
Determining the Consistency of

Partial Tree Descriptions

Manuel Bodirsky1 and Martin Kutz2

1 Humboldt-Universität zu Berlin, Germany
bodirsky@informatik.hu-berlin.de

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
mkutz@mpi-inf.mpg.de

Abstract. We present an efficient algorithm that decides the consis-
tency of partial descriptions of ordered trees. The constraint language of
these descriptions was introduced by Cornell in computational linguis-
tics; the constraints specify for pairs of nodes sets of admissible relative
positions in an ordered tree. Cornell asked for an algorithm to find a
tree structure satisfying these constraints. This computational problem
generalizes the common-supertree problem studied in phylogenetic analy-
sis, and also generalizes the network consistency problem of the so-called
left-linear point algebra. We present the first polynomial time algorithm
for Cornell’s problem, which runs in time O(mn), where m is the number
of constraints and n the number of variables in the constraint.
keywords: tree descriptions, constraint satisfaction problems,

graph algorithms, left-linear point algebra

1 Introduction

Tree description languages became an important tool in computational linguis-
tics over the last twenty years. Grammar formalisms have been proposed that
derive logical descriptions of trees representing the syntax of a string [15,23,26].
Membership in a language is then equivalent to the satisfiability of the corre-
sponding logical formula. In semantics, the paradigm of underspecification aims
at manipulating the partial description of tree-structured semantic represen-
tations of a sentence rather than at manipulating the representations them-
selves [17, 25]. One of the key issues in both constraint-based grammar and
constraint-based semantic formalisms is to collect partial descriptions of trees
and to solve them, i.e., to find a tree structure that satisfies all constraints.

Cornell [13] introduced a simple but powerful tree description language,
which contains constraints for dominance, precedence, and equality between nodes,
and disjunctive combinations of these (a formal definition is given is Section 2).
Cornell also gave a saturation algorithm based on local propagations, which
turned out to be incomplete. For an example of a tree description that shows
this, see Section 3.4 in [3].

In this article we present the first polynomial-time algorithm that tests sat-
isfiability of a tree description from Cornell’s tree description language and di-
rectly constructs a solution to the problem instance, if one exists. A predecessor



2

of this algorithm, which applies to a restricted language, was presented in [4].
The present algorithm, which solves the general problem of Cornell’s full tree
description language, runs in time O(nm), where n is the number of variables
and m the number of constraints in the input. The performance is achieved
by a recursive strategy that works directly on the constraint graph, and avoids
local consistency techniques a la [14, 19] that are frequently used in constraint
satisfaction.

Significance of the results. Computational linguistics is not the only area in
computer science and artificial intelligence where partial tree descriptions be-
come relevant. In fact, a fragment of Cornell’s language has been introduced
independently in [12] (also see [16, 21]), and is known there as the left-linear
point algebra. The best known algorithm for the so-called network satisfaction
problem for the left-linear point algebra has a running time which is in O(n5),
where n denotes the size of the input [21]. Since the left-linear point algebra is a
fragment of Cornell’s language, our quadratic time algorithm also yields a new
and asymptotically faster algorithm for the left-linear point algebra. Details of
this connection will be given in Subsection 3.1 of Section 3.

The consistency problem we study can also be posed as a constraint sat-
isfaction problem (CSP), as formalized in e.g. [8]. The catch here is that the
variables might take values from an infinite domain (it can be shown that the
problem cannot be modeled as a CSP with a finite domain); see also Section 3.
One important direction of research in this area is to systematically identify
constraint languages that can be solved in polynomial time. In this context, our
algorithmic result is interesting because it is neither based on group-theoretic
techniques such as Gaussian elimination, nor on Datalog and local consistency
techniques. This is in contrast to CSPs with finite domains, where all known
algorithms for polynomial-time solvable algorithms involve at least one of the
above two techniques [9, 18].

In computational biology, phylogenetic analysis is a field where we have to
deal with partial information about evolutionary trees. An evolutionary tree for
a set of species is a rooted tree where the leaves are bijectively labeled with the
species from the set. Constructing evolutionary trees from biological data is a
difficult problem for a variety of reasons (see [20]). Many approaches assume
that the evolutionary tree is built from a set of taxa based on the comparison of
a single protein or a single position in aligned protein sequences, but very often
the resulting tree will be different depending on which particular protein or
position is used. Several trees, each from a different protein or position, must be
built and be shown to be “generally consistent” before the implied evolutionary
history is considered reliable. The question whether such consistency tests can
be automated motivates the so-called common-supertree problem [20]. We will
describe in Subsection 3.2 how the common-supertree problem can be modeled
in (a fragment of) Cornell’s tree description language. Therefore, the algorithm
presented here also yields a new algorithm for (and a new perspective on) the
common-supertree problem.



3

Outline. In Section 2, we introduce standard terminology for rooted trees and
define Cornell’s tree description language. This allows us to clearly describe in
Section 3 the relationship between our results and results in qualitative tem-
poral reasoning in artificial intelligence, phylogenetic analysis in computational
biology, the left-linear point algebra in the theory of relation algebras, and the
general framework of constraint satisfaction problems. In Section 5, we introduce
an algorithm for a small fragment of Cornell’s language. This fragment is already
expressive enough to capture the common-supertree problem mentioned above.
The corresponding consistency-problem is non-trivial in the sense that the al-
gorithm proposed by Cornell is inconsistent already for this fragment (see [3]).
However, the simplicity of the language allows for a smaller and simpler de-
scription of an algorithm that decides consistency. Discussing this language first
will be instructive to deal with the consistency problem for the full language,
which is far more involved. For the full language, we first reduce the problem
to a simpler tree description language (Section 5), prove fundamental results for
constraint-graphs that are associated to a partial tree description (Section 6),
and finally use these results to present our algorithm and prove its correctness
(Section 7). Section 8 summarizes and poses questions for future research.

2 Tree Descriptions

The trees considered here are always rooted, and we consider the edges as di-
rected, pointing away from the root. By an ordered tree we mean a rooted tree
with a linear order on the children of each vertex and we use the terms left and
right to compare them.

We follow the notation of [2]. The set of vertices of a tree T is denoted by
VT , and the vertices are usually called u, v, or w. The expression u ⊳ v denotes
that u is the father of v and u ⊳∗ v (and v ∗⊲ u) means that u dominates v, i.e.,
u is an ancestor of v in the tree (including u = v). We write u ⊳+ v (and v +⊲ u)
if u ⊳∗ v and u 6= v. If for two vertices u and v neither u ⊳∗ v nor v ⊳∗ u, we
say that u and v are disjoint, in symbols u ⊥ v. In this situation we distinguish
two cases: either u precedes or succeeds v. A vertex u precedes a vertex v (and v
succeeds u), in symbols u ≺+ v (and v + ≻ u), if there is a common ancestor of
u and v in the tree that has two children w1 and w2 with w1 ⊳∗ u and w2 ⊳∗ v
and such that u is to the left of v. We write u ≺∗ v if either u ≺+ v or u = v.

The right picture in Figure 1 shows an example of a rooted tree with root
α(x). In pictures we indicate the ordering of the children of a vertex by distin-
guishing between left and right. Here, α(v) ≺+ α(w) and α(y) ≺+ α(v), and
α(x) ⊳+ α(w), for example.

In an ordered tree, for every pair u, v of vertices exactly one of the following
relations holds:

u ⊳+ v, u +⊲ v, u ≺+ v, u +≻ v, u = v.

It is important to note that the union of the relations ⊳+ and ≺+ forms a strict
linear order on the set of all vertices of an ordered tree, which is easily seen to be



4

the pre-order that results from a (recursive) tree traversal that lists each node
before its descendants.

We now define partial tree descriptions, due to Cornell [13], that allow to
partially describe the structure of an ordered tree using arbitrary disjunctions
of these five cases. To distinguish clearly between equality in this language and
the common usage of the symbol ‘=’, we denote the former relation by ‘≡’.

Definition 1. A partial tree description (V, C) consists of a set of variables
V and a set C of binary constraints of the form xRy, where x, y ∈ V and
R ⊆ {⊳+, +⊲,≺+,+≻,≡}. A constraint xRy is satisfied by a pair (T, α), where
T is an ordered tree and α : V → VT is a mapping from the variables to the
vertices of the tree, if α(x)Rα(y) holds in the tree for some relation R ∈ R. A
pair (T, α) that satisfies all the constraints in C is called a solution for (V, C).

Note that the mapping α in the above definition is not required to be surjec-
tive. In particular, the induced graph on the image of α need not be connected
but can be a forest. A partial tree description that has a solution is called sat-
isfiable or consistent.

Figure 1 shows a partial tree description and one of its solutions on the
right. In this picture, a directed edge from x to x′ that is labeled by R denotes
a constraint xRx′.

α(u)

v

w

u

x

{⊳+, +⊲,≡} {+⊲,≡}

{≺+,≡}

{≺+,+≻, ⊳+}

{≺+,+≻}

{+⊲,≺+}{⊳+,≺+,≡}

{≺+,+≻,≡}

{⊳+,≺+,+≻,≡}

{⊳+,≺+}

y
α(y)

α(x)

α(v) α(w)

Fig. 1. The translation of the partial tree description of Figure 1 into the restricted
language.

3 Related Work

Cornell’s tree description language is closely related to problems in various fields
of computer science and artificial intelligence. We focus here on fields that are
distinct from the origins of Cornell’s language in computational linguistics.



5

3.1 The Left-Linear Point Algebra

The left-linear point algebra is studied in the area of binary relation algebras
and algebraic logic, and can be used to model flows of time which branch into
the future, but where the past is fixed [12, 16, 21]. Formally, a semi-linear (or
left-linear) order (O, <) is a partial order such that if s, t, u ∈ O, s < u, and
t < u, then either s < t, t < s, or s = t. In [21], the case that neither u < v nor
v < u holds for two distinct elements u and v in a semilinear order is denoted
by u#t. Semi-linear orders give rise to an (abstract) relation algebra, called the
left-linear point algebra, which has eight elements, and three atoms, represented
by <, >, and #. A typical question in this context is the complexity of the so-
called network satisfaction problem. In case of the left-linear point algebra, the
network satisfaction problem can be solved in quintic time, i.e., in time O(n5),
where n denotes the size of the network.

It is straightforward to see from the definitions given in [21] that the network
satisfaction problem for the left-linear point algebra is just another formulation
of the consistency problem for partial tree descriptions (V, C), where we restrict
the constraint in C to be of the form x {⊳+} y or x {≺+,+≻} y. In Section 4, we
discuss an algorithm that solves the consistency problem for partial tree descrip-
tions for this restricted language. The algorithm we present has a running time
which is quadratic in the size of the partial tree description, and therefore out-
performs the previously known algorithm for the network satisfaction problem
for the left-linear point algebra.

3.2 The Common-supertree Problem

The common-supertree problem is a computational problem that was introduced
and studied in computational biology [7,27], and is defined as follows. Let S be a
set of trees with common leaf set L. The computational task is to decide whether
there is a tree T on the leaf set L such that every tree in S is a refinement of
T , i.e., can be obtained by a series of contractions of edges from T . If such a
refinement exists, we say that the trees in S are compatible.

The common-supertree problem can be easily formulated with tree descrip-
tions. In fact, we only have to use the constraint types {⊳+} and {≺+,+≻}. Let
S be a set of trees over a common leaf set L. The variables of the tree description
are the vertices of the trees in S, where the inner nodes of all the trees become
different variables, but the leaves are represented by the same set of variables
for all trees. Tree-edges xy translate to dominance constraints x {⊳+} y. Siblings
x, y in a tree from S will be related via the constraint x {≺+,+≻} y.

See Figure 2 for an example of an incompatible set that contains two rooted
trees, and its translation into an (unsatisfiable) partial tree description. In this
picture, solid arcs stand for the constraint {⊳+} and dashed arcs for the con-
straint {≺+,+≻}.

The size of the resulting tree description is clearly O(∆2n), where n is the
total number of nodes in S and ∆ denotes the maximum degree in any tree of



6

a b c a b c

Fig. 2. Two incompatible trees and the translation into an (unsatisfiable) partial tree
description.

S. It is not hard to show that it has a solution if and only if there is a common
supertree for the trees from S.

Note that the above definition of compatible should not be confused with the
notion of compatible given in [24]. They say that a tree T is compatible with T ′

if there exists a subset A of the leaves of T such that the minimal subtree of T
that connects all nodes in A and suppresses all nodes of degree two equals T ′.
In contrast, the notion of compatibility we used here is studied e.g. in [27], and
was called weak compatibility in [24].

3.3 Allen’s Interval Algebra

As already observed by Cornell [13], it is possible to translate a partial tree
description into a set of constraints from Allen’s Interval Algebra [1]. In Allen’s
Interval Algebra, the variables denote intervals over the real line. The constraints
from Allen’s Interval Algebra describe possible relationships between intervals,
e.g., one can impose the constraint that two intervals do not overlap. Allen’s full
interval constraint logic is NP-complete in its unrestricted form, but there are
fragments of this logic that can be solved in polynomial time [10, 22].

If the translation mentioned above only produces constraints that fall into
one of the tractable fragments of Allen’s Interval Algebra, we could use the
translation to obtain a polynomial-time algorithm for partial tree descriptions.
The idea for the translation of partial tree description (V, C) into Allen’s Interval
Algebra is as follows. We use V as the set of variables that denote intervals in
the translation. If C contains x {⊳+} y, then the translation contains an interval
constraint that requires that the interval for x contains the interval for y. If C
contains x {≺+,+≻} y, then the translation contains an interval constraint that
requires that the interval for x and the interval for y are disjoint. All the other
partial tree descriptions can be translated analogously.

Solutions the the translation only correspond to trees, if the set of intervals
in the translation is laminar, i.e., for any pair of intervals that is not disjoint,



7

one interval must completely contain the other. In other words, intervals must
not overlap. To ensure this, we also have to add interval constraints that require
that the intervals for x and y do not overlap, for all distinct variables x and y
in V . It is then easy to show that the translation preserves satisfiability.

Consulting the classification of the tractable fragments of Allen’s interval
algebra given in [22], it turns out that the interval constraints obtained from
translating constraints of the form x {⊳+} y and x {≺+,+≻} y in the above way,
together with the necessary non-overlap interval constraints, do not fall into one
of the tractable fragments of Allen’s Interval Algebra. Hence, we can not use
this approach to solve partial tree descriptions in polynomial time.

3.4 General Constraint Satisfaction Problems (CSPs)

The problems studied in this article (as well as the constraint satisfaction prob-
lem for Allen’s Interval Algebra and its fragment) fall into a class of computa-
tional problems known as constraint satisfaction problems (CSPs), see e.g. [8].
Every problem in this class can be described as a homomorphism problem with
respect to a fixed relational structure. To be precise, for a fixed structure Γ
over a relational signature τ , also called the template, the constraint satisfaction
problem of Γ is the following computational problem:

CSP(Γ )
INSTANCE: A finite τ -structure S.
QUESTION: Is there a homomorphism from S to Γ ?

For relational structures Γ over a finite domain the computational complex-
ity of the problems CSP(Γ ) was intensively studied; see e.g. [9, 18]. The most
systematic approach here is based on a connection to universal algebra, which
essentially says that the computational complexity of CSP(Γ ) is described by a
universal-algebraic object called the clone of polymorphisms of Γ [9].

However, the consistency problem for partial tree descriptions can not be
formulated with a finite template. But it can be formulated with a ω-categorical
countable template described e.g. in [11]; see [3,6] for constraint satisfaction with
infinite templates. The concept of ω-categoricity is fundamental in model-theory.
It turns out that the universal-algebraic approach can also be applied to study
the complexity of CSP(Γ ) if Γ is ω-categorical [5].

It is interesting to observe that the algorithm presented here does not apply
local consistency techniques or group-theoretic techniques, whereas all known
tractable CSPs with finite templates having a finite domain make use of at least
one of these two techniques [9, 18].

4 An Algorithm for a Restricted Signature

We first illustrate the idea of our algorithm for a small fragment of the tree de-
scription language, which is the fragment that corresponds to the left linear point



8

algebra described in Section 3. We have also seen that this fragment is already
expressive enough to cover the common-supertree problem from phylogenetic
analysis mentioned in the introduction. In this reduced constraint language we
only allow constraints of the types

x {⊳+} y and x {≺+,+≻} y.

The first constraint is called (strict) dominance and the second disjointness, and
we use the shorthands x ⊳+ y and x ⊥ y, respectively, for these two types of
literals.

Such a set of constraints can be viewed as a graph (V ; ⊳+,⊥) with two types
of edges, namely directed edges ⊳+ and undirected edges ⊥. Observe that the
binary relations ⊳+ and ⊥ are now defined both on the vertices of a tree and
on the nodes of an instance. The reference, however, should always be clear. We
would like to stress that the two constraints do not allow for equality, i.e., x ⊳+ y
means that in any solution, x must lie strictly above y. We say that a constraint
graph G has a solution (T, α) (and is satisfiable) if the corresponding partial
tree description has this solution (and is satisfiable). We also use some of the
standard graph theory notation, e.g., the subgraph of G = (V ; ⊳+,⊥) induced
by a subset S of V is denoted by G[S], and G− S denotes the constraint graph
G[V \ S].

Fig. 3. An inconsistent partial tree description.

In pictures we draw this constraint graph with two different types of arcs. For
a dominance edge x ⊳+ y we draw a directed arc from x to y, for a disjointness
edge x ⊥ y we draw a dashed line without direction. Figure 3, for instance, shows
such a constraint graph.

The basic idea behind our algorithm to find a solution to a partial tree
description (V, C) (if one exists) is to pick a node x of V as the root of our
solution, then to decompose (V, C) into smaller parts, and to recursively deter-
mine solutions to these parts, which will become the subtrees below x. With this
perspective, the following definition comes naturally.

Definition 2. Let (V, C) be a partial tree description. Then a variable x ∈ V is
free if (V, C) has a solution (T, α) in which α(x) is the root of T .

By definition, a partial tree description with a free node is satisfiable. We shall
see soon that under a simple connectivity condition for the constraint graph, the



9

converse is also true: a satisfiable instance with a “connected” constraint graph
must have a free node, i.e., a node that dominates all others.

The crucial point here is, of course, in what sense the constraint graph, which
contains directed and undirected edges, should be connected. Let us briefly recall
some conventions. An undirected path in a directed graph (also called digraph)
may use arcs in any direction, ignoring their orientation. A digraph D = (V ; E)
is strongly (weakly) connected if there is a directed (an undirected) path from a
to b for any two vertices a, b ∈ V . A strongly (weakly) connected component of
D is a maximal strongly (weakly) connected induced subgraph U of D.

Now, we say that a constraint graph (V ; ⊳+,⊥) is dominance-connected if
the digraph (V ; ⊳+) is weakly connected. This notion of connectivity is crucial
for our desired characterization of free nodes. The following lemma marks the
first step.

Lemma 1. Let G = (V ; ⊳+,⊥) be a dominance-connected constraint graph, and
let y and y′ be variables in V . Then for every solution (T, α) of G there exists a
variable x ∈ V such that α(x) ⊳∗ α(y) and α(x) ⊳∗ α(y′) in T .

Proof. Since the vertices y and y′ are weakly connected in (V ; ⊳+) there exists
a chain of nodes (y1, . . . , yr) that starts at y = y1, ends at y′ = yr, and where
(yi, yi+1) ∈ ⊳+ or (yi+1, yi) ∈ +⊲ for 1 ≤ i ≤ r − 1. We prove by induction on r
that for every solution (T, α) of (V, C) there exists an index j ∈ {1, . . . , r} with
α(yj) ⊳+ α(y0) and α(yj) ⊳+ α(yr) in T . If r = 0 or r = 1 then we can choose x
to be either α(y0) or α(yr). Otherwise, we can apply the induction hypothesis to
the chain (y1, . . . , yr−1). Thus, there exists a j, 0 ≤ j ≤ r− 1, such that α(yj) is
a common ancestor of α(y1) and α(yr−1) in T . If α(yr−1) ⊳+ α(yr) then α(yj) is
also a common ancestor of α(y1) and α(yr), so we can choose x = yj . Otherwise,
α(yr) ⊳+ α(yr−1) in T . Hence, both α(y1) and α(yr) are ancestors of yr−1 in T .
Since T is a tree, it follows that α(yr) ⊳∗ α(yj) or α(yj) ⊳∗ α(yr) in T . In the first
case, we choose x = yr, and in the second x = yj . ⊓⊔

As promised, we now show that every satisfiable dominance-connected con-
straint graph has a free node.

Proposition 1. A satisfiable partial tree description (V, C) with a dominance-
connected constraint graph has a free node.

Proof. Assume there is a solution (T, α) for (V, C) and consider the vertices v
that are topmost in T with respect to ⊳+ such that v = α(x) for some node x ∈ V .
If there is only one such vertex v, then the subtree rooted at v together with α
is also a solution of (V, C). But since there is a node x ∈ V such that v = α(x),
this contradicts the assumption that x is not free. If there are two distinct
topmost nodes v, v′, then v and v′ are disjoint in T . Since the constraint graph
is dominance-connected, we can apply Lemma 1, and obtain a contradiction to
the assumption that v and v′ lie topmost in T . ⊓⊔

For the algorithm we need a concise graph-theoretic characterization of free
nodes that can be checked efficiently.



10

Proposition 2. Let G = (V ; ⊳+,⊥) be the constraint graph of a satisfiable par-
tial tree description. Then a node x ∈ V is free if and only if

(C1) there is no arc y ⊳+ x in G and
(C2) there is no edge x ⊥ y in G.

Proof. If there is another y such that y⊳+x, then the vertex x cannot be topmost
in any solution of G, and thus can not be free. If the vertex x is involved in a
disjointness constraint it can also not be free, since the root of a tree is not
disjoint to the other nodes in the tree.

Conversely, assume that the node x of a satisfiable set of constraints sat-
isfies (C1) and (C2). The dominance-connected components of G[V − {x}] are
also satisfiable and must thus by Proposition 2 have free nodes. Then we have
the following solution for G: introduce a tree node x and let the solutions of
the dominance-connected components become the subtrees of this node. The
disjointness constraints between the different dominance-connected components
are thus satisfied by construction and it is clear from (C1) and (C2) that all the
constraints on x are also satisfied. ⊓⊔

Example. Let us revisit the example shown in Figure 3 on page 8. Note that
instance does not contain a node x that satisfies (C1) and (C2). By Proposition 2,
there is no free node, and hence the instance has no solution. But if any constraint
in the instance is removed, we find a node satisfying both conditions, and hence
any such instance has a solution.

Solve
`

G
´

// input: a dominance-connected constraint graph G = (V ; ⊳+,⊥)
// constructs a tree T and a mapping α : V → VT

pick a node x of G satisfying (C1) and (C2);
if no such free node exists then return “problem has no solution”;
create a new tree node r and let α(x) := r;
compute the dominance-connected components C1, . . . , Ck of G − {x};
for i = 1 to k do

call Solve(G[Ci]) and make the returned root a new child of r;
od

return root r;

Fig. 4. The function Solve for constraints of the type ⊳+ and ⊥.

Figure 4 shows the algorithm for the restricted constraint language with the
two relations ⊳+,⊥. For a dominance-connected constraint graph, the function
Solve first selects a free node x as root and then links the the recursively com-
puted solutions to the dominance-connected components Ci of the remainder
G − {x} below the α-image r of x in the correct order.



11

Theorem 1. There is an algorithm that decides satisfiability of a given partial
tree description (V, C) in the restricted constraint language in O(|V ||C|) time.

Proof. It is clear that we can construct the constraint graph (V ; ⊳+,⊥) of the
given partial tree description in linear time. We then apply the algorithm shown
in Figure 4 on the constraint graph. For an instance that is not dominance-
connected, we can first introduce a dummy node z together with a ⊳+-arc from
z to each other node to make the graph connected. The node z then becomes
the root of the output, and since α is not required to be onto the solution will
be valid also for the original graph without z.

If the algorithm detects a weakly connected component without a free node,
we know by Proposition 1 that the constraints do not have a solution. Otherwise
Proposition 2 guarantees that we can proceed and make a node x satisfying (C1)
and (C2) the root of our solution. The running time is dominated by the repeated
computations of the connected components of constraint graphs. We can use
depth first search to compute the connected components in time O(|V | + |C|),
and this will be done at most |V | times. We can assume that |V | is smaller than
|C|−1, otherwise the first call of the algorithm divides the problem into instances
where the assumption holds. Hence the algorithm runs in time O(|V ||C|). ⊓⊔

5 Reduction to Four Basic Constraints

We now turn to the general problem of deciding the consistency of a partial tree
description for the full language introduced by Cornell. In order to get control
over the 25 subsets of the relation set R ⊆ {⊳+, +⊲,≺+,+≻,≡}, we first show
how to express each of them with a smaller language that contains the following
four different constraint types only:

x {⊳+,≡} y, x {≺+,≡} y, (1)

x {⊳+, +⊲,≺+,+≻} y, x {≺+,+≻,≡} y.

We reduce each of the 32 subsets either directly to an intersection of constraints
from (1), or we build small gadgets with new dummy variables that can simulate
the original constraint.

The constraints {+⊲,≡} and {+≻,≡} are simply the first and second con-
straint of (1) flipped, and the singletons {⊳+}, {≺+}, and {≡} can be written as
intersections of these. The two extremal sets {+⊲, ⊳+,≺+,+≻,≡} and ∅ are not
needed since the former imposes no restrictions on the tree and the latter is, by
definition, unsatisfiable. If we show how to express the constraints

x {⊳+, +⊲,≡} y, x {⊳+,≺+,+≻,≡} y, (2)

x {⊳+,≺+,≡} y, x {⊳+,+≻,≡} y

with those in (1) we are done, since the remaining constraints are easily repre-
sentable as flippings and intersections of constraints from (1) and (2).



12

For each constraint x {⊳+, +⊲,≡} y, we introduce a new variable z and replace
it by the two constraints x {⊳+,≡} z and y {⊳+,≡} z. By the properties of a
tree, these two constraints imply x {⊳+, +⊲,≡} y. Conversely, every solution for
the original constraints can be modified to satisfy also the new constraints.

Constraints of the form x {⊳+,≺+,≡} y are replaced by the two constraints
x {⊳+,≡} z and z {≺+,≡} y, where z is a new variable. Similarly, we can replace
x {⊳+,+≻,≡} y by the two constraints x {⊳+,≡} z and z {+≻,≡} y. Finally,
we replace x {⊳+,≺+,+≻,≡} y by x {⊳+,≡} y and z {≺+,+≻,≡} y, where z is
again a new variable.

Thus we can express all constraints in Cornell’s language with the four basic
binary relations from (1). Our algorithm works on tree descriptions consisting of
such basic constraints only. We therefore introduce special names and notation
for these four types:

– x {⊳+,≡} y: the dominance constraint x ⊳∗ y,

– x {≺+,≡} y: the precedence constraint x ≺∗ y,

– x {≺+,+≻,≡} y: the disjoint-or-equal constraint x 
 y,

– x {⊳+, +⊲,≺+,+≻} y: the inequality constraint x 6≡ y.

Note that from now on, the notions of dominance and precedence relation are to
be considered non-strict, i.e., they stand for reflexive relations.

In the following we apply this reduction to the example presented in Figure 1.
The result is shown in Figure 5. Since the disjoint-or-equal and the inequality
constraint are symmetric, we indicate them as undirected edges and not as arcs.

v

w

x

⊳
∗

≺∗

⊳
∗

y

u

⊳
∗







⊳
∗

⊳
∗

6≡

≺∗

6≡




∗≻

⊳
∗

⊳
∗

6≡∗≻

6≡
⊳
∗




Fig. 5. The translation of the example from Figure 1 into the basic constraints.



13

6 Constraint Graphs and Freeness

Our algorithm for the full tree description language uses the ideas that we dis-
cussed for the restricted setting. The first important difference to the restricted
setting is that now several variables may map to the same tree node. Hence, we
shall need a generalized notion of freeness.

Definition 3. Let (V, C) be a partial tree description. Then S ⊆ V is called free
if there is a solution (T, α) for (V, C) such that S = α−1(r), where r is the root
of T .

Similarly to the restricted setting we want to show that under a certain
connectedness condition free sets must exist, and we also want to find practi-
cal characteristics of free sets to identify them algorithmically. To this end, we
adapt the concept of the constraint graph from Section 4. The concept of weak
connectedness with respect to dominance edges must be replaced by a more com-
plex definition that is based on an auxiliary graph containing dominance and
precedence arcs. We define the directed P -graph (V, P ) on V with arc set

P := {xy | C contains x ≺∗ y or x ⊳∗ y or y ⊳∗ x}

and call a partial tree description (V, C) dominance connected if its P -graph is
strongly connected.

Example. Consider the instance drawn in Figure 5. The P -graph of this example
is strongly connected. However, if we consider the graph where the vertex x and
all constraints imposed on x are removed, then the P -graph has four connected
components.

The following proposition is the analog of Proposition 1 for the restricted
case.

Proposition 3. A satisfiable partial tree description with a strongly connected
P -graph has a free set.

Proof. Suppose (T, α) is a solution of C. We consider the set S of nodes in C
that map to the minimum of the linear order ⊳+ ∪ ≺+ in T , i.e., the nodes
that map to the leftmost and topmost vertex u in T . If the vertex u dominates
all vertices in α(V ) then S is actually a free set. We claim that this must al-
ways be the case. So assume for contradiction that there is a variable y ∈ V
such that α(y) is not dominated by u. Since the P -graph of C is strongly con-
nected it contains a path y, x1, x2, . . . , xk from y /∈ S to some xk ∈ S. The
path α(y), α(x1), α(x2), . . . , α(xk) must eventually enter the subtree rooted at
u, with α(xj), say. Then α(xj−1) comes before u in ⊳+ ∪ ≺+, contradicting the
minimality of u with respect to the linear order ⊳+ ∪ ≺+. ⊓⊔

For the analogy to Proposition 2, the graph-theoretic characterization of free
sets, we define a directed graph (V, D) (called the D-graph) that is based on
the ⊳∗ relation but in addition also takes precedence constraints into account.
Precisely, we let

D := {xy | C contains x ⊳∗ y or x 
 y or x ≺∗ y or y ≺∗ x}.



14

Example. Again, consider the instance drawn in Figure 5. The strongly con-
nected components of the P -graph has five strongly connected components.

We would like to remark that the digraphs (V, D) and (P, D) have an inter-
esting symmetry: D is based on dominance constraints and contains bidirected
precedence constraints, while P is the union of the precedence constraints and
all bidirected dominance constraints. However, a deeper reason for this similarity
is elusive. The purposes of the two digraphs are very different in nature.

The characterization of Proposition 2 now becomes a similar statement about
the D-graph, with the old conditions (C1) and (C2) merged into one, (C). On
the other hand, inequality now has to be handled explicitly, which again gives a
second condition, (I).

Proposition 4. Let (V, C) be a satisfiable partial tree description. Then S ⊆ V
is a free set of nodes if and only if the following two conditions hold:

(C) there is no edge xy ∈ D such that x /∈ S and y ∈ S and
(I) there is no pair x, y ∈ S such that x 6≡ y.

Proof. The two conditions are clearly necessary, because a free set denotes the
root of a tree, which dominates all other vertices, and because a constraint x 6≡ y
explicitly forbids to map x and y to the same tree node.

For the other implication, let S be a set of nodes that satisfies conditions
(C) and (I). Let C1, . . . , Ck be the strongly connected components of the P -
graph without S. Fix an arbitrary linear extension of the acyclic structure that
is defined by the P -graph on C1, . . . , Ck. Since C is satisfiable, the subgraph Gi

of C induced by the component Ci has a solution (Ti, αi), for all 1 ≤ i ≤ k.
Introduce a new vertex v, and add T1, . . . , Tk as subtrees according to this linear
order of the components. The resulting tree is denoted by T . Now consider the
mapping α that is the extension of all the αi and maps the vertices in S to v.

We claim that (T, α) is a solution for (V, C), and therefore S is a free set of
nodes. It is clear that (T, α) satisfies all inequality constraints, because by (I)
all inequality constraints are either within one of the components, or between
different components, or between S and a component, and in all these cases the
inequality is satisfied in (T, α). If C contains a disjointness constraint between
x and y, then condition (C) implies that one out of the following cases applies.
Either x and y are both in S, in which case the disjointness is satisfied by
(T, α). Or, x and y are in the same component Ci, in which case the constraint
is satisfied, because it is satisfied in (Ti, αi) as well. By the definition of the
P -graph it can not be that x and y are in different components.

If C contains a dominance constraint between x and y, then condition (C)
implies that y cannot be in S. Moreover, x and y cannot be in different compo-
nents C1, . . . , Ck, by the definition of the P -graph. Therefore, either x and y are
both in the same component or both in S, or x is in S and y is in S; in all cases
the dominance constraint is satisfied by (T, α).

Finally, suppose C contains a precedence constraint between x and y. Again,
we see that the constraint is satisfied if both x and y lie in S or both lie in
the same component C1, . . . , Ck. If they lie in different components, then the



15

precedence constraint is satisfied because the subtrees below v in T were arranged
according to a linear extension of the acyclic structure defined by the P -graph
on the components C1, . . . , Ck. ⊓⊔

7 The Algorithm

We now turn the Propositions 4 and 3 on free sets of nodes into an algorithm for
Cornell’s full language. From a given input with constraints ⊳∗, ≺∗, 
, and 6≡, we
first create the D-graph and P -graph and then recursively create a tree by de-
composing the vertex set into dominance-connected components and extracting
free sets as roots.

Figure 6 shows the algorithm, which consists of two procedures, Solve and
Solve con. We abuse notation and denote a partial tree description (V, C) simply
by C. Initially, for a given instance C, we call Solve(C), which partitions the
variable set into the strongly connected components of P -graph. If the P -graph
of C is strongly connected, the procedure Solve con can be applied to C. The
algorithm contains a statement choose, that influences which free set of nodes is
selected for the solution. We discuss the issue of how to find such a free set in
the running-time analysis below.

Solve(C):

Compute the scc’s of the P -graph of (C),
and let C1, . . . , Ck be a linear extension of their acyclic structure
create a new vertex r with children
Solve con(C[Ci]), for 1 ≤ i ≤ k, in this order
return r

Solve con(C):

precondition: The P -graph of C is strongly connected
if no set of nodes satisfying (C) and (I) exists
then return “problem has no solution”
else choose a set of nodes S satisfying (C) and (I)
let r be the root of the tree Solve(C[V − S]) and set α(S) to r

return r

Fig. 6. The function Solve for the full tree description language.

Proposition 5. The algorithm Solve of Figure 6 decides satisfiability of a given
partial tree description (V, C) in time O(|V ||C|)

Proof. In Solve, the strongly connected components of the precedence graph of
C can be computed in linear time in the input size. We then call the procedure
Solve con on the strongly connected components. If it returns “problem has



16

no solution”, the constraints were unsatisfiable by Proposition 3. Otherwise,
Proposition 4 guarantees that we can construct a solution by selecting a free
set as root. Because of (C1), a free set must be the union of strongly connected
components of the D-graph into which no D-arcs enter. Any strongly connected
component contained in a free set is a free set as well. These strongly connected
components can easily be found by depth-first search in time O(n + m).

The strongly connected components are computed at each level of the recur-
sion. Since we take out at least one vertex in each call of Solve con, and since
in all calls of Solve con (except possibly the first call) n is in O(m), the overall
running time is in O(nm). ⊓⊔

8 Conclusion and Outlook

We presented an efficient algorithm that decides whether a partial tree descrip-
tion is consistent; if this is the case, the algorithm constructs a solution. This
solves an open problem by Cornell, who introduced these tree descriptions in
computational linguistics [13]. The consistency test and construction of one so-
lution can be done in quadratic time in the input size.

We would like to conclude with a series of open problems for future research
that are motivated in the various related areas mentioned in Section 3.

– As mentioned in Section 3, the consistency problem for partial tree de-
scriptions can be formulated as a constraint satisfaction problem for an ω-
categorical template Λ. For ω-categorical templates, the universal-algebraic
approach applies, and in particular it can be shown that the complexity of
CSP(Λ) is captured by the polymorphism clone of Λ. The open problems
in this context are: 1) Describe the polymorphism clone of Λ. 2) What are
the polymorphism responsible for the tractability of CSP(Λ)? An answer
to these questions would give us descriptions of constraint languages with
higher-ary constraints (all constraints considered in this acticle were binary)
that can still be solved in polynomial time.

– In Section 3, we pointed to two different notions of compatibility of phylo-
genetic trees that were studied in the literature. Only for one of them we
described how it can be modeled with partial tree descriptions. Is it possi-
ble to come up with a tree-description language that allows to model the
common-supertree problem for the other notion of compatibility that was
used by [24]?

– The known algorithms for the tractable fragments of Allen’s Interval Algebra
are all based on local-consistency techniques. Is it possible to find algorithms
with better running times for these fragments, using the algorithmic tech-
niques developed in this article? In particular, can we avoid local consistency
techniques, similarly to the algorithm presented here?

Acknowledgements. We would like to thank Pierre Flener for drawing our atten-
tion to the notion of compatibility of trees used in [24].



17

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832–843, 1983.

2. R. Backofen, J. Rogers, and K. Vijay-Shanker. A first-order axiomatization of the
theory of finite trees. Journal of Logic, Language, and Information, 4:5–39, 1995.

3. M. Bodirsky. Constraint satisfaction with infinite domains. Dissertation,
Humboldt-Universität zu Berlin, 2004.

4. M. Bodirsky and M. Kutz. Pure dominance constraints. In Proceedings of the
19th Annual Symposium on Theoretical Aspects of Computer Science (STACS’02),
LNCS 2285, pages 287–298, Antibes - Juan le Pins, 2002.

5. M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous
templates. In Proceedings of Computer Science Logic (CSL’03), pages 44–57, Vi-
enna, 2003.

6. M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous
templates. Journal of Logic and Computation, 16(3):359–373, 2006.

7. D. Bryant. Building trees, hunting for trees, and comparing trees. PhD-thesis at
the University of Canterbury, 1997.

8. A. Bulatov, P. Jeavons, and A. Krokhin. The complexity of constraint satisfaction:
An algebraic approach. In: Structural Theory of Automata, Semigroups and Uni-
versal Algebra (Montreal, 2003), NATO Science Series II: Mathematics, Physics,
Chemistry, 207:181–213, 2005.

9. A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of con-
straints using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

10. H.-J. Bürckert and B. Nebel. Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebra. Journal of the ACM, 42(1):43–66,
1995.

11. P. J. Cameron. Oligomorphic Permutation Groups. Cambridge University Press,
1990.

12. S. Comer. A remark on chromatic polygroups. Congr. Numer., pages 85–85, 1983.
13. T. Cornell. On determining the consistency of partial descriptions of trees. In 32nd

Annual Meeting of the ACL (ACL’94), pages 163–170, 1994.
14. R. Dechter and P. van Beek. Local and global relational consistency. Journal of

Theoretical Computer Science, 173(1):283–308, 1997.
15. D. Duchier and S. Thater. Parsing with tree descriptions: a constraint-based ap-

proach. In Sixth International Workshop on Natural Language Understanding and
Logic Programming (NLULP’99), pages 17–32, 1999.

16. I. Düntsch. Relation algebras and their application in temporal and spatial rea-
soning. Artificial Intelligence Review, 23:315–357, 2005.

17. M. Egg, A. Koller, and J. Niehren. The Constraint Language for Lambda Struc-
tures. Journal of Logic, Language, and Information, 10:457–485, 2001.

18. T. Feder and M. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal on Computing, 28:57–104, 1999.

19. E. C. Freuder. A sufficient condition for backtrack-free search. Journal of the
ACM, 29(1):24–32, 1982.

20. D. Gusfield. Algorithms on strings, trees, and sequences. Computer Science and
Computational Biology. Cambridge University Press, New York, 1997.

21. R. Hirsch. Expressive power and complexity in algebraic logic. Journal of Logic
and Computation, 7(3):309 – 351, 1997.



18

22. P. Jeavons, P. Jonsson, and A. A. Krokhin. Reasoning about temporal rela-
tions: The tractable subalgebras of Allen’s interval algebra. Journal of the ACM,
50(5):591–640, 2003.

23. M. P. Marcus, D. Hindle, and M. M. Fleck. D-theory: Talking about talking about
trees. In Proceedings of the 21st Annual Meeting of the ACL (ACL’83), pages
129–136, 1983.

24. M. P. Ng, M. Steel, and N. C. Wormald. The difficulty of constructing a leaf-
labelled tree including or avoiding given subtrees. Discrete Applied Mathematics,
98:227–235, 2000.

25. M. Pinkal. Radical underspecification. In Proceedings of the 10th Amsterdam
Colloquium, pages 587–606, 1996.

26. J. Rogers and V. Shanker. Reasoning with descriptions of trees. In Proceedings of
the 30th Meeting of the ACL (ACL’92), pages 72–80, 1992.

27. M. Steel. The complexity of reconstructing trees from qualitative charaters and
subtrees. Journal of Classification, 9:91–116, 1992.


