$ at position *i* lets 01¹0 pass iff \mathcal{M}_i halts on the *k* first input in less than *i* steps.

Theorem

There exists a computable map $F: X \to X$ with a Π_2 -complete invariant subset A which is the unique attractor of F in both, the topological and metric sense.

Let $X = \{0, 1, S\}^{\mathbb{N}}$ and $F : X \to X$ which acts on $x = u_0 Su_1 Su_2 Su_3 Su_4 Su_5 \dots$ by

- u_0 is shifted to the left;
- the first S travels to the right at speed one pouching the rest of the configuration;
- if there is no 1 in u_0 , the first S let a block of 1 pass;
- the $k^{\text{th}} S$ at position *i* lets 01¹0 pass iff \mathcal{M}_i halts on the *k* first input in less than *i* steps.

Consider $G \subset X$ be the set of configurations which contain infinitely many symbols S, and infinitely many blocks of 1's of all lengths. For all $x \in G$ one has

$$\omega(x) = A_{\mathcal{T}ot} = \left\{ y \in \{0,1\}^{\mathbb{N}} : y \text{ contains at most one block } 01'0 \text{ iff } I \in \mathcal{T}ot \right\}$$

Theorem

There exists a computable map $F : X \to X$ with a Π_2 -complete invariant subset A which is the unique attractor of F in both, the topological and metric sense.

Let $X = \{0, 1, S\}^{\mathbb{N}}$ and $F : X \to X$ which acts on $x = u_0 Su_1 Su_2 Su_3 Su_4 Su_5 \dots$ by

- u_0 is shifted to the left;
- the first S travels to the right at speed one pouching the rest of the configuration;
- if there is no 1 in u_0 , the first S let a block of 1 pass;
- the $k^{\text{th}} S$ at position *i* lets 01^{*i*}0 pass iff \mathcal{M}_i halts on the *k* first input in less than *i* steps.

Consider $G \subset X$ be the set of configurations which contain infinitely many symbols S, and infinitely many blocks of 1's of all lengths. For all $x \in G$ one has

$$\omega(x) = A_{\mathcal{T}ot} = \left\{ y \in \{0,1\}^{\mathbb{N}} : y \text{ contains at most one block } 01'0 \text{ iff } l \in \mathcal{T}ot \right\}$$

In particular

$$A_{\mathcal{T}ot} \cap [01^n 0]_0 \neq \emptyset \Longleftrightarrow n \in \overline{\mathcal{T}ot}.$$

Corollary

There exist computable maps $F': X \longrightarrow X$ and $F'': X \longrightarrow X$ such that:

- F': computable metric attractor and Π_2 -complete topological attractor.
- F'': Π_2 -complete metric attractor and computable topological attractor.

Let $X = \{0, 1, S\}^{\mathbb{N}} \times \{a, b\}^{\mathbb{N}}$.

Corollary

There exist computable maps $F': X \longrightarrow X$ and $F'': X \longrightarrow X$ such that:

- F': computable metric attractor and Π_2 -complete topological attractor.
- F'': Π_2 -complete metric attractor and computable topological attractor.

Let $X = \{0, 1, S\}^{\mathbb{N}} \times \{a, b\}^{\mathbb{N}}$.

Consider F' similar to the previous F on the first coordinate and the shift on the second but the first S let pass a block at position i iff there is a^{2i} on the second

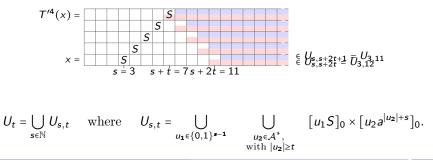
Corollary

There exist computable maps $F': X \longrightarrow X$ and $F'': X \longrightarrow X$ such that:

- F': computable metric attractor and Π_2 -complete topological attractor.
- F'': Π_2 -complete metric attractor and computable topological attractor.

Let $X = \{0, 1, S\}^{\mathbb{N}} \times \{a, b\}^{\mathbb{N}}$.

Consider F' similar to the previous F on the first coordinate and the shift on the second but the first S let pass a block at position i iff there is a^{2i} on the second



Corollary

There exist computable maps $F': X \longrightarrow X$ and $F'': X \longrightarrow X$ such that:

- F': computable metric attractor and Π_2 -complete topological attractor.
- F'': Π_2 -complete metric attractor and computable topological attractor.

Let
$$X = \{0, 1, S\}^{\mathbb{N}} \times \{a, b\}^{\mathbb{N}}$$
.

$$U_t = \bigcup_{s \in \mathbb{N}} U_{s,t} \quad \text{where} \quad U_{s,t} = \bigcup_{u_1 \in \{0,1\}^{s-1}} \quad \bigcup_{\substack{u_2 \in \mathcal{A}^*, \\ \text{with } |u_2| \geq t}} [u_1 S]_0 \times [u_2 a^{|u_2|+s}]_0.$$

One has

$$\lambda(U_{s,t}) \leq \frac{1}{3} \times \left(\frac{2}{3}\right)^{s-1} \times \sum_{t' \geq t} \left(\frac{1}{2}\right)^{t'+s} = \left(\frac{2}{3}\right)^s \times \frac{1}{2^{t+s}} \leq \left(\frac{2}{3}\right)^s \times \frac{1}{2^t}.$$

So $\lambda(U_t) \leq \frac{3}{2^t}$ and clearly $G' = \bigcap_{t \in \mathbb{N}} U_t$ is a dense G_{δ} of measure 0.

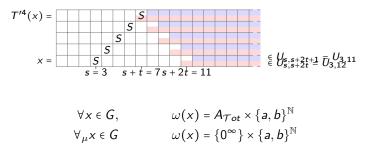
Corollary

There exist computable maps $F': X \longrightarrow X$ and $F'': X \longrightarrow X$ such that:

- F': computable metric attractor and Π_2 -complete topological attractor.
- F'': Π_2 -complete metric attractor and computable topological attractor.

Let $X = \{0, 1, S\}^{\mathbb{N}} \times \{a, b\}^{\mathbb{N}}$.

Consider F' similar to the previous F on the first coordinate and the shift on the second but the first S let pass a block at position i iff there is a^{2i} on the second

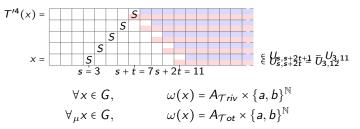


Corollary

There exist computable maps $F': X \longrightarrow X$ and $F'': X \longrightarrow X$ such that:

- F': computable metric attractor and Π_2 -complete topological attractor.
- F'': Π_2 -complete metric attractor and computable topological attractor.

Let $X = \{0, 1, S\}^{\mathbb{N}} \times \{a, b\}^{\mathbb{N}}$. Consider F'' similar to the previous F on the first coordinate and the shift on the second but the first S at position i produces all blocks 01'0 with $l \le i$ if there is a^{2i} on the second.



A statistical attractor if there exists μ a *F*-invariant measure such that

- $\operatorname{supp}(\mu) = A$
- $\mu = \lim_{N \to \infty} \delta_{F^n(x)}$ for μ -almost $x \in X$.

Proposition

A physical attractor of a computable map is Σ_2 -computable.

Theorem

There exists a computable map $F: \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ with a Σ_2 -complete statistical attractor.

Interval maps with computationally complex attractors

Theorem

Let $F : \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ computable. Then there exists a computable cantor set $\mathcal{C} \subset [0,1]$ and a computable map $f : [0,1] \to [0,1]$ preserving \mathcal{C} such that:

- $\phi: \{0,1\}^{\mathbb{N}} \to \mathcal{C}$ computable conjugacy F to f over \mathcal{C} ,
- for Lebesgue almost every $x \in [0,1]$, $\omega_f(x) \subset C$,
- if F has a metric or statistical attractor, then $\mathcal{A} = \phi(\mathcal{A}) \subset \mathcal{C}$ is an attractor for f of the same type.

Interval maps with computationally complex attractors

Theorem

Let $F : \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ computable. Then there exists a computable cantor set $\mathcal{C} \subset [0,1]$ and a computable map $f : [0,1] \to [0,1]$ preserving \mathcal{C} such that:

- $\phi: \{0,1\}^{\mathbb{N}} \to \mathcal{C}$ computable conjugacy F to f over \mathcal{C} ,
- for Lebesgue almost every $x \in [0,1]$, $\omega_f(x) \subset C$,
- if F has a metric or statistical attractor, then $\mathcal{A} = \phi(\mathcal{A}) \subset \mathcal{C}$ is an attractor for f of the same type.

Corollary

There exist a computable map $f : [0,1] \rightarrow [0,1]$ and $A \subset [0,1]$ such that:

- A is Π₁-complete;
- A is a transitive metric and statistical attractor for f.

Interval maps with computationally complex attractors

Theorem

Let $F : \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ computable. Then there exists a computable cantor set $\mathcal{C} \subset [0,1]$ and a computable map $f : [0,1] \to [0,1]$ preserving \mathcal{C} such that:

- $\phi: \{0,1\}^{\mathbb{N}} \to \mathcal{C}$ computable conjugacy F to f over \mathcal{C} ,
- for Lebesgue almost every $x \in [0,1]$, $\omega_f(x) \subset C$,
- if F has a metric or statistical attractor, then $\mathcal{A} = \phi(\mathcal{A}) \subset \mathcal{C}$ is an attractor for f of the same type.

Corollary

There exist a computable map $f : [0,1] \rightarrow [0,1]$ and $A \subset [0,1]$ such that:

- A is Π₁-complete;
- A is a transitive metric and statistical attractor for f.

Corollary

There exist a computable map $f : [0,1] \rightarrow [0,1]$ with a Π_2 -complete metric attractor.

Let F be a cellular automaton which admits X as topological attractor and Y as metric attractor and F acts as the shift on X and Y then:

- X and Y are Π_2 -computable;
- $Y \subset X$;
- X and Y are chain transitive.

Let F be a cellular automaton which admits X as topological attractor and Y as metric attractor and F acts as the shift on X and Y then:

- X and Y are Π_2 -computable;
- $Y \subset X$;
- X and Y are chain transitive.

Theorem (Herrera-Törmä-S-23)

Let $Y \subset X \subset \mathcal{A}^{\mathbb{Z}}$ such that X, Y are Π_2 -subshift chain-mixing. There exists $\mathcal{B} \supset \mathcal{A}$ and a cellular automaton $F : \mathcal{B}^{\mathbb{Z}} \longrightarrow \mathcal{B}^{\mathbb{Z}}$ such that

- Y is a metric attractor of F.
- X is a metric attractor of F.