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Introduction Motivation

Motivation

An intellect which at a certain moment would know all forces that
set nature in motion, and all positions of all items of which na-
ture is composed, if this intellect were also vast enough to submit
these data to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe and those of the
tiniest atom; for such an intellect nothing would be uncertain and
the future just like the past would be present before its eyes.

— Pierre Simon Laplace, A Philosophical Essay on Probabilities
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Introduction Motivation

Some successes...

We can easily compute the position of a planet or probe years in advance,
with an high degree of accuracy

New Horizons Full Trajectory

Earth

MarsJupiter

Saturn

Uranus

Neptune

Pluto

Arrokoth

New
Horizons

Distance from Sun (AU): 55.59

Distance from Arrokoth (AU): 12.88
Distance from Earth (AU): 55.88

Round-Trip Light Time (hh:mm:ss): 15:29:26
22 Mar 2023 11:00:00 UTC

New horizons trajectory near Pluto
Image credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
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Introduction Motivation

... and some failures

Yet predicting the position of a small leaf in a turbulent flow after a few
minutes is a much tougher challenge!
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Introduction Motivation

To make meaningful predictions we need

data + models + computation

Our main questions:

1 Given some system, can we tell something about its behavior using
Turing machines?

2 Are there some classes of systems which have more computational
power than Turing machines?

Should we allow any type of system or should we restrict ourselves to
“physically realistic” systems?
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Introduction Motivation

There are some well-known non-computability results:

There are continuous-time dynamical systems which have
super-Turing power (e.g PCD systems, Asarin, Maler, Bournez)

There is an ordinary differential equation (ODE) defined with
computable data which has no computable solution (Aberth, Pourl-El,
Richards)

There is a computable and C 1 initial wave with zero initial velocity
such that the unique solution of the problem - the amplitude of the
wave - is not computable at time t = 1 (Pour-El, Richards, Zhong,
1981, 1997)

There are electronic circuits which can be shown, theoretically and
provably, to have non-computable outputs and properties from
computable inputs (Boche and Pohl, 2020, 2021)

But how physically realistic are those results?
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Introduction Motivation

What “physically realistic” means?

Super-Turing power is not robust to “noise” (small perturbations)

Solutions for ODEs become computable if the solution is unique

For example, the non-computability of the wave equation is
completely gone if the L∞-norm is replaced by a more physically
realistic energy norm (Weihrauch and Zhong, 1999, 2000)

Etc.

To consider “realistic” phenomena we may use:

Robustness to “noise”

Usage of “sufficiently smooth” dynamics

Usage of a suitable norm

. . .
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Introduction The physical Church-Turing thesis

Conjecture (Physical Church-Turing thesis)

No physically realistic device operating accordingly to the (macroscopic)
physical laws will have more computational power than a Turing machine
(possible exception for computational complexity?: quantum computers)

Proving this conjecture is quite challenging due to the existence of
innumerable devices that one can imagine which operate according to
the known physical laws

A different idea is to use a “divide and conquer” strategy: instead of
considering every imaginable physically realistic system operating
accordingly to the (macroscopic) physical laws, restrict to (large
enough) classes of realistic systems and prove the conjecture for each
of these classes
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Introduction The physical Church-Turing thesis

Our proposal

Here we consider systems which have at least one of the following
properties:

Their description uses analytic functions (highest degree of
“smoothness”), ideally closed-form functions — the usual functions of
Analysis ⇒ (sin, log, , x2, etc.) since most classical laws of physics
use such functions

Are “robust to perturbations”
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Simulation of Turing machines

Simulating Turing machines

To study the computational power of a class of systems and, in particular,
to show that it is as powerful as a Turing machine, it is important to show
that such systems can simulate Turing machines

What do we need to simulate a Turing machine?

Encode a configuration as a state in the system

To be able to simulate the transition function one needs:

To be able to read the current state and the symbol being read by the
head in a given (coding of a) configuration
To decide what is the next move to make based on the previous
information
To update the (coding of the) next configuration, where the state,
tape contents and tape head position are updated

Toulouse 2023 Continuous robust simulation of Turing machines on low-dimensional dynamical systems 10 / 49



Simulation of Turing machines

Situation circa 2005 – simulation of Turing machines

analytic robust

bounded
domain

does not exist
(conjecture, Moore

1998)

negative results
(e.g. Maass, Orponen, 1998)

unbounded
domain

positive result
(Koiran, Moore, 1999)

unknown

In 1999, Koiran and Moore proved that closed-form analytic maps can
simulate Turing machines in real time
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Simulation of Turing machines

Current situation – simulation of Turing machines

analytic robust

bounded
domain

positive result
(Cardona, Miranda,
Peralta-Salas, 2021)

negative results
(e.g. Maass, Orponen, 1998)

unbounded
domain

positive result
(Koiran, Moore, 1999)

positive result
(Buescu, Campagnolo,

G., 2008)
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Simulation of Turing machines Unbounded domain

Theorem (Buescu, Campagnolo, G., 2008)

Given a Turing machine M, there is an analytic closed-form map
f : R3 → R3 which simulates it robustly to perturbations:

Each configuration is encoded as an element of N3

f |N simulates the transition function of f

We can replace any configuration c ∈ N3 by an approximation c̄ ∈ N3

satisfying ‖c − c̄‖ ≤ 1/4

In addition of the last point, we can also replace f by some
g : R3 → R3 satisfying ‖f − g‖ < 1/4.
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Simulation of Turing machines Unbounded domain

Idea of the proof

First step: given some Turing machine M, find an elementary map
fM whose iteration gives the evolution of M over integers

Second step: Using real-valued error-contracting functions around
integers, one can make this simulation robust to perturbations in both
the map fM and in any intermediate configurations
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Simulation of Turing machines Unbounded domain

1 – Coding of configurations

Suppose that M is a TM using 10 symbols, with tape contents

B B a−2 a−1 a0 a1 a2 B B

Associate to each symbol a number in {0, 1, ..., 9} (take B → 0). Then
the tape contents can be coded by

right = a0 + a110 + ...+ an10n

left = a−1 + a−210 + ...+ a−k10k−1

If we associate each state q to a number in {1, ...,m}, then each
configuration of M is given by a triple (left, q, right) ∈ N3
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Simulation of Turing machines Unbounded domain

2 – Reading data from configurations

Given a configuration c = (left, q, right) ∈ N3:

One can immediately obtain the state q as the last component of c

To obtain the current symbol s ∈ {0, 1, ..., 9} being read by the head,
we note that right = s + a110 + ...+ an10n

Hence we would like to have some function S such that
S(a0 + a110 + ...+ an10n) = a0

In particular S(0) = 0,S(1) = 1, . . . ,S(9) = 9
S has period 10 over the integers: S(n) = S(n + 10) for any n ∈ N

I Solution: Define S using trigonometric interpolation
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Simulation of Turing machines Unbounded domain

3 – Determining what to do next

Given the state q and symbol s being read by the head, the next step
will only depend on finitely many values (q, s)

Define a function N : R2 → R such that each pair (q, s) corresponds
to a “next” value N(q,s).

I Solution: Define N using Lagrange polynomial interpolation

Determine the next state qnext(q, s):

qnext(q, s) =
9∑

i=0

m∑
j=1

 9∏
r=0
r 6=i

(s − r)

(i − r)


 m∏

s=1
s 6=j

(q − s)

(j − s)

 qi ,j

Determine the next symbol snext(q, s) to be written

Determine the next move mnext(q, s) to be made by the tape head.
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Simulation of Turing machines Unbounded domain

4 – Update tape contents

Some calculations needed to be obtain the right expressions, but
nothing too fancy
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Simulation of Turing machines Unbounded domain

5 – robustness to perturbations

Use error-contracting functions to keep any error under control

Example of an error-contracting function which we used:
σ(x) = x − 0.2 sin(2πx) contracts the error in the vicinity of integers

-1 -0.5 0.5 1

-1

-0.5

0.5

1
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Simulation of Turing machines Unbounded domain

Theorem (Buescu, Campagnolo, G., 2008)

Given a Turing machine M, there is an analytic closed-form ODE
y ′ = f (t, y), with f : R7 → R6 which simulates it robustly to
perturbations:

Each configuration is encoded as an element of N3

The input of M is encoded in the initial configuration

y4,5,6(t) codes the configuration at step n ∈ N if t ∈ [n, n + 1/2]

The initial condition and f can be both perturbed and yet the
simulation will succeed
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Simulation of Turing machines Unbounded domain

Idea of the proof

0.5 1 1.5 2 2.5 3

1

2

3

4

Iteration of the map f (x) = 2x , with x0 = 0

Problem: This simulation only works for non-analytic functions

But by allowing non-exact values (recall fM is robust to perturbations), we
can overcome the restriction (the proof has lots of technical constructions).
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Simulation of Turing machines Unbounded domain

Lowest dimension?

What is the lowest dimension one can use in the previous analytic and
robust simulations of Turing machines?

Theorem (G., Zhong, to appear)

For a map the lowest dimension is n = 1

For ODEs, dimension n = 2 suffices

Under reasonable assumptions, it must be n > 1
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Simulation of Turing machines Unbounded domain

Idea of the proof - map/unbounded case

It is well known that there is a bijection I3 : N3 → N
It can be built from

I2(x , y) =
(x + y)2 + 3x + y

2

This map I2 (and thus I3) can be readily extended to the reals using
error-contracting functions in order to be robust to perturbations

Main idea: If f̄M : R3 → R3 simulates the Turing machine, then take
fM : R→ R as fM = I3 ◦ f̄M ◦ I−1

3

Problem: The inverse of I2 (and of I3) cannot be computed by a
formula, only by an algorithm
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Simulation of Turing machines Unbounded domain

Solution: Use the previous simulation of TM with (3D) ODEs but
retain only the component which gives the part of the tape with the
result

Some pernicious problems: given some n ∈ N, the (integer) encoding
of n is not n when simulating a TM, the same happening to the
output.

Solvable with several tricks, involving the use of unary functions, etc.
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Simulation of Turing machines Unbounded domain

Idea of the proof - ODE/unbounded case

In this case the proof is very simple: just simulate the iteration of the
previous map with an ODE, as shown earlier.

0.5 1 1.5 2 2.5 3

1

2

3

4

Iteration of the map f (x) = 2x , with x0 = 0
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Simulation of Turing machines Bounded domain

Lowest dimension for compact case?

Theorem (Cardona, Miranda, Peralta-Salas, 2021)

There is a polynomial ODE which is Turing universal on the sphere Sn,
where n ≥ 17.

Theorem (Cardona, Miranda, Peralta-Salas, Presas, 2021)

There is a fluid-flow (uses partial differential equations) which is Turing
universal on a Riemannian 3-dimensional sphere.

Our result:

Theorem (G., Zhong, to appear)

There is a C∞ ODE which is Turing universal on the sphere S2.
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Simulation of Turing machines Bounded domain

Idea of the proof – compact case

Theorem (Cardona, Miranda, Peralta-Salas, 2021)

There is a polynomial ODE which is Turing universal on the sphere Sn,
where n ≥ 17.

Proof idea:
The previous simulation of Turing machines with a map f̄M : R3 → R3

can be done with a polynomial ODE with an higher dimension
(n = 16) (result from (Buescu, Campagnolo, G., 2008))
Use one extra variable x17 to model time in x ′ = p(t, x), by taking
x ′17 = 1, x17(0) = 0
Thus there is an autonomous polynomial ODE x ′ = p(t, x) with
dimension n = 17 which simulates Turing machines
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Simulation of Turing machines Bounded domain

Map the polynomial flow to the sphere S17 via the stereographic map

The resulting flow is polynomial and is defined at the north pole (it is
a zero of the flow)
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Simulation of Turing machines Bounded domain

Theorem (G., Zhong, to appear)

There is a C∞ ODE which is Turing universal on the sphere S2.

We use our previous construction that defines an analytic 2D ODE to
simulate ODEs

However, we have to limit the growth of solutions to polynomial
growth (tweak the ODE)

Apply the stereographic map as Cardona et al. to map the flow to S2

The flow in S2 is only C∞ due to the north pole (the trick of Cardona
et al. to obtain analyticity is only valid for polynomials)
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Simulation of Turing machines Minimum dimension for ODEs

ODEs- What about the case of dimension 1?

Some assumptions:

Each configuration cM of the Turing machine M is encoded as a set
χ(cM)

cM 6= cM′ ⇒ χ(cM) ∩ χ(cM′) = ∅: not enough – case of
intermingled sets
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Simulation of Turing machines Minimum dimension for ODEs

We assume that there are two computable maps a : N→ Qk ,
r : N→ Q such that:

For all i ∈ N, χ(ci ) ⊆ B(a(i), r(i)) = {x ∈ Rk : ‖x − a(i)‖ ≤ r(i)}
If i 6= j then B(a(i), r(i)) ∩ B(a(j), r(j)) = ∅

The ODE y ′ = f (y) simulates the TM M if y(n) ∈ χ(ψ[n](c0)) for all
n ∈ N
Assume that f is computable and only has isolated zeros

Theorem (G., Zhong, to appear)

No one-dimensional ODE can simulate universal Turing machines in the
above conditions.
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Simulation of Turing machines Minimum dimension for ODEs

Idea of the proof

Isolated zeros of a computable function are computable

Case 1:
Zero 1 Zero 2

Case 2:
Zero 2
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Simulation of Turing machines Robust non-computability

Can non-computability be robust?

Traditional non-computability results for continuous systems are
“fragile” (wave equation, electronic circuits, solution of ODE, etc.)

If we see digital computers as having analog components (and thus as
analog computers) shouldn’t the associated Halting Problem be
robust to “noise”?

Notion of basin of attraction for an attractor
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Simulation of Turing machines Robust non-computability

Theorem (G., Zhong, work in progress)

The is an analytic ODE y ′ = f (y) with the following properties:

It has a stable attracting equilibrium point (a sink) x0 which is unique
in a neighborhood U
The basin of attraction of x0 is not computable

Any “closeby” ODE y ′ = g(y) (‖f − g‖ ≤ ε) has a unique sink in U
which has similar properties

Main problem: Ensuring that the halting configuration corresponds to a
unique point which is a sink.
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Simulation of Turing machines Characterizing complexity classes

Other useful simulations of Turing machines

B B a−2 a−1 a0 a1 a2 B B

Encoding of inputs Ψk(w) =
(∑|w |

i=1 γ(wi )k
−i , |w |

)
〈c〉 = (0.x , a0, y , 0.q) is (the coding of) the configuration c , where
0.x = x1k

−1 + x2k
−2 + ...+ x|x |k

|x | and similarly for 0.y

We can simulate (time-bounded) Turing machines with this coding
using polynomial ODEs y ′ = p(y)
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Simulation of Turing machines Characterizing complexity classes

Characterizing complexity classes with ODEs

But what if we use continuous models of computation?

Can we define meaningful measures of complexity for continuous
models?

Can we obtain complexity classes which relate to the “traditional”
ones (P,NP,PSPACE,EXPTIME, . . .)?

Accept

Reject

Accept

Reject
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Simulation of Turing machines Characterizing complexity classes

Defining an adequate (invariant) notion of continuous “time
complexity” is challenging (due to Zeno-like behavior)

In the rest of this talk we will use as our model of computation
dynamical systems which are defined by polynomial (vectorial) ODEs:

x ′ = p(x)

This model is mathematically simple to describe and has “nice”
properties
Polynomial ODEs have a realistic model – Shannon’s General Purpose
Analog Computer (GPAC), which can be implemented with mechanical
devices or using (analog) electronics

Vin Vout

R

C
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Simulation of Turing machines Characterizing complexity classes

Theorem (Buescu, Campagnolo, G., 2008)

Polynomial ODEs can simulate universal Turing machines.

Theorem (Bournez, Campagnolo, G., Hainry, 2007)

Polynomial ODEs and Turing machines (computable analysis) are
equivalent from a computability perspective.
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Simulation of Turing machines Characterizing complexity classes

Defining a notion of “continuous space” is also hard!


x ′ = σ(y − x)
y ′ = x(ρ− z)− y
z ′ = xy − βz

Classical values for parameters: σ = 10, ρ = 28, β = 8/3

Toulouse 2023 Continuous robust simulation of Turing machines on low-dimensional dynamical systems 39 / 49



Simulation of Turing machines Characterizing complexity classes

“Time” complexity for continuous-time systems

Accept

Reject

y ′ = p(y) with y(0) = q(x)

Accept

Reject{
y ′ = zp(y)
z ′ = z

{
y(0) = q(x)
z(0) = 1

Solution: define complexity using the length of the solution curve:

leny (0, t) = length of y over [0, t] =

∫ t

0
‖p(y(u))‖ du
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Simulation of Turing machines Characterizing complexity classes

“Time” complexity for continuous-time systems
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Simulation of Turing machines Characterizing complexity classes

A continuous characterization of P and EXPTIME

Accept

Reject

t

1

−1

not allowed

Theorem (Bournez, G., Pouly, 2017)

L ∈ P iff L is poly-length recognizable.

Theorem (Gozzi and G., 2023)

L ∈ EXPTIME iff L is exp-length recognizable.
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Simulation of Turing machines Characterizing complexity classes

Computing functions

t

y1(t)
q(x)

f(x)

Rk Rk

Γ∗ Γ∗

F

ψ ψ

f

Polynomial complexity for continuous-time systems

f : R→ R is poly-length computable if there is a polynomial Π such that
∀µ > 0, if leny (0, t) ≥ Π(‖x‖, µ), then |y1(t)− f (x)| ≤ 2−µ (with
‖y ′(t)‖ ≥ 1).

Theorem (Bournez, G., Pouly, 2017)

A (discrete) function f belongs to FP iff it is emulable by some
poly-length computable function.
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Simulation of Turing machines Characterizing complexity classes

The previous construction uses properties that polynomials have but
e.g. exponential functions don’t (e.g. closure under composition)

A careful argument allows generalization of this argument

Exponential complexity for continuous-time systems

f : R→ R is exp-length computable if there is an exponential function Π1

and a polynomial Υ1 such that ∀µ > 0, if

leny (0, t) ≥ Π(‖x‖, µ) = Π1(‖x‖)Υ1(µ)

then |y1(t)− f (x)| ≤ 2−µ (with ‖y ′(t)‖ ≥ 1).

Theorem (Gozzi and G.)

A (discrete) function f belongs to FEXPTIME iff it is emulable by some
exp-length computable function.
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Simulation of Turing machines Characterizing complexity classes

The above procedure can be generalized to other classical classes:

All levels of the Grzegorczyk hierarchy
Primitive recursive functions

The main problem is to obtain appropriate complexity bounds, which
we also assume to be solutions of a polynomial ODE – polynomials
and exponentials admit trivial extensions to the reals, while this is not
the case for the Grzegorczyk hierarchy
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Simulation of Turing machines Characterizing complexity classes

Characterizing PSPACE

1 Halting decision is irreversible

2 Halting decision is eventually taken with correct output

Accept

Reject
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Simulation of Turing machines Characterizing complexity classes

3 Bounded space: ‖(y(t), z(t))‖ ≤ φ ◦ g(x) for any x satisfying
Ψ(x) = w and for all t ≥ 0;
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Simulation of Turing machines Characterizing complexity classes

4 Robustness to perturbations

5 Robustness is common

6 Robustness preserves main properties

Accept

Reject
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Simulation of Turing machines Characterizing complexity classes

Characterizing PSPACE with polynomial ODEs

Theorem (Bournez, Gozzi, G., Pouly, to appear)

A language L ⊆ Γ∗ belongs to PSPACE iff it is Ψ̂-decided in polynomial
space.
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