@ By

R

Computability, Complexity and Programming
with Ordinary Differential Equations

Olivier Bournez

Laboratoire d'Informatique de I'X
CNRS, Ecole Polytechnique
Institut Polytechnique de Paris

Créteil
October 18, 2021

-"\ INSTITUT ><

§.8: POLYTECHNIQUE X
Y&V DE PARIS A

FRid @ 1epars

Menu

Analog Computations: Our actual motivation

How to compute an integral?

Our actual motivation

Understand how analog models compare to classical digital
models of computation.

» At computability level
> At complexity level.

Continuous time analog models correspond to various classes
of ordinary differential equations.

Discussing hardness of solving IVP according to various
classes of dynamics is basically discussing the computational
power of various classes of analog models.

Take home message

Turing machines ~ polynomial Ordinary Differential

Equations
le.

y = op(ty)
y(t) = Yo

where p is a (vector of) polynomials.

in a very very strong sense.

Programming with/Solving ODEs is simple and fun.

Take home message

m Turing machines ~ polynomial Ordinary Differential

Equations
le.

/

y = p(ty)
y(t) = Yo

where p is a (vector of) polynomials.

in a very very strong sense.
» Programming with/Solving ODEs is simple and fun.

m Analog's world: Many concepts from computer science can
be defined using polynomial ODEs

Computable functions.

Polynomial Time Computable Functions

NP, PSPACE, ...7?

Revisiting computation theory with pODEs ...

Bioinformatics (proteins) computations > Turing machines =

Classical computers.

vVVyYVYYVYY

v

Some basics concepts/remarks

f:RY— R?

f can be continuous, derivable, C*, ..., C*, analytic,
generable, . ..

Dynamical system:

» Discrete time: x;+1 = f(x;)

» Continuous time: x'(t) = f(x(t))

Computability # Complexity

Some basics concepts/remarks

f:RY— R?

f can be continuous, derivable, C*, ..., C*, analytic,
generable, . ..

Dynamical system:

» Discrete time: x;+1 = f(x;)

o AKA: Z(t) = = — f(x,), for f(x) = f(x) — x

1

» Continuous time: x'(t) = f(x(t))

Computability # Complexity

Menu

How to Compute with Iterations (dODEs)

Sub-menu

How to Compute with Iterations (dODEs)
Simulating Turing machines Over A Compact Domain

Turing Machines

Let M be some one tape Turing machine, with m states and
10 symbols.

If
..BBBa_ja_gi1...a_1a0a1...anBBB...

is the tape content of M, it can be seen as

y1i = 0.aa1...a,
Yo = 0.371372...3_;(

The configuration of M is then given by three values: its
internal state s, y1 and y».

Alternative View of a Turing Machine

yi = al0'4 41072+ ... 4a,107"!
ya = a_1107t 4251072 4 ...+ a_,107%

x(t+ 1) = f(x(t))

Turing Machine ‘

State Space
{q07 qi, - 7Qm—1} x

State (qi,a—m...a—1,a0...an)

Alternative View of a Turing Machine

yi = al0'4 41072+ ... 4a,107"!
yo = a-1107'+a 51072 4 . 4 a_k107% (2)

x(t+ 1) = f(x(t))

Turing Machine ‘

State Space State Space
{qo,ql,~~~ 7Qm—1} X" [Oam] X [0»1]

State (qj,a—m...a—1,a0---an) State x =(x =5+)2,y = y1)

Alternative View of a Turing Machine

o =
Y2 =

20107t + 211072 + ... + 2,107 "1
a-1107 4+ 221072 + ... + a_4107". (2)

x(t+ 1) = f(x(t))

Turing Machine

State Space

{q07q17"' 7Qm—1} x

State Space
[0, m] x [0, 1]

State (qi,a—m...a—1,a0...an)

State x =(x =5+)2,y = y1)

qi:

if 2 is read,
" then write 4; goto g2

Alternative View of a Turing Machine

o =
Y2 =

20107t + 2;1072 + ... + 3,107 "1
31107 +a2,1072 + ... + a_,107X.

x(t+ 1) = f(x(t))

()

Turing Machine

State Space

{q07q17"' 7Qm—1} x

State Space
[0, m] x [0, 1]

State (qi,a—m...a—1,a0...an)

State x =(x =5+)2,y = y1)

qi:

if 2 is read,
" then write 4; goto g2

0

= x+1 if{1§x<2
- 2 2 3
= y+tg wWSY<g

Alternative View of a Turing Machine

o =
Y2 =

20107t + 2;1072 + ... + 3,107 "1
31107 +a2,1072 + ... + a_,107X.

x(t+1)

= f(x(1))

()

Turing Machine

State Space

{q07q17"' 7Qm—1} x

State Space
[0, m] x [0, 1]

State (qi,a—m...a—1,a0...an)

State x =(x =5+)2,y = y1)

if 2 is read,

qi:

" then write 4; goto g2

0

= x+1 if{1§x<2
- 2 2 3
= y+tg wWSY<g

if 3is read,

gs: then move right; goto

q1

Alternative View of a Turing Machine

yi = al0'4 41072+ ... 4a,107"!
ya = a_1107t 4251072 4 ...+ a_,107%

x(t+ 1) = f(x(t))

Turing Machine ‘

State Space State Space
{%7‘717'” 7qm—1} X X* [Oam] X [071]
State (qj,a—m...a—1,a0---an) State x =(x =5+)2,y = y1)
if 2 is read, x = x4+1 . 1<x<?2
qi: o o 2 if g 2 3
then write 4; goto ¢ y = y+5 it <y <3
gs: Itfhznlsmrie\]/:’ right; goto { X Xl;os + % —4 if { Ssx<6
5: ;
y = 10y-3 F<y<+

q1

Alternative View of a Turing Machine

yi = al0'4 41072+ ... 4a,107"!
ya = a_1107t 4251072 4 ...+ a_,107%

x(t+ 1) = f(x(t))

Turing Machine ‘

State Space State Space
{%7‘717'” 7qm—1} X X* [Oam] X [071]
State (qj,a—m...a—1,a0---an) State x =(x =5+)2,y = y1)
if 2 is read, x = x4+1 . 1<x<?2
qi: o o 2 if g 2 3
then write 4; goto ¢ y = y+5 it <y <3
gs: Itfhznlsmrie\]/:’ right; goto { X Xl;os + % —4 if { Ssx<6
5: ;
a y = 10y-3 2<y<+
_if 5 is read,
%* then move left; goto g7

Alternative View of a Turing Machine

o =
Y2 =

20107t + 2;1072 + ... + 3,107 "1
31107 +a2,1072 + ... + a_,107X.

x(t+ 1) = f(x(t))

(2)

Turing Machine

State Space

State Space

{q07q17'” 7qm—1} X X" [Oam] X [071]
State (qi,a—m...a—1,a0...an) Statex=(x =5+)2,y = y1)
if 2 is read, x = x4+1 . 1<x<2
qi: .) L PR TS 3
then write 4; goto ¢ y = y+5 it <y <3
gs: Itfhznlsmrié\)/:’ right; goto { x = P-4 i { 5<x<6
> @ ' y = 10y-3 S<y<g
if 5 is read, 10(x - 3)—j+4

%* then move left; goto g7

{X =
YT 1yiO+ﬁj it
if{35+ﬁ§x6<3+1—0
10<Y<1

Alternative View of a Turing Machine

o =
Y2 =

20107t + 2;1072 + ... + 3,107 "1
31107 +a2,1072 + ... + a_,107X.

x(t+ 1) = f(x(t))

(2)

Turing Machine

State Space

State Space

{q07q17'” 7qm—1} X X" [Oam] X [071]
State (qi,a—m...a—1,a0...an) Statex=(x =5+)2,y = y1)
if 2 is read, x = x4+1 . 1<x<2
qi: .) L PR TS 3
then write 4; goto ¢ y = y+5 it <y <3
gs: Itfhznlsmrié\)/:’ right; goto { x = P-4 i { 5<x<6
> @ ' y = 10y-3 S<y<g
if 5 is read, 10(x - 3)—j+4

%* then move left; goto g7

{X =
o 1yiO+ﬁj j+l
if{ 3+ 4 <x<3+4

5 6
10 <Y<1s
for j € {0,1,..

.9l

Alternative View of a Turing Machine

o =
Y2 =

20107t + 2;1072 + ... + 3,107 "1
31107 +a2,1072 + ... + a_,107X.

x(t+ 1) = f(x(t))

(2)

Turing Machine PAM
State Space State Space
{qO,qu"' 7qm—1} X X" [Oam] X [071]
State (gi,a—m...a—1, a0..-an) State x =(x =5+)2,y = y1)
if 2 is read, x = x4+1 . 1<x<2
qi: .) L o f 2 3
then write 4; goto ¢ y = y+5 it <y <3
gs: Itfhinlsmrzé\)/:’ right; goto { x = P-4 i { 5<x<6
5: ; o 3 4
if 5 is read, x = 10(x—3)—j+4
qs: . — Y J
then move left; goto g7 y = H+%
. -
if{ 35+1J*03X6<3+%
10=SY<1
for j €{0,1,...,9}.

Key remark: f (and f) is piecewise affine

Morality

m If you prefer, a Turing Machine can be seen as a piecewise
affine function

m It remains to simulate
x(t+ 1) = f(x(t))

fort=1,2,....

m ...to compute ...

Morality

If you prefer, a Turing Machine can be seen as a piecewise
affine function

It remains to simulate

x(t+ 1) = f(x(t))
fort=1,2,....
...to compute ...

» Improvement:

® We don't care about f on points not encoding a configuration.
® Hence, with a slight modification, we can even assume f
continuous, and even C™.

Sub-menu

How to Compute with Iterations (dODEs)

Simulating Turing machines Over Non-compact Domains

Turing Machines

Let M be some one tape Turing machine, with m states and
10 symbols.

If
..BBBa_ja_gi1...a_1a0a1...anBBB...

is the tape content of M, it can be seen as

Y1 i dp...d1dg (3)
Yo = a_k...a-p2a-1

The configuration of M is then given by three values: its
internal state s, y1 and y».

Alternative View of a Turing Machine

Y1
Y2 =

2010° + 2,10 + ... + a,10"
271100 +4 87210l + ...+ a,klok*

x(t + 1) = f(x(t))

(4)

Turing Machine

l

State Space
{qO» qi,- - 7qm71} x X

State (qi, a—m...a—1,30..-an)

Key remark

: f (and f) is (KM-)elementary

10

Alternative View of a Turing Machine

2010° + 2,10 + ... + a,10"

n o =
Yy = 271100 + 87210l + ...+ a,klok* (4—)
x(t+1) = f(x(¢))
Turing Machine [
State Space State Space
{q07q17"' 7qm71} x X N2
State (qi,a—m...a—1, a...an) State x = (x = s+ myz, y = y1)

Key remark: f (and f) is (KM-)elementary

10

Alternative View of a Turing Machine

v 2010° + 2110 + ... + a,10"
Yy = 271100 + 87210l + ...+ a,klok*

x(t + 1) = f(x(t))

(4)

Turing Machine [

State Space State Space

{qov qi, - - 7qm71} X X" N2

State (qi, a—m...a—1,30..-an)

State x = (x = s+ myz, y = y1)

q1

_if 2 is read,
" then write 4; goto g

Key remark: f (and f) is (KM-)elementary

10

Alternative View of a Turing Machine

v 2010° + 2110 + ... + a,10"
Yy = 271100 + 87210l + ...+ a,klok* (4—)

x(t + 1) = f(x(t))

Turing Machine [

State Space State Space
{q07q17"' 7qm71} x X N2
State (qi,a—m...a—1, a...an) State x = (x = s+ myz, y = y1)
_if 2 is read, x = x+1 . modn(x) =1
9 then write 4; goto q» y = y+2 modio(y) =2

Key remark: f (and f) is (KM-)elementary

10

Alternative View of a Turing Machine

Y1
Y2 =

2010° + 2,10 + ... + a,10"
271100 +4 87210l + ...+ a,klok” (4—)

x(t + 1) = f(x(t))

Turing Machine

l

State Space

State Space

{qo,q1,- -+, qm1} x T~ N?
State (qi,a—m...a—1, a...an) State x = (x = s+ myz, y = y1)
_if 2 is read, x = x+1 . modn(x) =1
9 then write 4; goto q» y = y+2 modio(y) =2

if 3'is read,

gs: then move right; goto

q1

Key remark: f (and f) is (KM-)elementary

10

Alternative View of a Turing Machine

2010° + 2,10 + ... + a,10"

v =
Yy = 271100 + 87210l + ...+ a,klok” (4—)
x(t+1) = f(x(¢))
Turing Machine [
State Space State Space
{q07q17"' 7qm71} x X N2
State (qi,a—m...a—1, a...an) State x = (x = s+ myz, y = y1)
_if 2 is read, x = x+1 . modn(x) =1
9 then write 4; goto q» { y = y+2 if { modio(y) =2
) iF3 is read, S x = 10(x—5)+3xm—4 . modn(x) =5
gs: ';Plen move right; goto { y = (y—3)/10 if { modio(y) = 3

Key remark: f (and

f) is (KM-)elementary

10

Alternative View of a Turing Machine

1

2010° + 2,10 + ... + a,10"

Yy = 271100 + 87210l + ...+ a,klok” (4—)

x(t + 1) = f(x(t))

Turing Machine [

State Space

State Space

{qo,q1,- -+, qm1} x T~ N?
State (qi, a—m...a—1,30..-an) State x = (x = s+ myz, y = y1)
if 2 is read, x = x+1 if modm(x) =1
9 then write 4: goto ¢ y = y+2 modio(y) = 2
: Liznlsn:(:/: right; goto X = 10(x—5) +3um—4 s [modn(x) =5
& g 8 y = (y—3)/10 modio(y) =3

q1
if 5 is read,

g3 then move left; goto g7

Key remark: f (and

f) is (KM-)elementary

10

Alternative View of a Turing Machine

2010° + 2,10 + ... + a,10"

»n =
Yy = 271100 + «37210l + ...+ a,klok* (4—)
x(t+1) = f(x(¢))
Turing Machine [
State Space State Space
{q07q17"' 7qm71} x X Nz
State (qi,a—m...a—1, a...an) State x = (x = s+ myz, y = y1)
if 2 is read, x = x+1 if modm(x) =1
9 then write 4; goto q» y = y+2 modio(y) =2
- Liznlsn:(:/: right; goto x 1= 00— 5) £3xm—4 o [modn(x) =5
” q g e y = (y—3)/10 modio(y) =3
_if 5 is read, x = (x—j*xm—3)/10+4
% then move left; goto g7 y = 10y+j
modm(x) =3
if mOdlo(Xl;) Zj
mod(y) =5

Key remark: f (and

f) is (KM-)elementary

Alternative View of a Turing Machine

1
Y2

2010° + 2,10 + ... + a,10"
= 271100 +4 «37210l + ...+ a,klok*

x(t + 1) = f(x(t))

(4)

Turing Machine

l

State Space State Space
{q07q17"' 7qm71} x X Nz
State (qi, a—m...a—1,30..-an) State x = (x = s+ myz, y = y1)
if 2 is read, x = x+1 if modm(x) =1
9 then write 4; goto q» y = y+2 modio(y) =2
: Liznlsn:(:/: right; goto x = 10— 5) +3um =4 [modn(x) =5
- g g y = (y-3)/10 modho(y) = 3
_if 5 is read, x = (x—j*xm—3)/10+4
% then move left; goto g7 y = 10y+j
modm(x) =3
if mOdlo(Xl;) =J
mod(y) =5
for j € {0,1,...,9}.

Key remark: f (and f) is (KM-)elementary

Alternative View of a Turing Machine

1
Y2

2010° + 2,10 + ... + a,10"
= 271100 +4 «37210l + ...+ a,klok*

x(t + 1) = f(x(t))

(4)

Turing Machine

[(KM-)Elementary

State Space State Space
{q07q17"' 7qm71} x X Nz
State (qi, a—m...a—1,30..-an) State x = (x = s+ myz, y = y1)
if 2 is read, x = x+1 if modm(x) =1
9 then write 4; goto q» y = y+2 modio(y) =2
: Liznlsn:(:/: right; goto x = 10— 5) +3um =4 [modn(x) =5
- g g y = (y-3)/10 modho(y) = 3
_if 5 is read, x = (x—j*xm—3)/10+4
% then move left; goto g7 y = 10y+j
modm(x) =3
if mOdlo(Xl;) =J
mod(y) =5
for j € {0,1,...,9}.

Key remark: f (and f) is (KM-)elementary

Morality

m If you prefer, a Turing Machine can be seen as a
(KM-)elementary map

m It remains to simulate
x(t+ 1) := f(x(t))

fort=1,2,....

® ...to compute ...

11

Koiran-Moore's 99 result

Theorem [KM99]: For any Turing machine M and any input
w, there is an elementary function f on two variables and
constants a and b such that M halts on input w after t steps
if and only if fIl(a 4+ bw,0) = (0,0).

12

Koiran-Moore's 99 result

Theorem [KM99]: For any Turing machine M and any input
w, there is an elementary function f on two variables and
constants a and b such that M halts on input w after t steps
if and only if fIl(a 4+ bw,0) = (0,0).

> Using the trick that mod »(x) is basically sin(7x)?, etc.

12

Koiran-Moore's 99 result

Theorem [KM99]: For any Turing machine M and any input
w, there is an elementary function f on two variables and
constants a and b such that M halts on input w after t steps
if and only if fIl(a 4+ bw,0) = (0,0).

> f:R" 5 R"is (KM-)elementary if its n components are in Uy, where U,
is the smallest class of functions f : R” — R containing rational constants,
7, the n projections x — x; and satisfying the following closure properties:

°® if f,g € Uy then f © g € Uy, where ® € {4, —, x}
® if f € Uy then sin(f) € U,

> Using the trick that mod »(x) is basically sin(7x)?, etc.

12

Graca-Campagnolo-Buescu'2005

Remarks:

» Key point: With this encoding, integers are sent to integers. ..

> o(x) = x — 0.2sin(27x) is basically a contraction on the
vicinity of integers.

(static error correction:)

Theorem [GCB'05]: Let 0 < ¢ < € < 1/2. The transition
function 6 of a TM admits an analytic extension
fm : R3 — R3, robust to perturbations.

13

Graca-Campagnolo-Buescu'2005

Remarks:

» Key point: With this encoding, integers are sent to integers. ..

> o(x) = x — 0.2sin(27x) is basically a contraction on the
vicinity of integers.

(static error correction:)

Theorem [GCB'05]: Let 0 < ¢ < € < 1/2. The transition
function 6 of a TM admits an analytic extension
fm : R3 — R3, robust to perturbations.

> le: for all f such that ||f — fi|| <, and for all x5 € R®
satisfying |[Xo — xo|| < ¢, where xo € N® represents an initial
configuration,

Hfm(xT)) - 9U1(XO)H < e forall j€N.

13

Graca-Campagnolo-Buescu'2005

Remarks:

» Key point: With this encoding, integers are sent to integers. ..

> o(x) = x — 0.2sin(27x) is basically a contraction on the
vicinity of integers.

(static error correction:)

1 1
h(x,y) = — arctan(4y(x — 1/2)) + >
s

we have |a — h(3,y)| < 1/y foraclose toa € {0,1},y >0

(dynamic error correction:)

Theorem [GCB'05]: Let 0 < ¢ < € < 1/2. The transition
function 6 of a TM admits an analytic extension
fm : R3 — R3, robust to perturbations.

> le: for all f such that ||f — fi|| <, and for all x5 € R®
satisfying |[Xo — xo|| < ¢, where xo € N® represents an initial
configuration,

Hfm(xT)) - 9U1(XO)H < e forall j€N.

13

Menu

How to Compute with Ordinary Differential Equations

Sub-menu

How to Compute with Ordinary Differential Equations
Simulating TMs with smooth functions over a compact domain

Some ODEs. ..

s
(x, /

Figure: A linear path.

K,Y)

Figure: A U-turn.

X

(x, /

by

Figure: A dilation (acting on x of
factor 2).

(x, y
%

Figure: A merge (symbolic view:
this can exist only in dimension 4) .

15

Some ODEs. ..

/—62)\— m
(9/
(xv/)
/X
ald

-0.3)

16

Some ODEs. ..

17

Sub-menu

How to Compute with Ordinary Differential Equations

Simulating TMs over a general domain

Branicky's clock (1995): with non-analytic functions
= We basically need to do x := f(x) repeatedly

10

Branicky's clock (1995): with non-analytic functions

= Doing x2 := f(x1); x1 := x» repeatedly is fine.

10

Branicky's clock (1995): with non-analytic functions

Doing x5 := f(x1); x1 := X2 repeatedly is fine.
Key observation: the solution of

y = clg —y)e(t)

converges at t = 1/2 close to the goal g with some arbitrary
precision, independently from initial condition at t =0

for any function ¢ of positive integral if ¢ is sufficiently big.

10

Branicky's clock (1995): with non-analytic functions

= Doing x2 := f(x1); x1 := x» repeatedly is fine.
m Key observation: the solution of

y = clg —y)e(t)

converges at t = 1/2 close to the goal g with some arbitrary
precision, independently from initial condition at t =0

for any function ¢ of positive integral if ¢ is sufficiently big.

» If you prefer, this roughly does y(1/2) := g.

10

Branicky's clock (1995): with non-analytic functions

= Doing x2 := f(x1); x1 := x» repeatedly is fine.
m Key observation: the solution of

y = clg —y)e(t)

converges at t = 1/2 close to the goal g with some arbitrary
precision, independently from initial condition at t =0

for any function ¢ of positive integral if ¢ is sufficiently big.
» If you prefer, this roughly does y(1/2) := g.

m The following system is then a solution

{x’l = c(r(x2) — x1)30(—sin(27t)) {xl(O) = Xo
xh = c(f(r(x1)) — x2)30(sin(27t)) x2(0) = xo

considering functions:
> 0 such that 0(x) =0 if x <0, O(x) = x2 if x > 0.
» r(x) = whenever x € [j —1/4,j+ 1/4], for j € Z.

10

Example:

y(t+1):=2xy(t)

2.

5

0.5 1

Simulation of iterations

1.5 2
of h(n) = 2" by ODEs.

20

Sub-menu

How to Compute with Ordinary Differential Equations

Simulating TMs with analytic functions

If analytic functions are forbidden...

We want polynomial ODEs
> non analytics functions (e.g. 6, r) are forbidden.
Requires to program with ODEs.

» and to deal with errors . ..

bl

Errors. ..

We would dream to do:
y' = clg —y)’e(t)
We do at best something like
7' = c(g(t) — 2)°¢(t) + E(t)
where |g(t) — g| < p and |E(t)| <.

» not so bad if p, small, and ¢ big enough.

27

What do we get at the end?

We would dream to do:
{ x; = ca(r(x2) —x1)30(—sin(27t))
xh = c(f(r(x1)) — x2)30(sin(2nt))

We do something like

Xl =C (O'[n] (X2) — Xl) e
/2 = C2 (foa[m] X1 — X2)

(f)
3

Considering
Ce(t) = R(9(t), 1/e),
I(t) = % (sin®(2t) + sin(2nt))
h(x,y) = %arctan(4y(x -1/2))+ %

o(x) = x — 0.2sin(27x).

-+ dynamic error control on f

24

Dynamic error control on f
w of period 10, ¥y = w(y;)

next

m (.)71 Y2, El) = (YI) YQEXt7 anext)

T =Py (1 - H)2— H)+ PeHR — M)+ Pa(-)HA — H), (5)

with (move left, don't move, move right:)

Pr = 10(cU(7;) + oW (Spe) — oV (¥) + oW 0w 0 oV(3,)
Py = @)+ oll(Snen) — V()
5 _) -
3 = —
10

H = k(h3,10000(y; + 1/2) + 2).

s=1,5#j

S 9 onl(y) = r m (gll(g) —s
e 55 (11 €0959) (1T 252 a0
s = interpolation of same type

25

Some philosophical comments

We are basically considering ODEs which are obtained by
simulating dODEs (iterations)

Basically,

» we usually have in mind some discrete time/space
model/reasonning
(errorless)

» That we simulate with some discete time/real space model
(if we want analycity, should take care of errors)

» That we simulate in turn continuous time models
(introduces even more errors)

26

Menu

Some computability results based on these ideas

Sub-menu

Some computability results based on these ideas
Doing stuffs with polynomial ODEs

Discrete time simulation with a GPAC

Proposition ([?, ?])
There is a computable polynomial p and some computable value
a € R”

7' = p(z,t), z(0) = (%o, @)

such that for all % € R?'*1 satisfying ||% — xo||, < &, one has

|zt - vhieo)]| <4

[e.9]

for all j € N and for all t € [j,j+1/2].

28

Sub-menu

Some computability results based on these ideas

Computable Analysis with GPACs

Computable Analysis

Due to Turing, Grzegorczyk, Lacombe. Here presentation from
Weihrauch.

A tape represents a real number

Each real number x is represented via
. - an infinite sequence (x,)n € Q,

[IXn — x|[< 27"

\ M behaves like a Turing Machine

T T Read-only one-way input tapes
Write-only one-way output tape.
M outputs a representation of f(xi, x2)
from representations of x1, x».

20

GPAC Computability vs GPAC Generation

Definition
A function f : [a, b] — R is GPAC-computable iff there exist some
computable polynomials p : R™1 - R” pg : R - R, and n— 1
computable real values a1, ..., a,_1 such that:
1. (v1,...,¥n) is the solution of the Cauchy problem y’ = p(y, t)
with initial condition (a1, ..., an—1, po(x)) set at time to =0

2. limesoo y2(t) =0
3. [f(x) = ya(t)] < yo(t) for all x € [a, b] and all t € [0, +00).

Input (xo)

H——Wwn (X()7 t)

— y2(xo, t) Flxo))p----------

1

Simulating Type-2 machines with a GPAC

Theorem ([?])

Let f : [a,b] — R be a computable function. Then there exists a
GPAC and some index i such that if we set the initial conditions
(x,n) € [a, b] x R, where |n — n| < e < 1/2, with n € N, there
exists some T > 0 such that the output y; of the GPAC satisfies
lyi(t) = f(x)| <27 " forallt > T.

Theorem (Bournez-Campagnolo-Graga-Hainry's Theorem [?])

Let a and b be computable reals. A function f : [a, b] — R is
computable iff it is GPAC-computable.

k¥l

Idea of the construction

Proposition (e.g. Ko 91)

A real function f : [a, b] — R is computable iff there exist three
computable functions m : N — N, sgn, abs : N* — N such that:

1. m is a modulus of continuity for f, i.e. for all n € N and all
X,y € [a, b], one has

x—y|<27m) —|f(x) —~ f(y)] < 27"

2. For all (i,j, k) € N® such that (—1)'j/2k € [a, b], and all
neN,

(iikmabs(i,j, k,n iJ n
(—1)% (i, k,)(2n) —f ((_1) 21()‘ <277

kx}

General ldea

Idea
FromneN, x € R,
» compute integers i, j, k such that that

(=1)7j/2" = x| < 277

» compute values sgn(i,j, k,n) and abs(i,j, k, n).

> output
)abs(i,j, kv n)

_1ysen(igik,n
(1) TR

guaranteed to be at 27" of f(x)

Then increase n, and restart.

24

General ldea

Idea
FromneN, x € R,
» compute integers i, j, k such that that

|(—1)7j/2K = x| <27
» compute values sgn(i,j, k,n) and abs(i,j, k, n).
> output
) abs(i,j, kv n)

_1ysen(igik,n
(1) TR

guaranteed to be at 27" of f(x)

Then increase n, and restart.

Problems / Solutions.

24

General ldea

Idea
FromneN, x € R,
» compute integers i, j, k such that that

|(=1)7j/2% = x| <27

» compute values sgn(i, j, k, n) and abs(i,j, k, n).
> output

sgn(i,j.k,n abS(I',j7k7n)

(—1)%n(idkom) o ,

guaranteed to be at 27" of f(x)

Then increase n, and restart.

Problems / Solutions.

1. Since we are on a compact, w.l.o.g. we can assume x > 0,
and take / = 1 constant.

24

General ldea

Idea
FromneN, x € R,
» compute integers i, j, k such that that

|(=1)j/2 = x| <27
» compute values sgn(i, j, k, n) and abs(i,j, k, n).
> output
yabs(i, j, k,n)

(_1)sgn(i,jyk,n o)

guaranteed to be at 27" of f(x)

Then increase n, and restart.

Problems / Solutions.
1. One can take k = m(n).

24

General ldea

Idea
From ne N, x € R,
» compute integers i, j, k such that that

|(=1)7j/2% = x| < 27

» compute values sgn(i,j, k,n) and abs(i,j, k, n).

> output
abs(i,j, k,n)

_1)sen(isj.kon)
(-1) o),

guaranteed to be at 27" of f(x)

Then increase n, and restart.

Problems / Solutions.

1. Taking j = [x2™("] would be great, but integer part is not

analytic.

24

General ldea

Idea
From ne N, x € R,
» compute integers i, j, k such that that

|(=1)7j/2% = x| < 27

» compute values sgn(i,j, k,n) and abs(i,j, k, n).
» output
(—1)Sg"<"uvk7n>w’

guaranteed to be at 27" of f(x)

Then increase n, and restart.

Problems / Solutions.
1. Taking j = x2™(" yields valid output y; only when x2™(") is
close to an integer.

24

General ldea

Idea
FromneN, x € R,
» compute integers i, j, k such that that

|(=1)7j/2% = x| < 27

» compute values sgn(i,j, k,n) and abs(i,j, k, n).
» output

i emabs(ij, k., n)

_1)senlizk,n) 22N S5 K T

(1) ko),

guaranteed to be at 27" of f(x)

Then increase n, and restart.

Problems / Solutions.
1. Taking j = x2™(") + 1/2 yields valid output y; only when
x2mM(") —1/2 is close to an integer.

24

Getting a Valid Output For All x

Actually, according to the value of k1 = x2™(" either y; or y; is
valid.
We consider

_ wi(k)yr +wa(k1)yy)
w1 (k1) + wa(k1)
where w; (respectively wy) is > 0 and close to 0 iff y» is valid

(resp. yj is valid).

<

5

Last Ingredients (no details)

We need to know when a computation is terminated.

We use error-free external clocks
We need to be able to switch dynamics

We need to be able to reset machines

26

Menu

Conclusion

Take home message

Turing machines ~ polynomial Ordinary Differential

Equations
le.

y = p(ty)
y(to) = o
where p is a (vector of) polynomials.
in a very very strong sense.

Programming with/Solving ODEs is simple and fun.

26

Take home message

m Turing machines ~ polynomial Ordinary Differential
Equations

l.e.

/

y = p(ty)
y(t) = Yo

where p is a (vector of) polynomials.

in a very very strong sense.

» Programming with/Solving ODEs is simple and fun.

m Analog's world: Many concepts from computer science can
be defined using polynomial ODEs

vVVyYVYYVYY

Computable functions.

Polynomial Time Computable Functions

NP, PSPACE, ...7?

Revisiting computation theory with pODEs ...

Bioinformatics (proteins) computations > Turing machines =
Classical computers.

v

5

	Analog Computations: Our actual motivation
	How to Compute with Iterations (dODEs)
	Simulating Turing machines Over A Compact Domain
	Simulating Turing machines Over Non-compact Domains

	How to Compute with Ordinary Differential Equations
	Simulating TMs with smooth functions over a compact domain
	Simulating TMs over a general domain
	Simulating TMs with analytic functions

	Some computability results based on these ideas
	Doing stuffs with polynomial ODEs
	Computable Analysis with GPACs

	Conclusion

