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Constraint Satisfaction Problems

Informal de�nition of CSPs

A CSP is a computational problem.

The input consists of a �nite set of variables and a �nite set of

constraints imposed on those variables.

The task is to decide whether there is an assignment of values to the

variables such that all the constraints are simultaneously satis�ed.

Examples

Is a propositional formula in CNF with at most three literals per clause

satis�able on {0, 1}?
Is there a solution to a �nite set of linear equations over F2?
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Formalisation of CSPs

Preliminaries

Given a signature τ , an atomic formula is of the form R(x) with R a

relation in τ .

A primitive positive formula on a signature τ is of the form

∃x1 . . . xn(φ1(x) ∧ · · · ∧ φk(x)) where all φi are atomic formulas.

An homomorphism from a τ -structure Γ to a τ -structure ∆ is a map

which preserves all atomic formulas.
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Formal de�nition of CSPs

Given a structure Γ on a �nite relational signature τ , we de�ne the
computational problem CSP(Γ):

� Input: a primitive positive sentence φ.
� Question: Γ |= φ ?

Equivalently:

� Input: a �nite τ -structure ∆.

� Question: Is there an homomorphism from ∆ to Γ?

The domain of the structure Γ can be either �nite, or in�nite.

Many computational problems can be modelled as CSPs.

Natural question: what is the complexity of CSP(Γ) for a given Γ?

Important property

For any relation R pp-de�nable on a structure Γ, CSP(Γ) and CSP(Γ,R)
are polynomial-time equivalent.
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Example: 3-colorability

The famous problem...

3-colorability

� Input: a �nite graph G .

� Question: can the vertices be colored with three colors such that no

two vertices adjacent in G get the same color?

... can be formulated as a CSP with a �nite structure:

CSP(K3):

� Input: a �nite graph G .

� Question: is there a homomorphism from G to K3?
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Example: Directed Graph Acyclicity

The famous problem...

Directed Graph Acyclicity

� Input: a �nite directed graph G .

� Question: is G acyclic?

... can be formulated as a CSP with an in�nite structure:

CSP(Q, <):

� Input: a �nite directed graph G .

� Question: is there a homomorphism from G to (Q, <)?
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Dichotomy for �nite Structures

Schaefer'77: for any 2-element structure Γ, CSP(Γ) is either

polynomially solvable or NP-complete.

Conjecture

Feder-Vardi'93 (conjecture): this dichotomy holds for every �nite

structure Γ.

Bulatov'03: con�rmed Feder-Vardi's conjecture for domains of size 3.

Markovic'12: con�rmed for domains of size 4 (announced but not

published yet).

The conjecture is already open for domains of size ≥ 5.

What about in�nite structures?
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In�nite Structures

Non-Dichotomy

Bodirsky-Grohe'08: Every computational decision problem is

polynomial-time equivalent to a CSP with an in�nite template.

Ladner'75: if P 6= NP, there are NP-intermediate computational

decision problems, i.e., problems in NP that are neither

polynomial-time tractable nor NP-complete.

Consequently: no dichotomy for CSPs on in�nite structures.

Question

Can we identify large natural classes of CSPs on in�nite structures whose

complexity can be classi�ed?
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More examples of CSPs: We denote by P(N) the power set of N.
 CSP(P(N), x ∩ y ⊆ z , x * y , x ‖ y) where ‖ states for disjointness.
� Ex. of input: (x ∩ y ⊆ z) ∧ (t * z) ∧ (t ‖ x) ∧ (t ∩ z ⊆ y)

� Answer: yes, there is a solution.

 CSP(P(N), x ∩ y = z , x ∪ y = z , x 6= y)

� Ex. of input:

(x ∩ y = z) ∧ (x ∪ y = t) ∧ (t ∩ u = z) ∧ (u ∩ x = x) ∧ (u 6= x)

� Answer: No solution.

François Bossière (LIX) On the Complexity of Set CSPs December 18, 2013 9 / 24



More examples of CSPs: We denote by P(N) the power set of N.
 CSP(P(N), x ∩ y ⊆ z , x * y , x ‖ y) where ‖ states for disjointness.
� Ex. of input: (x ∩ y ⊆ z) ∧ (t * z) ∧ (t ‖ x) ∧ (t ∩ z ⊆ y)

� Answer: yes, there is a solution.

 CSP(P(N), x ∩ y = z , x ∪ y = z , x 6= y)

� Ex. of input:

(x ∩ y = z) ∧ (x ∪ y = t) ∧ (t ∩ u = z) ∧ (u ∩ x = x) ∧ (u 6= x)

� Answer: No solution.
François Bossière (LIX) On the Complexity of Set CSPs December 18, 2013 9 / 24



Generalities on set CSPs

These problems belong to a large class of CSPs called set CSPs.

Informal de�nition

A set CSP is a CSP where the variables take as values subsets of the

natural numbers. It is parametrized by the set of "boolean constraints"

allowed in the input.

Set CSPs appear naturally in various areas like program analysis

(Kuncak-Nguyen-Rinard'06), knowledge representation

(Küsters-Molitor'02), and spatial reasoning (Drakengren-Jonsson'97).

Mariott-Odersky'96: all set CSPs are in NP.
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De�nition of a set CSP

Reducts

A reduct Γ of a structure ∆ is a structure with a �nite relational signature

and whose relations are de�nable over ∆ by a quanti�er free formula.

Examples

Let B = (P(N),∩,∪, {, ∅,N) be the Boolean algebra of the subsets of N.
(P(N), {(x , y) | x ∩ y 6= x}, {(x , y) | x ∩ y = ∅}) is a reduct of B.

(P(N), {(x , y , z) | (x ∪ y) ∩ ({x ∪ {y) = z} as well.

Set Constraint Satisfaction Problems

A set CSP is a CSP for a reduct of (P(N),∩,∪, {, ∅,N).

Examples

CSP(P(N), *, ‖, 6=) and CSP(P(N), 	, 6=) are set CSPs.
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Conjecture

Every set CSP is either in P, or NP-complete.

Universal algebraic approach

For �nite structures, the complexity of CSPs can be analysed using a

universal algebraic approach.

This approach was used by Bulatov'03 to con�rm the Feder-Vardi

conjecture for domains of size 3.

The universal algebraic approach does not work in general for in�nite

structures, but it does if the structure has a strong model-theoretic

property: ω-categoricity.
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ω-categoricity

A �rst-order theory is ω-categorical if all its countably in�nite models

are isomorphic.

A structure is ω-categorical whenever its �rst-order theory is.

Fact: A reduct of an ω-categorical structure is ω-categorical.

Examples

Any �nite structure is ω-categorical.

The theory of every dense linear order is ω-categorical. Hence, (Q, <)
and (R, <) are ω-categorical.

(Q, {(x , y , z) ∈ Q3 | (x < y < z) ∨ (z < y < x)}) is ω-categorical
since it is a reduct of (Q, <).

The theory of any in�nite vector space over a �nite �eld is

ω-categorical.
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Important de�nitions

A m-ary operation f preserves a n-ary relation R if for all n-tuples
x1, · · · , xm in R , the n-tuple (f (x1,i , · · · , xm,i ))1≤i≤n is again in R .

f is called a polymorphism of a relational structure Γ if it preserves

every relation of Γ.
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Universal Algebraic Approach and ω-categoricity

We denote by:

- Pol(Γ) the set of all polymorphisms of Γ.

- Inv(F ) the set of all relations preserved by a set F of operations.

- 〈Γ〉pp the set of all relations which are pp-de�nable over Γ.

Theorem - Geiger '68 & Bodirsky-Nesetril '03

For every countably in�nite ω-categorical or �nite structure Γ:

Inv(Pol(Γ)) = 〈Γ〉pp
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Looking for better settings

Fact: In general, a reduct of the Boolean algebra B is not

ω-categorical.

Question: Can we formulate every set CSP as a CSP for an

ω-categorical structure?

Answer: Yes!

De�nition: An element x of a Boolean algebra is called an atom when

there is no strictly smaller element than x other than 0.

Example: the singletons {n} are the atoms of (P(N),∩,∪, {, ∅,N).

De�nition - The atomless Boolean algebra

There is a unique countable atomless Boolean algebra up to isomorphism.

We denote it by A = (A,u,t, c , 0, 1).
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Key property

For every reduct Γ of B, there exists a reduct ∆ of A which has the

same CSP as Γ.

Conversely, for every reduct ∆ of A, there exists a reduct Γ of B
which has the same CSP as ∆.

Consequences

To solve the conjecture, we have to understand the complexity of

CSP(Γ) for every reduct Γ of A.

Since the complexity of a CSP does not change when adding

pp-de�nable relations, and since Inv(Pol(Γ)) = 〈Γ〉pp, the complexity

of CSP(Γ) is determined by Pol(Γ).

Classify the complexity of set CSPs ⇔ understand the polymorphisms

of reducts of A.
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Automorphisms

Starting by classifying the automorphisms

Automorphisms are special polymorphisms.

The classi�cation of automorphism groups of reducts is an important

topic in the theory of ω-categorical structures.

Such a classi�cation has been done for (Q, <) (Cameron'89), the

random Graph (Thomas'91), the random Poset (P4-Sz'13), etc...

For the atomless Boolean algebra A, the classi�cation of the

automorphism groups of reducts is still to be done.

We give such a classi�cation for an important reduct of A:
the countably in�nite vector space over F2.
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The countably in�nite vector space over F2

De�nition

There is a unique countably in�nite vector space over F2, up to

isomorphism.

It is isomorphic to the reduct (A,+) of A, where + corresponds to the

symmetric di�erence of sets.

Formally: +(x , y , z) if and only if (x t y) u (c(x) t c(y)) = z .
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Partial classi�cation

Theorem - Bodirsky-B.'13

Let Γ be a reduct of (A,+), then:

- either Aut(Γ) = Aut(A,+)

- either Aut(Γ) = Aut(A,A�)

- either Aut(Γ) = Aut(A, 0)

- or Aut(Γ) = Aut(A,=)

where A� =
{

(x , y , z , t) ∈ A4 | x + y = z + t
}
.

Example: consider the relation Eq4 consisting of all tuples (x , y , z , t) such

that x + y = z + t and (x , y , z), (x , z , t), (y , z , t) are a free families of

(A,+). The automorphism group of (A,Eq4) is Aut(A,+).
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Automorphism groups of the reducts of (A,+)

We believe that the proof techniques for our result are useful also to study

polymorphisms of reducts of (A,+).
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Sketch of proof

Graham-Leeb-Rothschild'72: the countably in�nite vector space over

F2 has a strong combinatorial property called Ramsey property.

Main idea: we use Ramsey theory to prove that automorphisms are

canonical on large subsets of the domain.

A function f : A→ A is called canonical if for all a1, . . . , an ∈ A, the
model-theoretic type of (f (a1), . . . , f (an)) only depends on the

model-theoretic type of (a1, . . . , an).

Example: let (ai )i∈N be an enumeration of A and (bi )i∈N be a basis

of (A,+). The map gen : A→ A such that gen(ai ) = bi is canonical.

We write f ∼ g if for all a1, . . . , an ∈ A, the type of (f (a1), . . . , f (an))
and the type of (g(a1), . . . , g(an)) are the same. Note that ∼ is an

equivalence relation.

We prove that (A,+) has nine canonical functions modulo ∼.
We climb the automorphism groups lattice step by step, producing

canonical functions and performing at each step a case distinction.
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Perspectives

Open problems:

Classify the polymorphisms of reducts of the countably in�nite vector

space over F2.

Classify the automorphism groups of reducts of the atomless Boolean

algebra.

Finally: classify the polymorphisms of reducts of the atomless Boolean

algebra and obtain a complexity classi�cation of all set CSPs.
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Thank you!
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