FO-model checking on tame classes of graphs A survey

Fatemeh Ghasemi

∂IFFERENCE

Orléans, January 2024

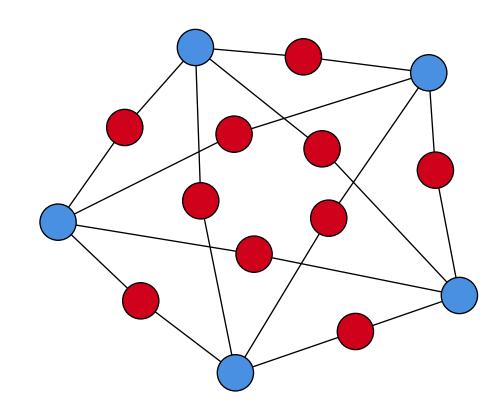
Bounded tree-width

Bounded tree-width

Nowhere dense

A class \mathcal{C} is nowhere dense if for a *r*-subdivided K_t as a subgraph.

A class \mathscr{C} is nowhere dense if for all $r \in \mathbb{N}$ there exists $t \in \mathbb{N}$ such that all graphs of \mathscr{C} exclude



1-subdivided K_5

Bounded tree-width

 \subseteq Nowhere dense

Bounded tree-width \subseteq

Excluding minors

 \subseteq Nowhere dense

\subseteq Excluding minors Bounded tree-width

have *H* as a minor.

Example:

A class \mathscr{C} excludes a minor when there exists a graph H such that for all graphs $G \in \mathscr{C}$, G does not

• Graph with tree-width less than 2 (trees) exclude cycles. • Planar graphs exclude $K_{3,3}$ and K_5 as minors. • Graphs with tree-width equal to 2 exclude K_4 as minor.

Bounded tree-width \subseteq

Excluding minors

 \subseteq Nowhere dense

Bounded tree-width \subseteq

Excluding minors

Bounded expansion \subseteq \subseteq

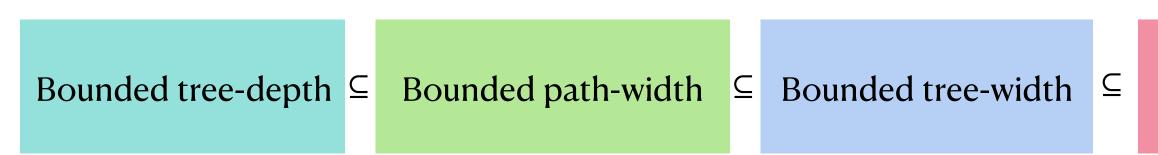
Bounded tree-depth \subseteq	Bounded path-width	\subseteq	Bounded tree-width	\subseteq	E

Excluding minors

 \subseteq Bounded expansion \subseteq

FO-model checking on a class % of graphs

Input : A first order formula φ of quantifier rank q and a graph $G \in \mathscr{C}$. Output: Deciding whether $G \models \varphi$.



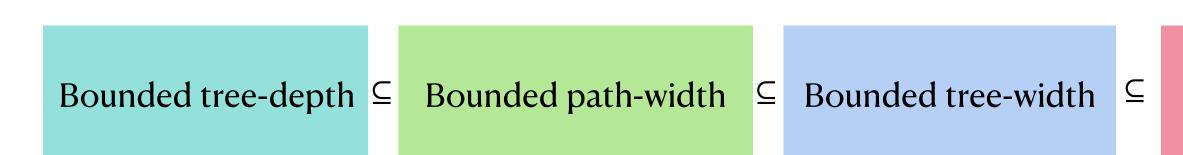
Excluding minors

 \subseteq Bounded expansion \subseteq

Can we FO-model check efficiently?

depending only on k.

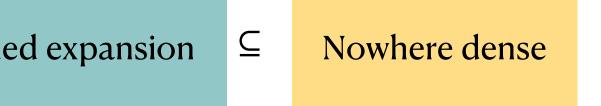
Example: Consider the complexity of database queries.

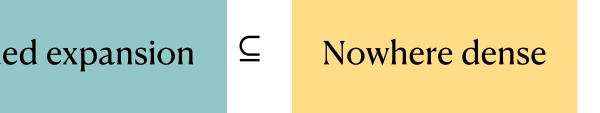


Fixed parameter tractable: A parameterized problem *L* is fixed-parameter tractable if the question " $(x, k) \in L$ " can be decided in running time $f(k) \cdot |x|^{O(1)}$, where f is an arbitrary function

Excluding minors

 \subseteq Bounded expansion \subseteq



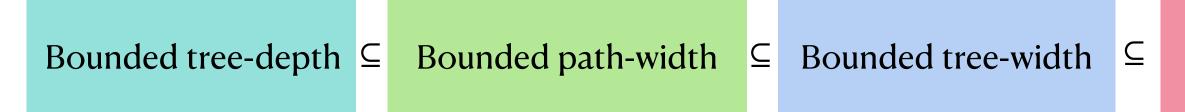


Grohe, Kreutzer and Siebertz, 2017:

- - efficiently.

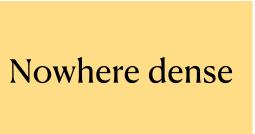
• FO-model checking on nowhere dense classes of graphs can be done in $f(|\phi|, \epsilon) \cdot |G|^{1+\epsilon}$ for any $\epsilon > 0$.

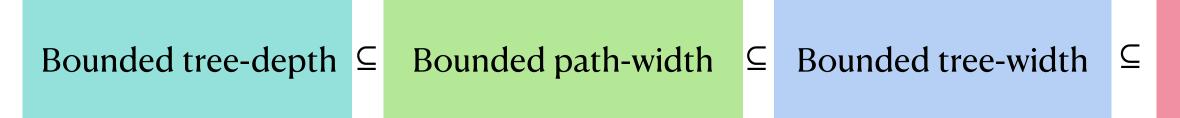
• For classes that are closed under taking subgraph, nowhere denseness is the barrier for FO-model checking



Excluding minors

Bounded expansion \subseteq \subseteq

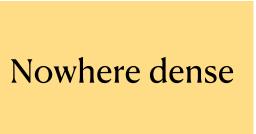




Bounded clique-width

Excluding minors

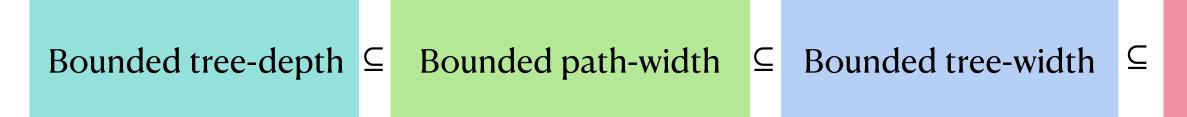
Bounded expansion \subseteq \subseteq



• Good parameter to treat dense classes of graphs.

• Clique-width of a clique is one.

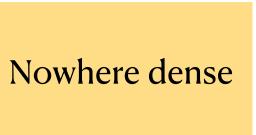
Courcelle et al., 2000: FO-model checking can be done in $f(|\varphi|) \cdot |G|^2$.

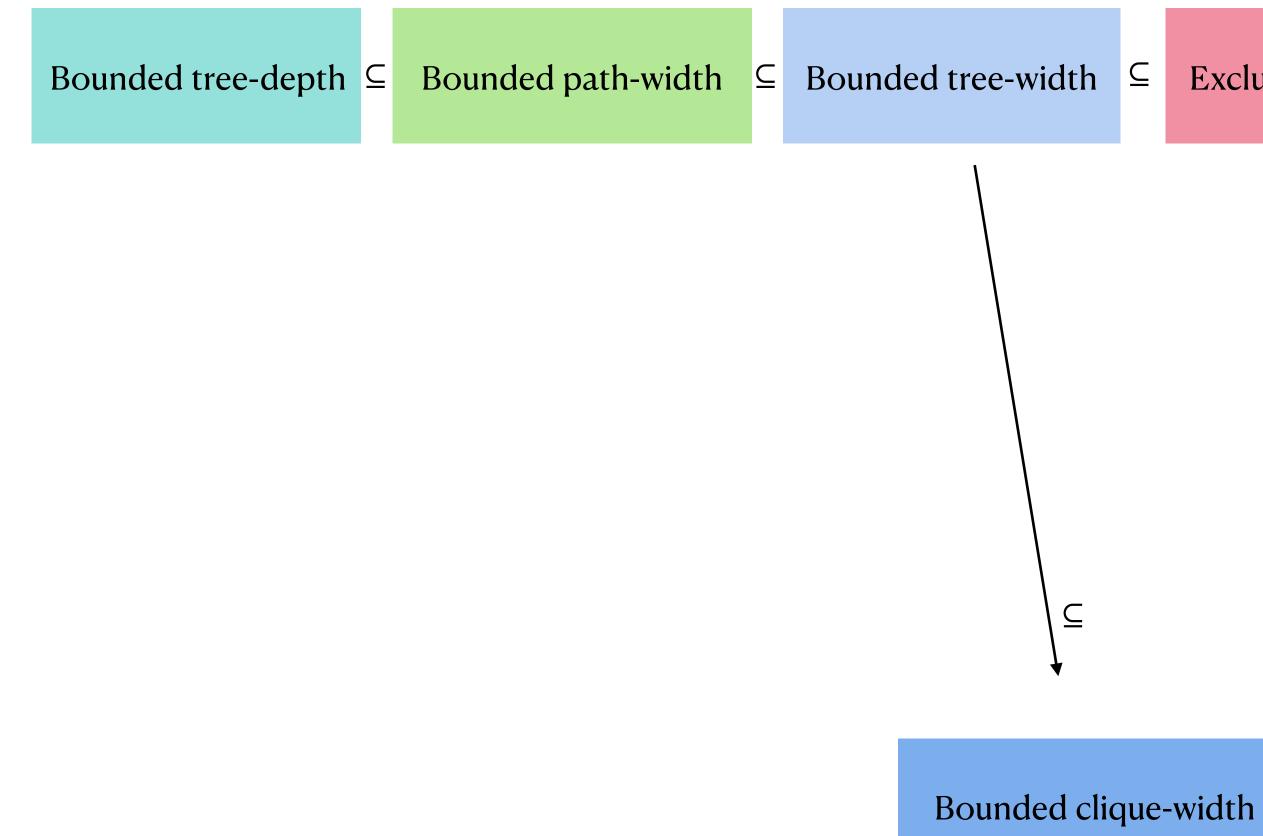


Bounded clique-width

Excluding minors

Bounded expansion \subseteq \subseteq



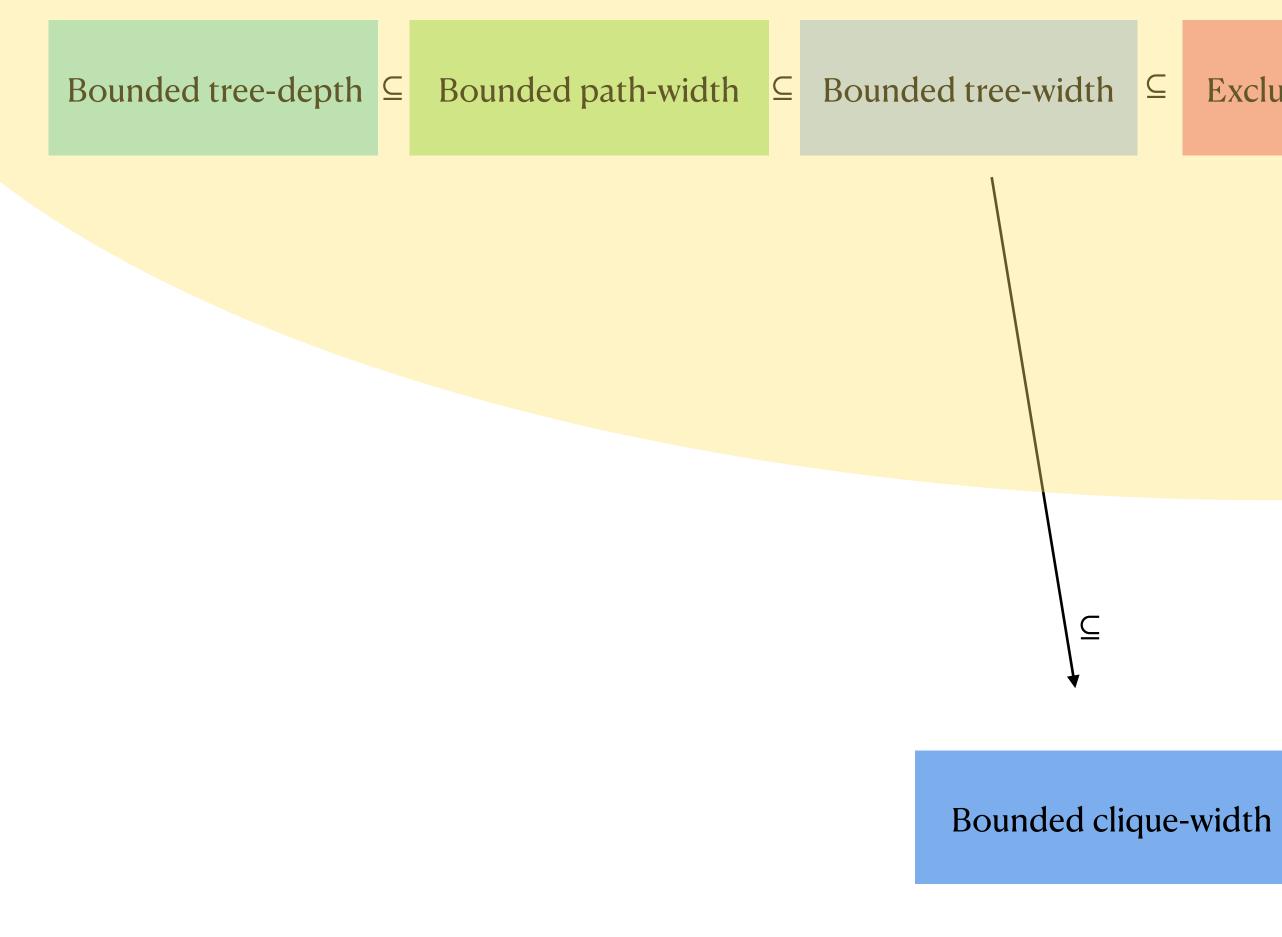


Excluding minors

Bounded expansion \subseteq

 \subseteq Nowhere dense

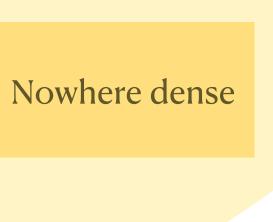




Excluding minors

Bounded expansion \subseteq \subseteq

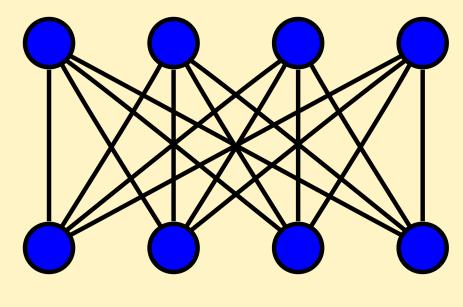
21



A class \mathscr{C} is weakly sparse if there exists $t \in \mathbb{N}$ such that for all graphs $G \in \mathscr{C}$, $K_{t,t}$ is not a subgraph of G.

Weakly sparse

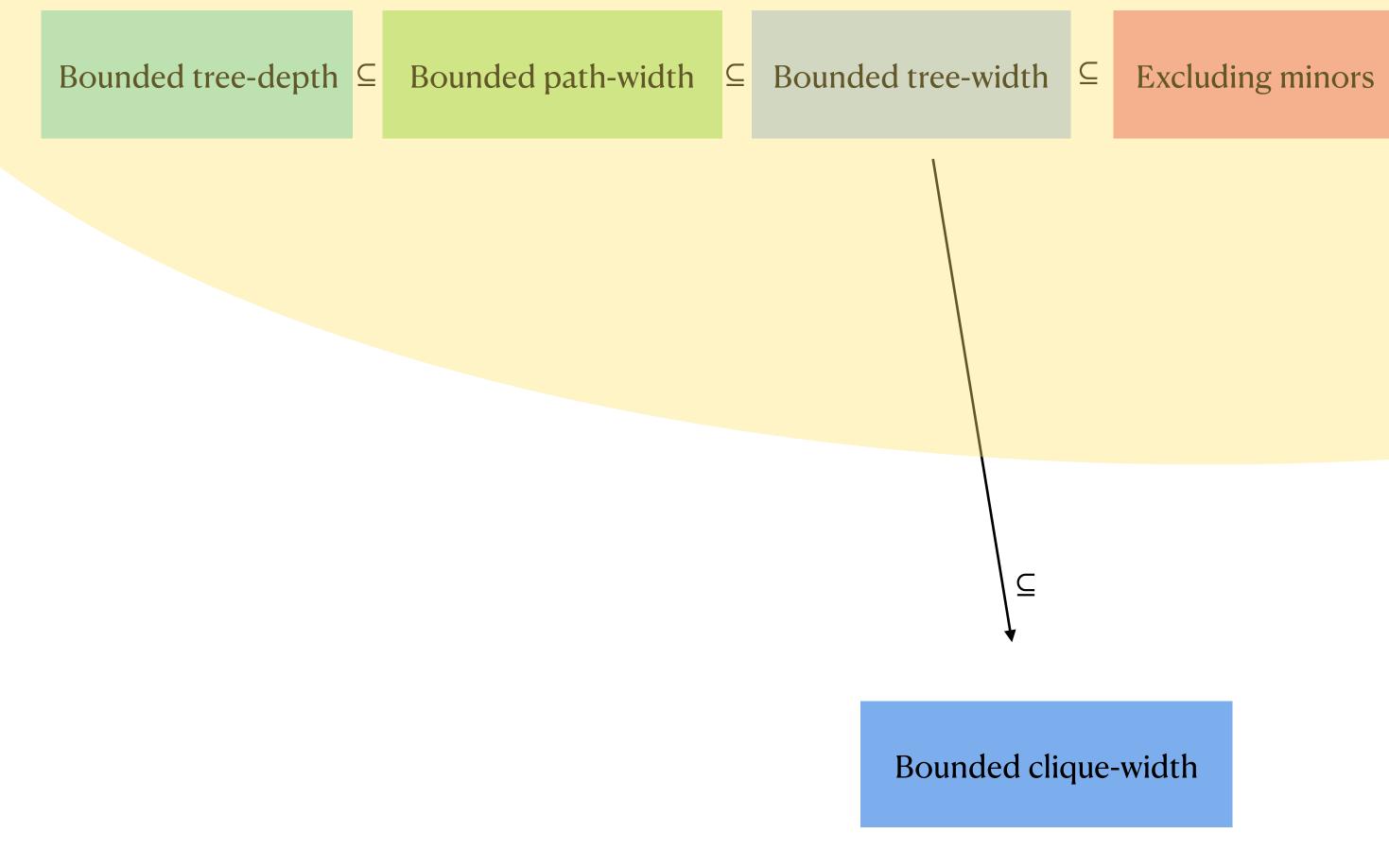
width \subseteq Bounded tree-width \subseteq Excluding minors



Bounded expansion \subseteq

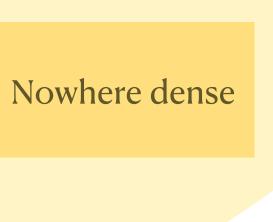
Nowhere dense

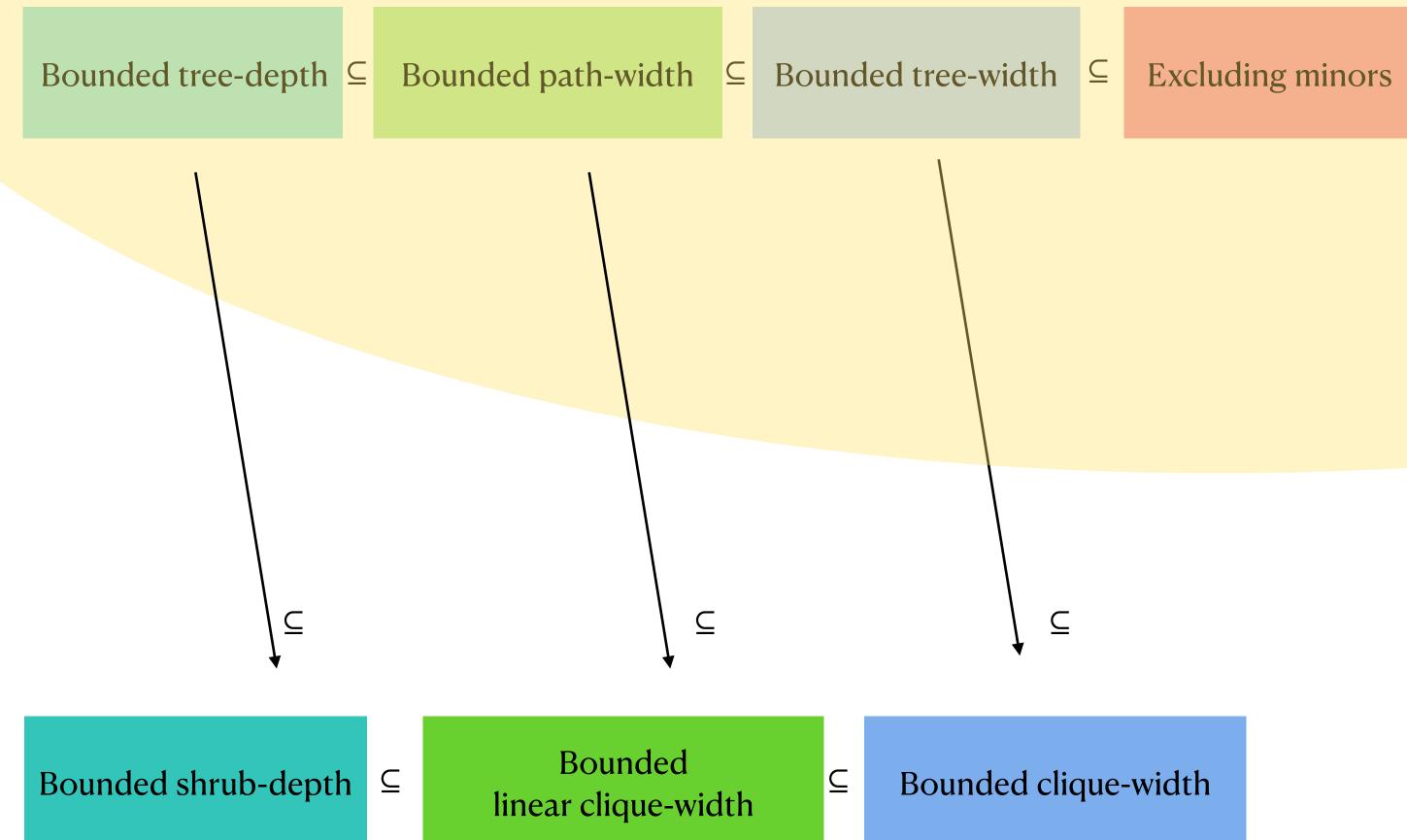
 \subseteq



Bounded expansion \subseteq \subseteq

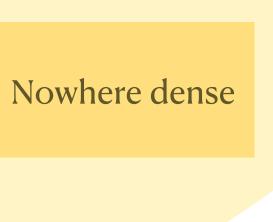
23

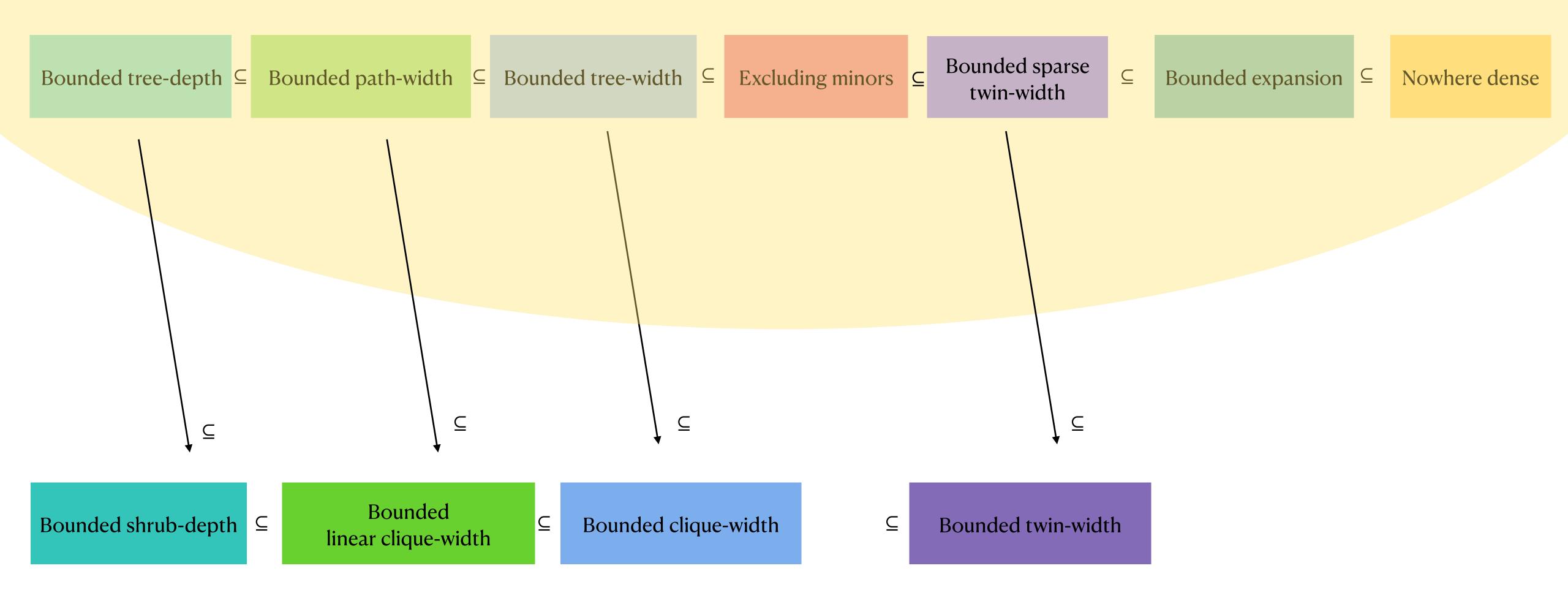


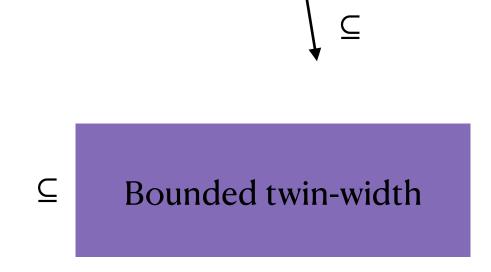


Bounded expansion \subseteq \subseteq

24

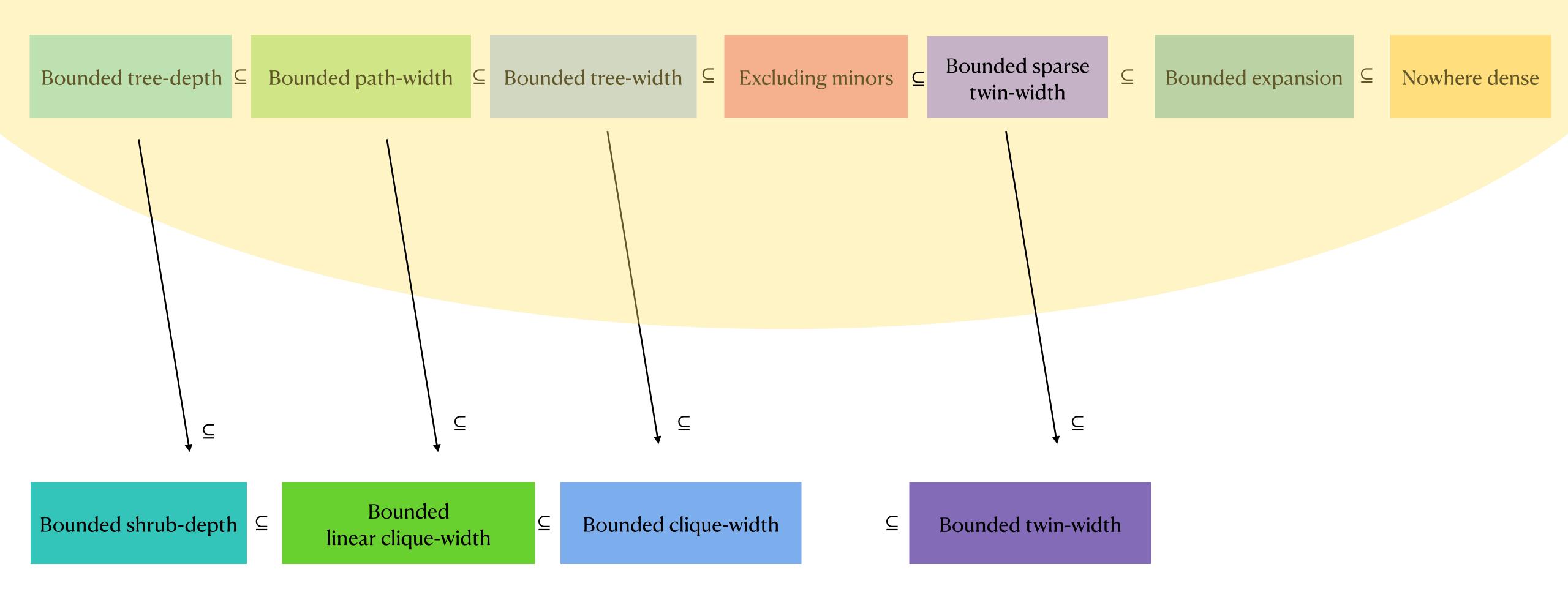






a suitable decomposition is given as additional input.

Bonnet et al., 2020: FO-model checking is fixed parameter tractable on classes of graphs with bounded twin-width if



FO-Interpretation: Let $\varphi(x, y)$ be a symmetric FO-formula. For a graph G, $\varphi(G)$ is the graph on the vertex set of G, where the edge relation is interpreted as φ indicates. $\varphi(G) = (V(G), \{uv \mid G \models \varphi(u, v)\})$ **Example:** Let $\varphi(u, v) = \neg E(u, v)$, then $\varphi(G) = \overline{G}$. **Example:** Let $\varphi(u, v) = \text{dist}_{<2}(u, v)$, then $\varphi(G) = G^2$.

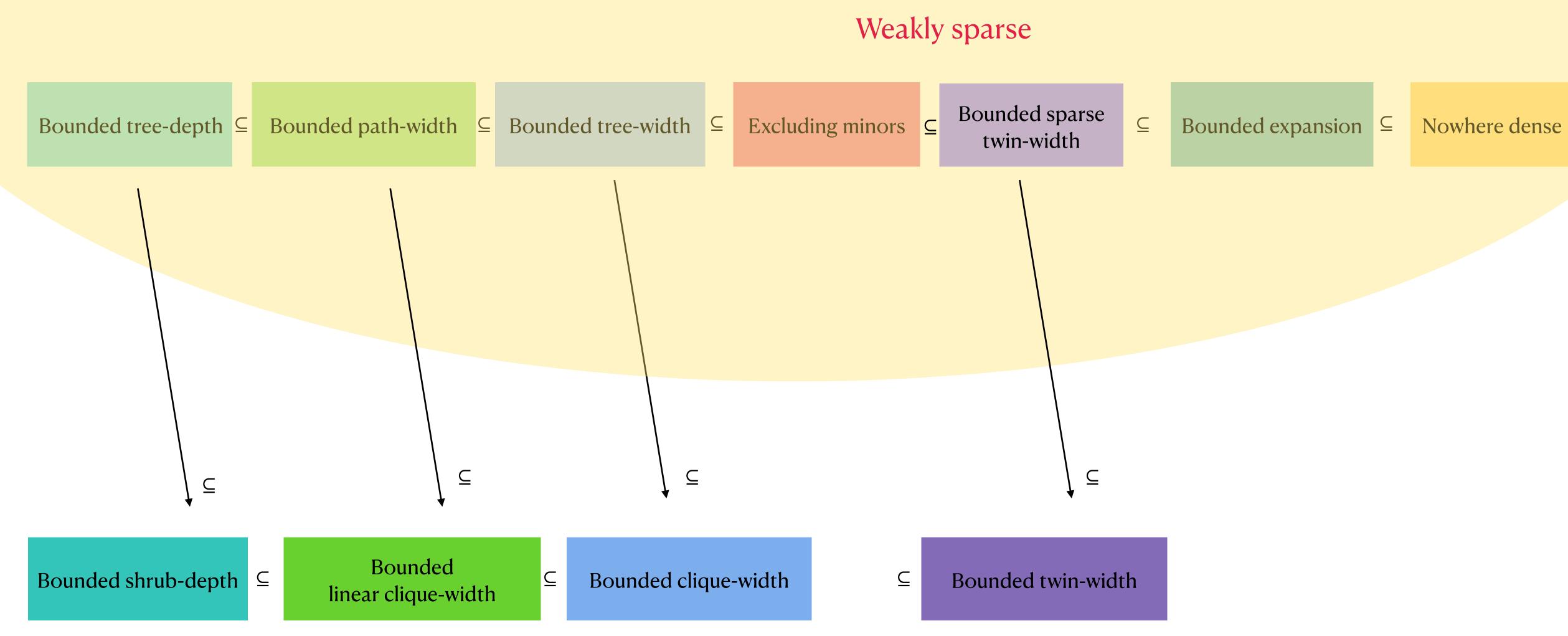
FO-Transduction: Let \mathscr{L} be a finite set of unary predicates. An FO-transduction is an FO-interpretation from \mathscr{L} -coloured graphs.

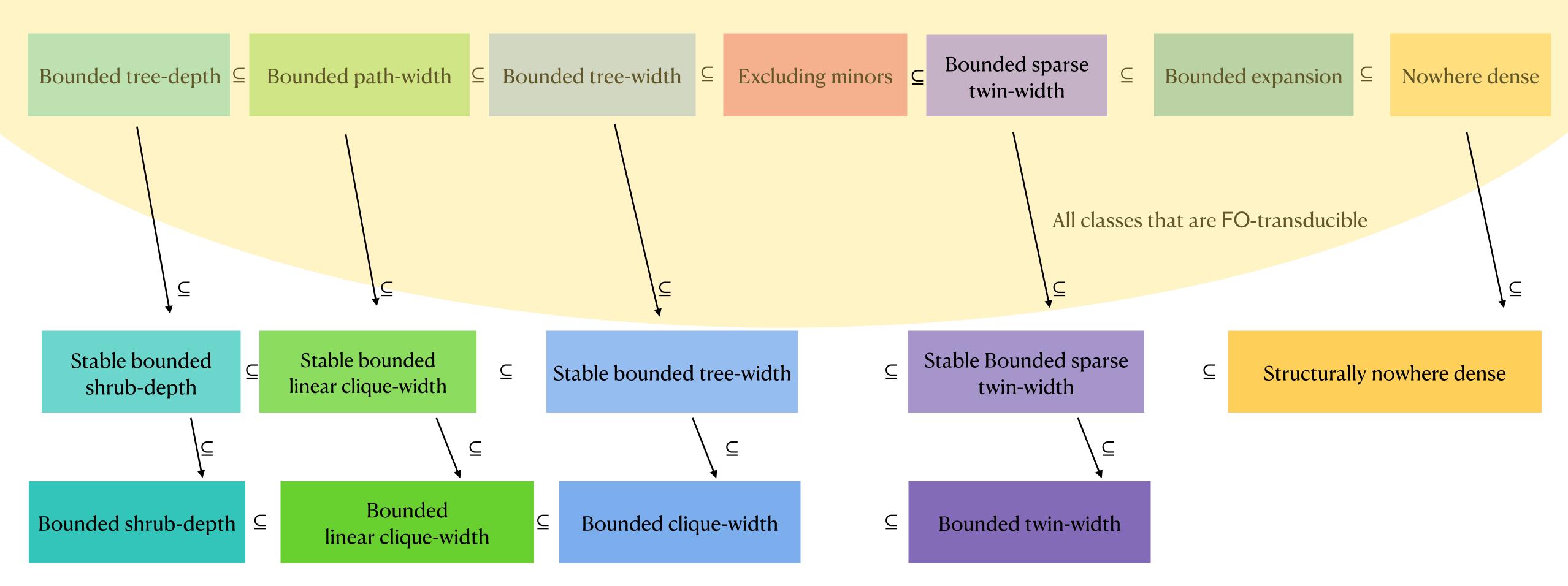
T(G) : all graphs obtainable by

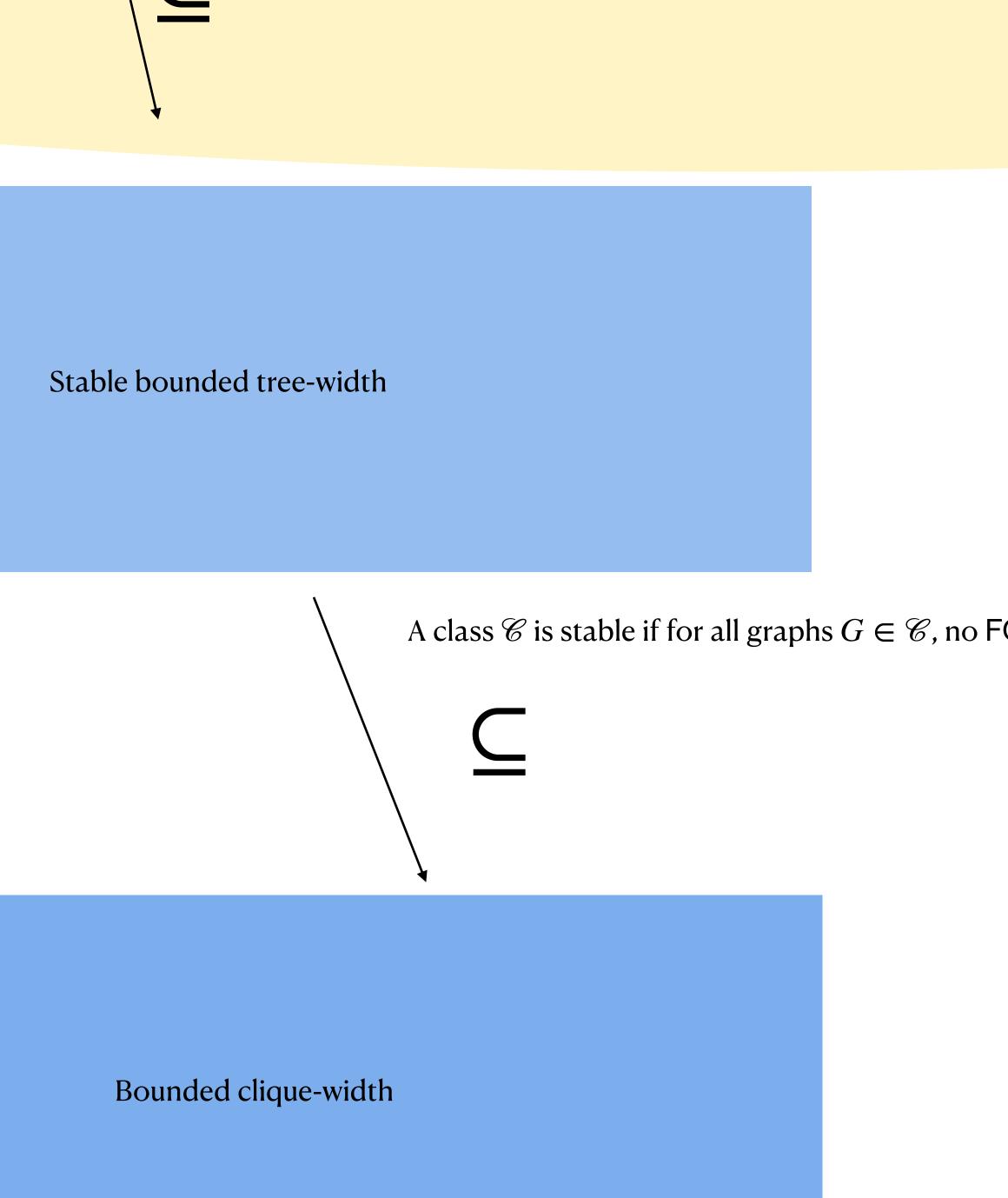
1. Colour G by colours from \mathscr{L} ,

2. Apply φ on the coloured graph,

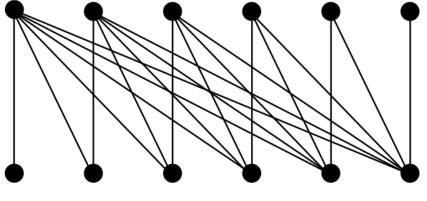
3. and take any induced subgraph.





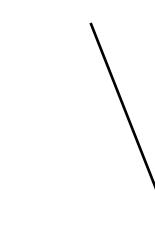


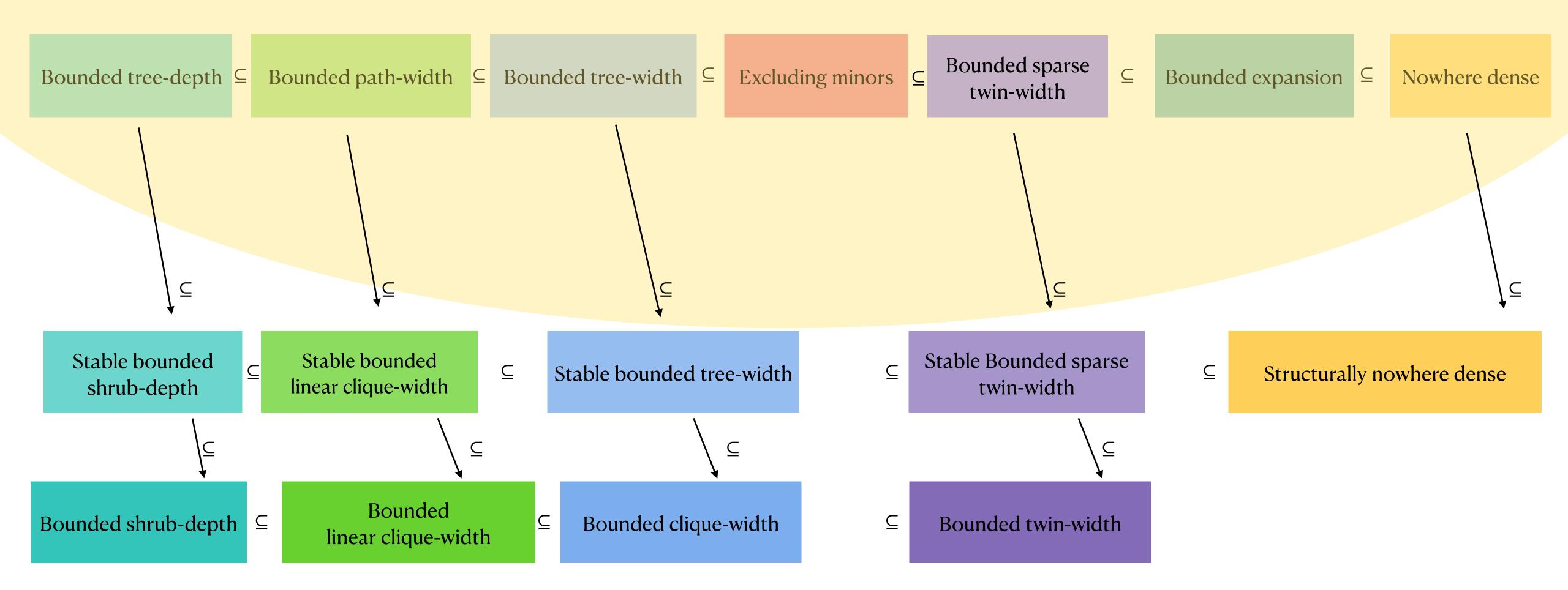
A class \mathscr{C} is stable if for all graphs $G \in \mathscr{C}$, no FO-transduction of arbitrary large ladders is an induced subgraph of G.

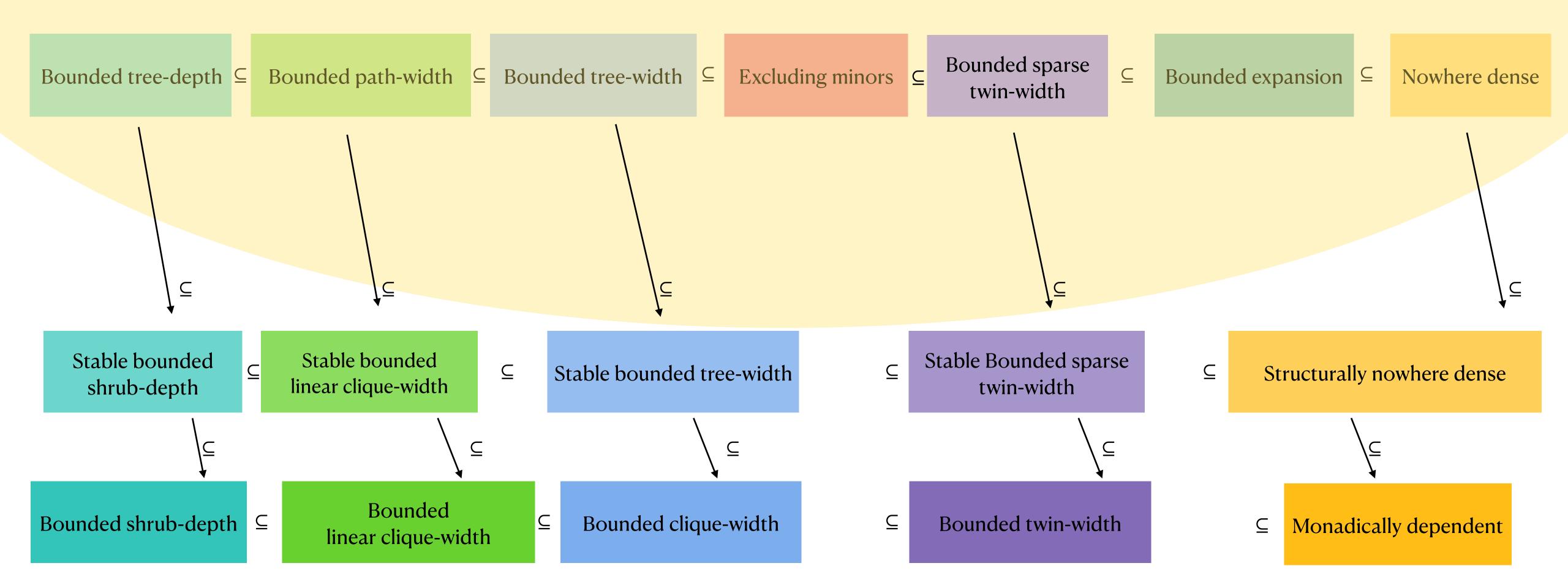


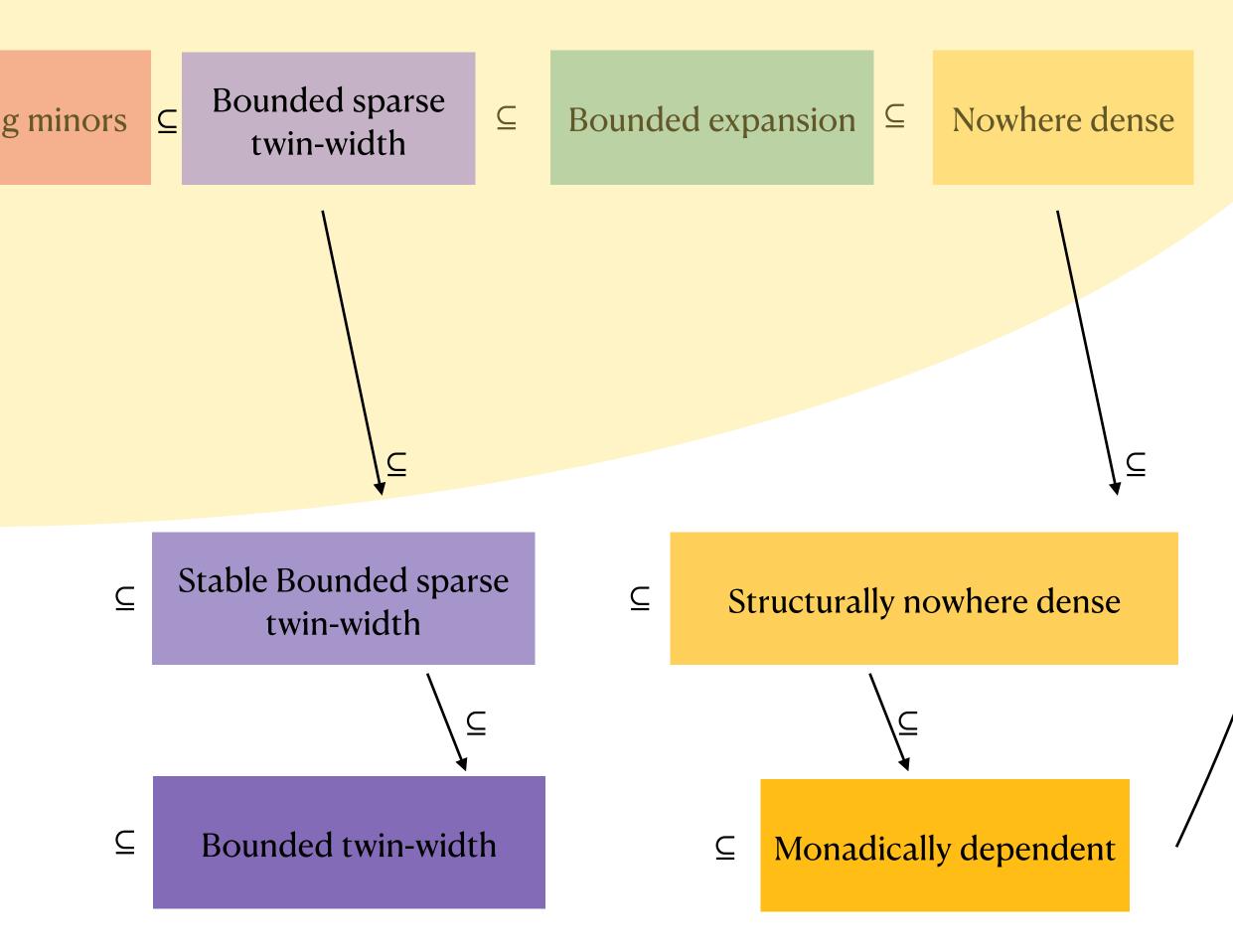
Ladder of length 6

Bounded twin-width

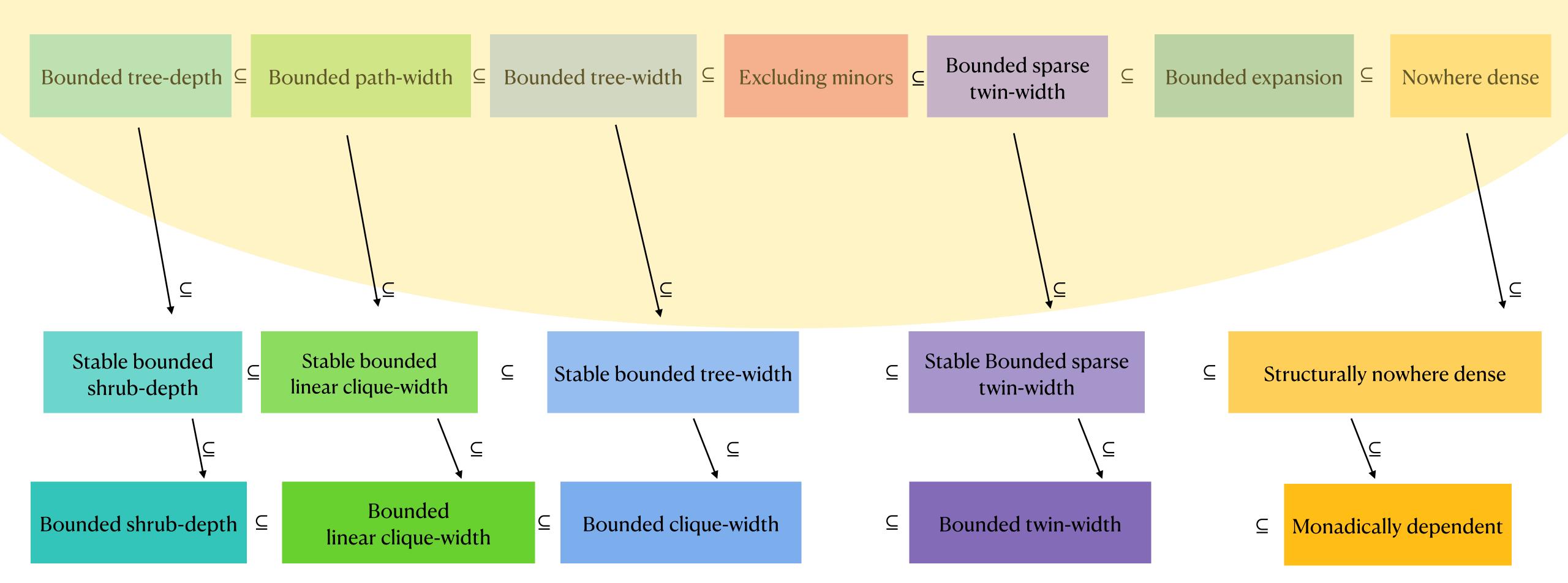


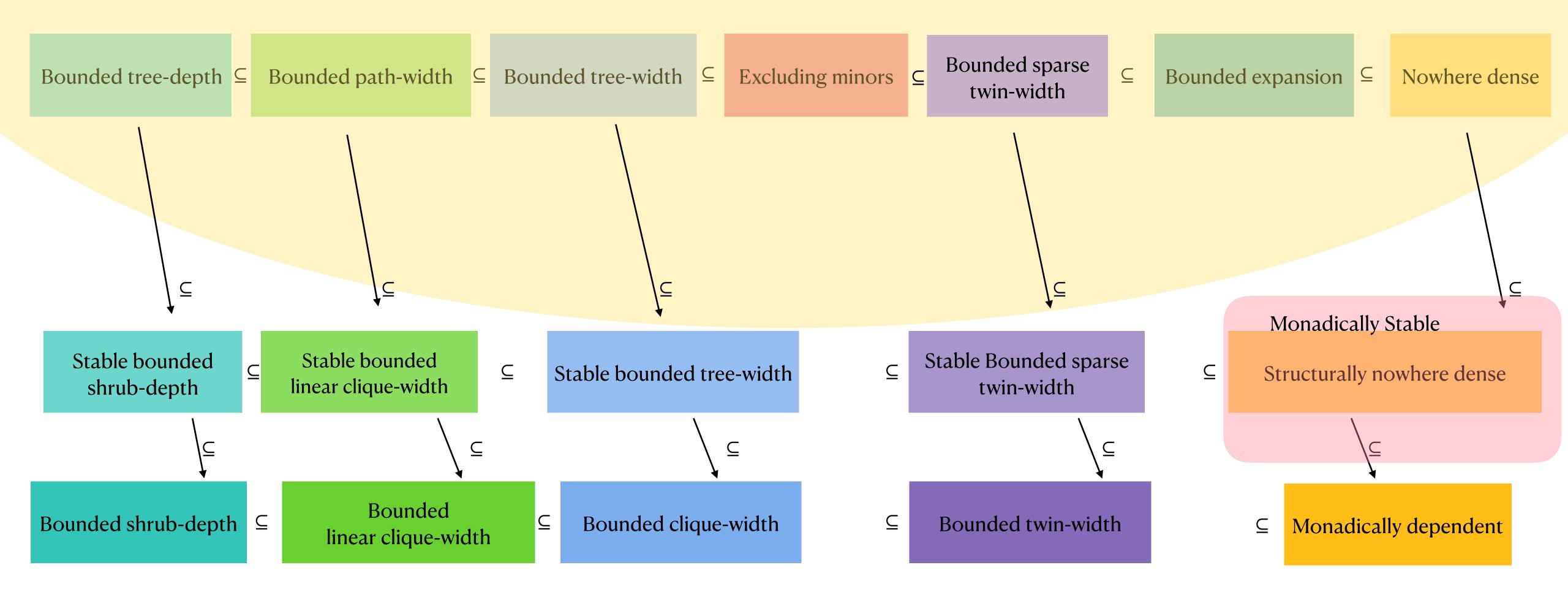


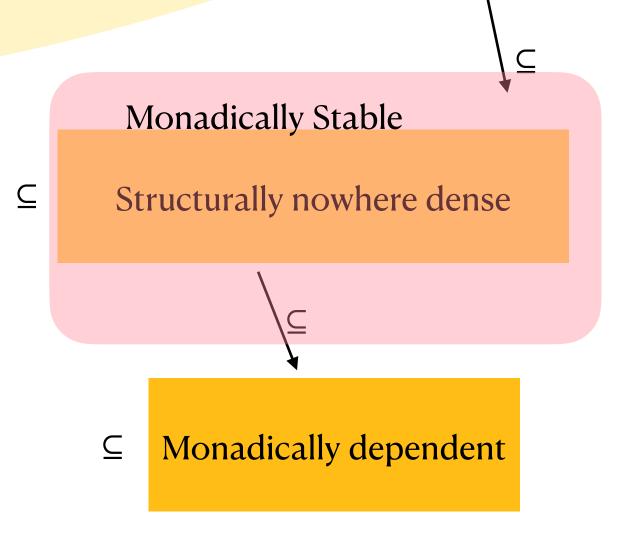




Dvorak, 2018: For weakly sparse classes of graphs, monadically dependent classes collapse to nowhere denseness.



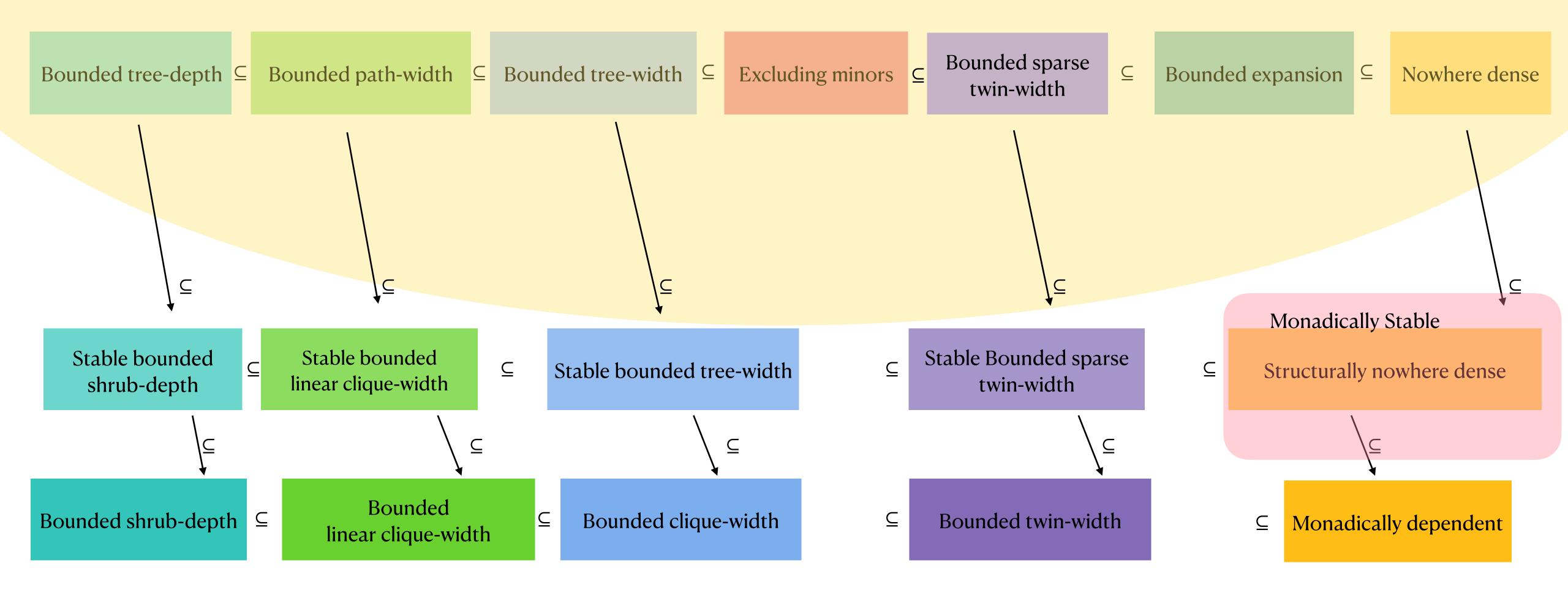


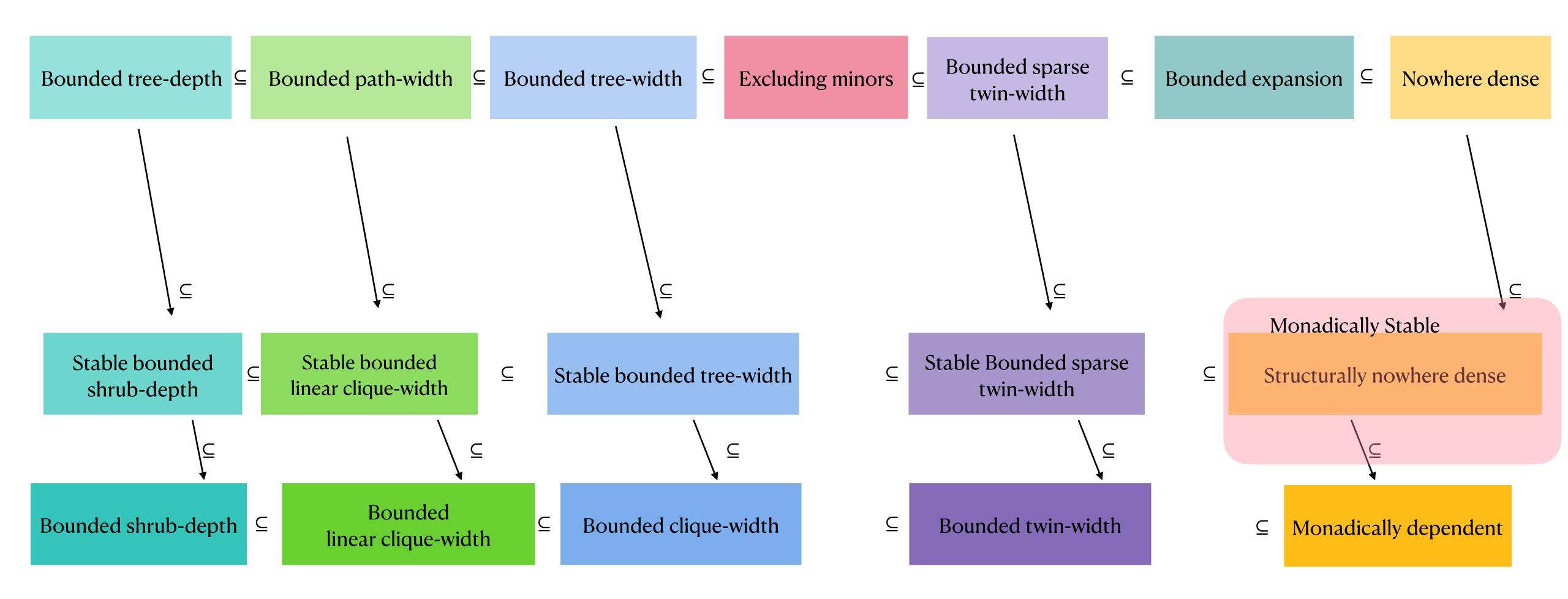


$f(|\varphi|) \cdot |G|^{11}.$

Dreier et al., 2023: FO-model checking on structurally nowhere dense classes of graphs can be done in

Dreier et al., 2023: FO-model checking on monadically stable classes can be done in $f(|\phi|, \epsilon) \cdot |G|^{5+\epsilon}$.





⊆ Monadically dependent

 \leq

A class \mathscr{C} is monadically dependent if the class of all graphs can not be transduced from \mathscr{C} .

Thank you!