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Dynamical Systems

Discrete dynamical Systems: F ∶ X Ð→ X where X is compact and F continuous
Continuous dynamical Systems: ϕ ∶ R × X Ð→ X where X is compact and F

continuous

It is possible to compute the asymptotic behavior (i.e. attractor)?

D. Graça, C. Rojas, and N. Zhong. Computing geometric lorenz attractors with
arbitrary precision, 2018.
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Algorithmical complexity of entropy

Entropy is the most popular dynamical invariant, it measures the quantity of
information to encode a trajectory. Two point of view to link with computability:

Natural question of Milnor-2002:
"given an explicit (finitely described) dynamical system and given ε > 0,

is it possible to compute the associated topological entropy
with a maximum error of ε?"

▸ Uncomputabilitty of the entropy for different classes of dynamical systems
(cellular automata (Hurd-Kari-Culik-92), iterated piecewise affine maps
(Koiran-01)...)

▸ Upper and lower bounds for computable dynamical
systems(Gangloff-Herrera-Rojas-S-2019)

Characterization of the possible entropies of a countable class of dynamical
systems

▸ Characterization of the possible entropy of multidimensional SFT
(Hochaman-Meyerovitch-2009)

▸ Characterization of the possible entropy of multidimensional SFT under some
dynamical conditions (Gangloff-20)
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Computable space

(X ,d ,S) is a Computable space if
▸ (X ,d) metric space;
▸ S = {si ∶ i ∈ N} countable dense set of X ;
▸ there exists an algorithm T ∶ N3 Ð→ Q such that

∣d(si , sj) − T (i , j ,n)∣ ≤ 2−n

Ideal Ball: B(x , r) where x ∈ S and r ∈ Q+
Denote (Bn)n∈N an enumeration of the ideal balls
x ∈ X is computable if {x} = ⋂n∈I Bn for some I r.e.

Examples:

(AN,d ,S) where A is a finite alphabet, d(x , y) = 2{−minn∶xn≠yn} and
S = {ua∞ ∶ u ∈ A∗}

([0,1],d , [0,1] ∩Q) where d(x , y) = ∣x − y ∣
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Computable map

F ∶ X Ð→ X is computable if there exists an algorithm which given as input some
integer n, enumerates a set In such that

F−1(Bn) = ⋃
i∈In

Bi

Equivalently, there exists two algorithms: T1 ∶ N→ N and T2 ∶ N×N→ S such that
d(x , y) ≤ T1(n) Ô⇒ d(F (x),F (y)) ≤ n
d(F (si),T2(i ,n)) ≤ 2−n

Examples:

F ∶ AN Ð→ AN is computable if to know F (x)[0,n], there exists an algorithm
which say how many bit of x and then with these bits compute F (x)[0,n].

A cellular automata is a computable map

F ∶ [0,1] Ð→ [0,1], F (x) =
⎧⎪⎪⎨⎪⎪⎩

2x if x < 1
2

2 − 2x if x ≥ 1
2
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Different notions of attractors (following Milnor-85)

Accumulation points of an orbit:

ω(x) = ⋂
N
⋃
n≥N

F n(x)

Realm of topological attraction of the closed set A ⊂ X :

ρ(A) = {x ∈ X ∶ ω(x) ⊂ A}

A closed set A ⊂ X is

a metric attractor if
▸ µ(ρ(A)) = 1
▸ there is no strictly smaller closed set A′ ⊂ A such that µ(ρ(A′)) > 0

a topological attractor if
▸ ρ(A) is generic
▸ there is no strictly smaller closed set A′ ⊂ A such that ρ(A′) is not meager

a statistical attractor if there exists µ a F -invariant measure such that
▸ supp(µ) = A
▸ µ = limN ∑n≤N δFn(x) for µ-almost x ∈ X .
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Computability of closed sets

Let K ⊂ X be a compact set, define the inner and outer collection of ideal balls:

Bin(K) = {i ∈ N ∶ Bi ∩K ≠ ∅} and Bout(K) = {i ∈ N ∶ Bi ∩K ≠ ∅}

K is Σn-computable if Bin(K) is Σn-computable
K is Σn-complete if Bin(K) is Σn-complete

K is Πn-computable if Bout(K) is Πn-computable
K is Πn-complete if Bout(K) is Πn-complete
K is ∆n-computable if K is Σn-computable and Πn-computable

Remarque: If X is the Cantor space then Bin(K) = Bout(K).
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Summary

Theorem Rojas-S-23
Let F ∶ X Ð→ X be a computable map, λ a computable reference measure and A
be a closed subset of X which is invariant by T .

If A is a topological attractor, then it is a Π2 set.
If A is a metric attractor, then it is a Π2 set.
If A is a statistical attractor, then it is Σ2.

Moreover the bounds are tight in the class of the action on a Cantor set.

Proposition Rojas-S-23
Let A be a metric or a topological attractor

If A is strongly attracting, then it is Π1.
If the action of T is minimal on A and A is Πi computable then it is also Σi .

General upper bounds 7 / 17



Strongly attracting set: Upper bound

A is strongly attracting if there exists a neighborhood U of A such that

F (U) ⊂ U and A = ⋂
n
F n(A)

Proposition
Let A be a topological or metric attractor, if A is strongly attracting, then it is Π1.

Since A is compact, there exists a finite set I such that

A ⊂ ⋃
i∈I

Bi ⊂ ⋃
i∈I

Bi ⊂ U

Thus

B ∩A ≠ ∅ ⇐⇒ ∀n, B ∩ F n (⋃
i∈I

Bi) ≠ ∅

General upper bounds 8 / 17



Strongly attracting set: the bound is tight

Theorem
There exists a computable map F ∶ {0,1}N → {0,1}N and A ⊂ X such that:
i) A is Π1-complete.
ii) A is the topological and metric attractor of F which are strongly attracting.
iii) A is the statistical attractor of F . In particular, the unique physical measure

of the system is non computable.

x = 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1
i = 2 i = 4 i = 9 i = 11

l = 1 l = 6 l = 1 l = 2

F(x) = 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1

F shift the block 01l0 at position
i iff l > i orMl does not halt in
less than i steps.

The topological and metric attractor strongly attracting of F is

A = ⋂
n
F n(X ) = {x ∈ {0,1}N ∶ 01l0 /⊏ x iffMl halts}

In particular
A ∩ [01n0]0 ≠ ∅ ⇐⇒ n ∈ Halt.
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Upper bound: topological attractor

Proposition
If A is a topological attractor, then it is a Π2 set.

Let Bi be an ideal ball, denote ρ(Bi) = ⋂n⋃t≥n F−t(Bi)

Bi ∩A = ∅ Ô⇒ ρ(Bi) ∩ ρ(A) = ∅ BaireÔ⇒ ρ(Bi)not dense
Reciprocally if ρ(Bi) is not dense, there exists a ball B such that
B ∩ ρ(Bi) = ∅. But B ∩ ρ(A) is not meager so by minimality of A one has
ω(B ∩ ρ(A)) = A. One deduces the Bi ∩A = ∅ since element of B visit Bi
finitely many time.

Thus

B ∩A ≠ ∅ ⇐⇒ ∀i , B ⊂ Bi and Bi ∩A ≠ ∅
⇐⇒ ∀i B ⊂ Bi and ρ(Bi) dense
⇐⇒ ∀i , j B ⊂ Bi and ρ(Bi) ∩Bj ≠ ∅

⇐⇒ ∀i , j ,n∃m B ⊂ Bi and
m
⋃
t=n

F−t(Bi) ∩Bj ≠ ∅
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Upper bound: metric attractor

Proposition
If A is a metric attractor, then it is a Π2 set.

Let Bi be an ideal ball, denote ρ(Bi) = ⋂n⋃t≥n F−t(Bi)

Bi ∩A = ∅ Ô⇒ ρ(Bi) ∩ ρ(A) = ∅Ô⇒µ(ρ(Bi)) = 0
if Bi ∩A ≠ ∅, since A is the only metric attractor ∀µx , ω(x) = A and visit Bi ,
so µ(ρ(Bi)) > 0

Thus

B ∩A ≠ ∅ ⇐⇒ ∀i , B ⊂ Bi and Bi ∩A ≠ ∅
⇐⇒ ∀i , B ⊂ Bi and µ(ρ(Bi)) > 0

⇐⇒ ∀i , j ,n,∃m, B ⊂ Bi and µ(
m
⋃
t=n
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These bounds are tight for Cantor

Theorem
There exists a computable map F ∶ X → X with a Π2-complete invariant subset A
which is the unique attractor of F in both, the topological and metric sense.

Let X = {0,1,S}N and F ∶ X → X which acts on x = u0Su1Su2Su3Su4Su5 . . . by

u0 is shifted to the left;
the first S travels to the right at speed one pouching the rest of the
configuration;
if there is no 1 in u0, the first S let a block of 1 pass;
the kth S at position i lets 01l0 pass iffMl halts on the k first input in less
than i steps.

Consider G ⊂ X be the set of configurations which contain infinitely many symbols
S , and infinitely many blocks of 1’s of all lengths. For all x ∈ G one has

ω(x) = AT ot = {y ∈ {0,1}N ∶ y contains at most one block 01l0 iff l ∈ T ot}

In particular
AT ot ∩ [01n0]0 ≠ ∅ ⇐⇒ n ∈ T ot.

The bounds are tight for the Cantor set 12 / 17
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Wild cantor attractors exist

Corollary
There exist computable maps F ′ ∶ X Ð→ X and F ′′ ∶ X Ð→ X such that:

F ′: computable metric attractor and Π2-complete topological attractor.
F ′′: Π2-complete metric attractor and computable topological attractor.

Let X = {0,1,S}N × {a,b}N.
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× ∑
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Physical attractor

A statistical attractor if there exists µ a F -invariant measure such that
supp(µ) = A
µ = limN ∑n≤N δFn(x) for µ-almost x ∈ X .

Proposition
A physical attractor of a computable map is Σ2-computable.

Theorem
There exists a computable map F ∶ {0,1}N → {0,1}N with a Σ2-complete
statistical attractor.

The bounds are tight for the Cantor set 14 / 17



Interval maps with computationally complex attractors

Theorem
Let F ∶ {0,1}N → {0,1}N computable. Then there exists a computable cantor set
C ⊂ [0,1] and a computable map f ∶ [0,1] → [0,1] preserving C such that:

φ ∶ {0,1}N → C computable conjugacy F to f over C,
for Lebesgue almost every x ∈ [0,1], ωf (x) ⊂ C,
if F has a metric or statistical attractor, then A = φ(A) ⊂ C is an attractor for
f of the same type.

Corollary
There exist a computable map f ∶ [0,1] → [0,1] and A ⊂ [0,1] such that:

A is Π1-complete;
A is a transitive metric and statistical attractor for f .

Corollary
There exist a computable map f ∶ [0,1] → [0,1] with a Π2-complete metric
attractor.
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Characterization for the Cellular automaton

Let F be a cellular automaton which admits X as topological attractor and Y as
metric attractor and F acts as the shift on X and Y then:

X and Y are Π2-computable;
Y ⊂ X ;
X and Y are chain transitive.

Theorem (Herrera-Törmä-S-23)
Let Y ⊂ X ⊂ AZ such that X ,Y are Π2-subshift chain-mixing.
There exists B ⊃ A and a cellular automaton F ∶ BZ Ð→ BZ such that

Y is a metric attractor of F .
X is a metric attractor of F .
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