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Dynamical Systems

Discrete dynamical Systems: F : X — X where X is compact and F continuous

Continuous dynamical Systems: ¢ : R x X — X where X is compact and F
continuous

It is possible to compute the asymptotic behavior (i.e. attractor)?
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Algorithmical complexity of entropy

Entropy is the most popular dynamical invariant, it measures the quantity of
information to encode a trajectory. Two point of view to link with computability:
o Natural question of Milnor-2002:
"given an explicit (finitely described) dynamical system and given ¢ > 0,
is it possible to compute the associated topological entropy
with a maximum error of €?"

» Uncomputabilitty of the entropy for different classes of dynamical systems
(cellular automata (Hurd-Kari-Culik-92), iterated piecewise affine maps
(Koiran-01)...)

» Upper and lower bounds for computable dynamical
systems (Gangloff-Herrera-Rojas-5-2019)
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(cellular automata (Hurd-Kari-Culik-92), iterated piecewise affine maps
(Koiran-01)...)

» Upper and lower bounds for computable dynamical
systems (Gangloff-Herrera-Rojas-5-2019)

@ Characterization of the possible entropies of a countable class of dynamical
systems

» Characterization of the possible entropy of multidimensional SFT
(Hochaman-Meyerovitch-2009)

» Characterization of the possible entropy of multidimensional SFT under some
dynamical conditions (Gangloff-20)
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Computable space

e (X,d,S) is a Computable space if
» (X, d) metric space;
» § = {s;: i e N} countable dense set of X;
» there exists an algorithm 7 : N® — @ such that

|d(si,s) =T (i,j,n)| <27"
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Computable map

F : X — X is computable if there exists an algorithm which given as input some
integer n, enumerates a set /, such that

F(B,) =B

i€l,
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Examples:
o F: AN — ANis computable if to know F(x)[g a], there exists an algorithm
which say how many bit of x and then with these bits compute F(x)[o,n]-
@ A cellular automata is a computable map

2x if x<

oF:[071:|—>|:0,1],F(X):{2_2X if x>

NI=N[=

Some definitions 4 /17



Different notions of attractors (following Milnor-85)

Accumulation points of an orbit:

w() =NU F(x)

N n>=N

Realm of topological attraction of the closed set Ac X:

p(A) ={xe X :w(x)c A}
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Different notions of attractors (following Milnor-85)

Accumulation points of an orbit:

w() =NU F(x)

N n>=N

Realm of topological attraction of the closed set Ac X:

p(A) ={xe X :w(x)c A}
A closed set Ac X is

@ a metric attractor if

- 1(p(A)) = 1

» there is no strictly smaller closed set A’ c A such that pu(p(A")) >0
@ a topological attractor if

» p(A) is generic

» there is no strictly smaller closed set A’ c A such that p(A’) is not meager
@ a statistical attractor if there exists ;1 a F-invariant measure such that

> supp(p) = A

> p=limy Y ey O0pn(x) for p-almost x € X.
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Computability of closed sets

Let K ¢ X be a compact set, define the inner and outer collection of ideal balls:
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Bin(K)={ieN:BnK # o} and Bowr(K)={ieN:BinK % &}

e Kis X,-computable if Bj,(K) is ,-computable
K is X,-complete if B;,(K) is L,-complete

K is Mp,-computable if By, (K) is MN,-computable
K is M,-complete if Bo,:(K) is M,-complete

K is A,-computable if K is X ,-computable and I,-computable

Remarque: If X is the Cantor space then B;,(K) = Bou:(K).
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Summary

Theorem Rojas-S-23

Let F: X — X be a computable map, A a computable reference measure and A

be a closed subset of X which is invariant by T.
o If Ais a topological attractor, then it is a [, set.
o If Ais a metric attractor, then it is a I, set.
o If Ais a statistical attractor, then it is Y.

Moreover the bounds are tight in the class of the action on a Cantor set.

Proposition Rojas-5-23
Let A be a metric or a topological attractor

o If A is strongly attracting, then it is ;.

o If the action of T is minimal on A and A is I1; computable then it is also ¥ ;.

General upper bounds
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Strongly attracting set: Upper bound

A is strongly attracting if there exists a neighborhood U of A such that

F(U)c U and A=(F"(A)

Proposition

Let A be a topological or metric attractor, if A is strongly attracting, then it is ;.

Since A is compact, there exists a finite set / such that
AcUBiclJBicU

iel iel

Thus
BnA+g <= Vn, BmF"(UB;)#@

iel
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Strongly attracting set: the bound is tight

Theorem
There exists a computable map F: {0,1}" - {0,1}" and A c X such that:
i) Ais -complete.
ii) Ais the topological and metric attractor of F which are strongly attracting.

iii) A is the statistical attractor of F. In particular, the unique physical measure
of the system is non computable.
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I:1 —Il=6
x = [1]0 [0[1[0[ [ [ [0[0[ [0[ [ [ [o] - F shift the block 010 at position
i=2 i-a i=oi=1 i iff I >1ior M; does not halt in
/ A l l l l l l / less than i steps.
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Upper bound: topological attractor

Proposition
If Ais a topological attractor, then it is a [, set. J

Let B; be an ideal ball, denote p(B;) = N, Ussn FH(B;)
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Upper bound: metric attractor
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Upper bound: metric attractor

Proposition

If Ais a metric attractor, then it is a [, set.

Let B; be an ideal ball, denote p(B;) =N, Uwn F5(B;)
@ BnA=g = p(B;)np(A) =a=—=pu(p(B;)) =0

e if Bin A+ g, since A is the only metric attractor V,x,w(x) = A and visit B;,
so 1(p(Bi)) >0
Thus

BnA+g <= Vi, BcBiand BnA+g
<~ Vi, BcB;and u(p(B;))>0

J— m
< Vi, j,n,Am, BcB;and “(U Ft(B;) ﬂBJ-) 50
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General upper bounds 11 / 17



These bounds are tight for Cantor

Theorem

There exists a computable map F : X — X with a lN-complete invariant subset A
which is the unique attractor of F in both, the topological and metric sense.

Let X = {0,1,5}N and F : X - X which acts on x = ugSu; Sup SuzSusSus . .. by

The bounds are tight for the Cantor set 12 / 17
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Wild cantor attractors exist

Corollary

There exist computable maps F/: X — X and F” : X — X such that:
@ F’: computable metric attractor and lN,-complete topological attractor.
@ F": MNy-complete metric attractor and computable topological attractor.
Let X = {0,1,S} x {a, b}".

The bounds are tight for the Cantor set 13 / 17
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Wild cantor attractors exist

Corollary
There exist computable maps F/: X — X and F” : X — X such that:
@ F’: computable metric attractor and lN,-complete topological attractor.
@ F": MNy-complete metric attractor and computable topological attractor.
Let X = {0,1,S} x {a, b}".
Consider F”" similar to the previous F on the first coordinate and the shift on the

second but the first S at position i produces all blocks 01/0 with / < i if there is
a®’ on the second.

T*(x) = S |
S g
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Physical attractor

A statistical attractor if there exists u a F-invariant measure such that

o supp(p) = A
o p=limy Y,y dFn(x) for p-almost x € X.

Proposition

A physical attractor of a computable map is ¥>-computable.

Theorem

There exists a computable map F : {0, 1} — {0, 1} with a ¥,-complete
statistical attractor.

The bounds are tight for the Cantor set 14 / 17



Interval maps with computationally complex attractors

Theorem

Let F:{0,1}" - {0,1}" computable. Then there exists a computable cantor set
C c[0,1] and a computable map f : [0,1] — [0, 1] preserving C such that:

e ¢:{0,1}" - C computable conjugacy F to f over C,
o for Lebesgue almost every x € [0,1], wr(x) cC,

o if F has a metric or statistical attractor, then A = ¢(A) c C is an attractor for
f of the same type.

Interval 15 / 17
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e ¢:{0,1}" - C computable conjugacy F to f over C,
o for Lebesgue almost every x € [0,1], wr(x) cC,

o if F has a metric or statistical attractor, then A = ¢(A) c C is an attractor for
f of the same type.

Corollary
There exist a computable map 7 :[0,1] - [0,1] and A c [0, 1] such that:
o Ais lNi-complete;

@ A is a transitive metric and statistical attractor for f.
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e ¢:{0,1}" - C computable conjugacy F to f over C,
o for Lebesgue almost every x € [0,1], wr(x) cC,

o if F has a metric or statistical attractor, then A = ¢(A) c C is an attractor for
f of the same type.

Corollary

There exist a computable map 7 :[0,1] - [0,1] and A c [0, 1] such that:
o Ais lNi-complete;

@ A is a transitive metric and statistical attractor for f.

Corollary

There exist a computable map f: [0,1] — [0, 1] with a M-complete metric
attractor.
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Characterization for the Cellular automaton

Let F be a cellular automaton which admits X as topological attractor and Y as
metric attractor and F acts as the shift on X and Y then:

e X and Y are lNy-computable;
e YclJX,

@ X and Y are chain transitive.
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e X and Y are lNy-computable;
e YclJX,

@ X and Y are chain transitive.

Theorem (Herrera-Térma-S-23)

Let Y c X c A% such that X, Y are My-subshift chain-mixing.

There exists B> A and a cellular automaton F : BZ — B% such that
@ Y is a metric attractor of F.

@ X is a metric attractor of F.
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