Comments on "Equivalence Constraint Satisfaction Problems"

Manuel Bodirsky

Institut für Algebra TU Dresden, Germarny Manuel.Bodirsky@tu-dresden.de

1 Counterexample

The conjecture about countably infinite ω -categorical structures Γ is not true in the form stated in the abstract of the paper "Equivalence Constraint Satisfaction Problems" by Bodirsky and Wrona. A counterexample can already be found among the reducts of the structure $(\mathbb{Q}; <)$. Consider the structure $\Gamma = (\mathbb{Q}; I, <)$ where I is the four-ary relation $\{(x, y, u, v) \mid x = y \Rightarrow u = v\}$. This structure clearly is a model-complete core. Every function that depends on all of its arguments and preserves I must be injective. Let $d_0 := f(1,0,\ldots,0), d_1 := f(0,1,0,\ldots,0), \ldots, d_{n-1} := f(0,\ldots,0,1).$ We claim that for $n \geq 2$ there is no endomorphism a of Γ such that $d_i = a(d_{i+1})$ for all indices $i \in \mathbb{Z}/n\mathbb{Z}$. If $d_0 < d_1$, we would obtain that $d_0 < d_1 < d_2 < \cdots < d_{n-1}$, a contradiction. Similarly, we obtain a contradiction if $d_0 > d_1$.

On the other hand, no such counterexamples are known for the variant of the conjecture where we are looking for a polymorphism f and endomorphisms a_1, \ldots, a_n satisfying the equations

 $a_1(f(y, x, ..., x)) = a_2(f(x, y, x, ..., x)) = \dots = a_n(f(x, ..., x, y)),$

that is, for weak near unanimity polymorphisms modulo endomorphisms.

2 Proof of Corrected Form of Conjecture

At the BIRS-Workshop Homogeneous Structures, Banff, Canada, November 2015, Michael Pinsker announced that in joint work with Libor Barto they proved the following variant of the conjecture (in adapted terminology) for ω -categorical structures Γ : either the modelcomplete core Δ of Γ has an expansion by finitely many constants such that the pseudovariety generated by its polymorphism algebra contains a two-element algebra all of whose operations are projections, or there is a 6-ary Siggers polymorphism modulo endomorphisms, that is, a 6-ary polymorphism f and endomorphisms a_1, a_2 satisfying $a_1(f(x, x, y, y, z, z)) =$ $a_2(f(y, z, x, z, x, y))$ for all elements x, y, z of Δ .