
Coq in CoqBruno Barras and Benjamin WernerINRIA-Rocquencourt(Received ; Accepted in �nal form)Abstract. We formalize the de�nition and the metatheory of the Calculus of Con-structions (CC) using the proof assistant Coq. In particular, we prove strong nor-malization and decidability of type inference. From the latter proof, we extract acerti�ed Objective Caml program which performs type inference in CC and use thiscode to build a small-scale certi�ed proof-checker.Key words: Type Theory, proof-checker, Calculus of Constructions, metatheory,strong normalization proof, program extraction.1. Introduction1.1. MotivationsThis work can be described as the formal certi�cation in Coq of aproof-checker for the Calculus of Constructions (CC). We view it asa �rst experimental step towards a certi�ed kernel for the whole Coqsystem, of which CC is a signi�cative fragment. In decidable type theo-ries, a proof-checker is a program which veri�es whether a given judge-ment (input) is valid or not (output). Valid meaning that there exists aderivation for that judgement following the inference rules of the theo-ry. When formulating the speci�cation of that problem in the programextraction paradigm of Coq, it reduces to the (constructive) proof ofthe decidability for type-checking, which itself is the �nal consequenceof the main metatheoretic results: conuence, subject-reduction andstrong normalization.Because of G�odel's incompleteness theorem, we cannot hope for astrong normalization proof of the whole type theory underlying Coq.Since our primary goal was to explore the feasibility of the softwarecerti�cation process, we chose to leave the normalization result as anaxiom for a �rst try. Once this work had been suitably ful�lled, wedecided to go for a formal proof of strong normalization for the Calculusof Constructions, which, to our knowledge, was a premi�ere. There aretherefore two aspects to the present work:� A fully certi�ed type-checker for CC.� A complete formalization of the syntactic metatheory of CC; rough-ly a formal checking of the results of Coquand's Thesis [5].

2 B. Barras and B. Werner1.2. Some preliminary commentsThis paper intends to be a kind of informal abstract of a formalized andmechanically checked piece of mathematics; here we try to point outinteresting points and di�culties. We might divide the formal objectsand results in three families:� The objects and lemmas appearing in the extracted program, i.e.mainly the data types for terms and judgements, some lifting oper-ations on De Bruijn indices and the decidability of type inference.� The basic metatheoretical results with no computational content(conuence, subject reduction, etc).� The strong normalization proof.We believed, and turned out to be right, that Coq was extremelywell-suited for, at least, the two �rst points, since even their infor-mal versions are essentially based on mathematical processes Coq iswell-equipped for: inductive de�nitions and proofs by structural recur-sion. The strong normalization proof was more of a challenge, since itis generally presented in a more set-theoretical setting, and no thoughthad yet been given as how to go beyond Altenkirch's formalized nor-malization proof for system F [1]. Actually, it was indeed necessary touse extensively advanced features of Coq's type theory in order to pushour normalization proof through.In the whole paper, verbatim typesetting will be used for Coq-formalized objects. All the de�nitions, lemmas and theorems are statedtogether with their respective names in the formal development.2. Terms of the Calculus of ConstructionsIn this section we de�ne the syntax, �-reduction and some combinato-rial properties on the raw terms. These de�nitions are straightforwardenough to be con�dent in the fact that they actually implement theintended formalism.2.1. Syntax of expressionsWe consider a �-calculus with dependent types. As it is now usual, weuse the same syntax for terms and types. The correspondence betweeninformal, mathematical and formal notations is described in �gure 1.Before de�ning the terms, we have to introduce the set of sorts. Thesorts are special prede�ned constants: they are the type of types. Fordetails see [2]. coqencoq.tex; 28/03/1997; 14:47; no v.; p.2

Coq in Coq 3informal named variables de Bruijn formalContext � � e:envList item �(n) = (x; t) �(n) = t (item t e n)Item with lift �(n) = (x; t) "n+1�(n) = t (item lift t e n)Sorts Prop;Kind Prop;Kind prop, kindVariables x n if �(n) = (x;T) (Ref n)Abstraction �x :T:M �T:M (Abs T M)Application (u v) (u v) (App u v)Dependent product �x :T:U �T:U (Prod T U)Non-dependent product A! B A ! B (Prod A (lift (S O) B))Lift T "nk T (lift rec n T k)Substitution M [xnN] M [knN]if �(k) = (x;T) (subst rec N M k)Figure 1. Correspondence between various notationsDEFINITION 1 (type sort). The set of sorts of the Calculus of Con-structions has two elements: Kind and Prop.Sort := Kind j PropDEFINITION 2 (type term). The syntactic class Term is de�ned bythe following grammar:Term := s j n j �T1:T2 j (T1 T2) j �T1:T2where T1; T2 2 Term, s 2 Sort and n 2 N.Let us simply recall that �T1:T2 denotes the dependent functiontype from T1 to T2.Since we use de Bruijn notation for bindings, no variable names areneeded in the context. The latter are simply term lists.DEFINITION 3 (type env). Contexts are term lists.We note j�j the length of the context �. To denote the n-th elementof a context � (the rightmost element has rank 0), we use the notation�(n), which implicitly assumes that n < j�j.2.2. Reduction rulesIn this calculus, we only consider the �-reduction. To de�ne this reduc-tion rule, we have to de�ne substitution �rst. de Bruijn notation requirescoqencoq.tex; 28/03/1997; 14:47; no v.; p.3

4 B. Barras and B. WernerLift Substitution"nk s = s s[knN] = s"nk i = (i+ n if i � ki if i < p i[knN] = 8><>: i� 1 if i > k"kN if i = ki if i < k"nk �T:t = � "nk T: "nk+1 t (�T:t)[knN] = �T [knN]:t[k+ 1nN]"nk (u v) = ("nk u "nk v) (u v)[knN] = (u[knN] v[knN])"nk �T:U = � "nk T: "nk+1U (�T:U)[knN] = �T [knN]:U [k+ 1nN]Figure 2. De�nition of lift and substitutionde�ning another function on terms: the relocation of de Bruijn indices,also called \lifting".2.2.1. Lift, substitution and �-reductionDEFINITION 4 (lift rec, lift, subst rec, subst). Given a termMand integers n and k, we de�ne "nk M (lift rec n M k) as the termM where all the indexes greater that k are lifted by n. We write "nMfor the lift of all variables (a shortcut for "n0M).M [knN] (written (subst rec N M k) in Coq) stands for the substi-tution of the variable k by the term N in M . The precise de�nitionsare given in �gure 2.So far, we de�ned the objects the program we want to verify willdeal with. From here on up to section 7, we will introduce notions andresults without any computational content, which means that they willnot appear in the extracted program.DEFINITION 5 (predicate red1). The one-step �-reduction, writtenB� , is the smallest binary relation on terms closed by the inferencerules on �gure 3.DEFINITION 6 (predicates red, conv). �-reduction of arbitrary manysteps will be written B�� . The notation for the �-conversion will be �� .In a general way, for any relation R, we write R� its reexive tran-sitive closure and R+ its transitive closure.2.2.2. Algebraic properties of lift and substThe following are basic properties of the lifting and substitution oper-ations. They have already been proved by Huet [13] for the pure �-calculus and the proofs translate easily to annotated terms.coqencoq.tex; 28/03/1997; 14:47; no v.; p.4

Coq in Coq 5(Beta) (�T:M N)B� M [0nN](Abs-L) M B� M 0�M:N B� �M 0:N (Abs-R) M B� M 0�N:M B� �N:M 0(App-L) M1 B� N1(M1 M2)B� (N1 M2) (App-R) M2 B� N2(M1 M2)B� (M1 N2)(Prod-L) M1 B� N1�M1:M2 B� �N1:M2 (Prod-R) M2 B� N2�M1:M2 B� �M1:N2Figure 3. The �-reduction relationLEMMA 7.lift rec0 : "0kM = Msimpl lift rec : "pi ("nkM) ="p+nk M if k � i � k + npermute lift rec : "pi ("nkM) ="np+k ("pi M) if i � ksimpl subst rec : ("n+1k M)[pnN] ="nkM if k � p � n + kcommut lift subst rec : "nk (M [pnN]) = ("nkM)[n+ pnN] if k � pdistr lift subst rec : "np+k (M [pnN]) = ("np+k+1M)[pn "nk N]distr subst rec : (M [pnN])[p+ nnP] = (M [p+ n + 1nP])[pnN [nnP])]Remark 8. The last lemma seems easier to read with named vari-ables notations:M [xnN][ynP] =M [ynP][xnN [ynP]] if x 6= y ^ x not free in PBut this apparent simplicity is misleading; the side condition on vari-able names make it much more di�cult to use than expected.2.3. Strongly normalizing termsA term is strongly normalizing if and only if there is no in�nite reductionpath starting from it. The following de�nition is well-known since [14]and expresses that, for a relation R, there is no in�nite decreasingsequence starting from t:DEFINITION 9 (predicate Acc). The set AccR is the smallest set ver-ifying: 8t: (8u: u R t) u 2 AccR)) t 2 AccR:coqencoq.tex; 28/03/1997; 14:47; no v.; p.5

6 B. Barras and B. Werner
R2

R1

R1

y

R2

z

y’

xFigure 4. Predicate commut R1 R2 � (R2;R1 � R1;R2)DEFINITION 10 (predicate sn). The set SN of strongly normalizingterms is de�ned as AccB�1� .Note that this is actually equivalent to Altenkirch's inductive formula-tion [1].The following de�nition of normal terms seems to be the simplestand emphasizes that they are a particular case of strongly normalizingterms.DEFINITION 11 (predicate normal). A term t is said to be normal ifand only if it admits no reduct:8u: t B� u) ?:The property for two relations to commute will mainly be used inthe conuence proof, but is already useful here:8(x; y; z): z R2 y ^ y R1 x) 9y0: (z R1 y0 ^ y0 R2 x)The direct subterm relation �st is de�ned straightforwardly. It canbe postponed with respect to �-reduction:LEMMA 12 (commut red1 subterm). The relations �st and the sym-metric of �-reduction commute.Which allows to prove:LEMMA 13 (subterm sn). The subterm B of a strongly normalizingterm A is strongly normalizing:A 2 SN ^ B �st A) B 2 SNcoqencoq.tex; 28/03/1997; 14:47; no v.; p.6

Coq in Coq 7(Beta') M B== M 0 N B== N 0(�T:M N)B== M 0[0nN 0](Srt) s B== s (Ref) n B== n(Abs) M B== M 0 T B== T 0�T:M B== �T 0:M 0 (App) M B== M 0 N B== N 0(M N)B== (M 0 N 0)(Prod) M B== M 0 N B== N 0�M:N B== �M 0:N 0Figure 5. The parallel �-reduction relation2.4. Church-Rosser and ConfluenceIt is essential that �-reduction veri�es the Church-Rosser property,since it is necessary to several key-results: type uniqueness, subject-reduction and decidability of typing. We use a very traditional tech-nique, �rst proving conuence by the Tait{Martin-L�of method. Onede�nes parallel �-reduction which is a strongly conuent relation whosereexive transitive closure is equivalent to �-reduction.The formalization is surprinsingly close to the usual informal proof.DEFINITION 14 (predicate par red1). The parallel �-reduction, writ-ten B==, is de�ned as the smallest relation on terms closed by the rulesin �gure 5.We de�ne the strong conuence property, expressed in terms of com-mutation, but it expands to the usual de�nition.DEFINITION 15 (predicate str confluent). A relation R is stronglyconuent if and only if R commutes with its symmetric:R�1;R � R;R�1:LEMMA 16 (str confluence par red1). The parallel �-reduction isstrongly conuent.LEMMA 17 (confluence red). The �-reduction relation is conuent,i.e. its reexive transitive closure is strongly conuent.As we said in the beginning of this section, we can prove that theChurch-Rosser property holds, by an easy induction.coqencoq.tex; 28/03/1997; 14:47; no v.; p.7

8 B. Barras and B. Werner(WF-[]) [] ` (WF-var) � ` T : s�;T ` (s 2 Sort)(Prop) � `� ` Prop : Kind (Var) � ` "n+1�(n) = T� ` n : T(Abs) � ` T : s1 �;T `M : U �;T ` U : s2� ` �T:M : �T:U (s1; s2 2 Sort)(App) � ` v : V � ` u : �V:T� ` (u v) : T [0nv](Prod) � ` T : s1 �;T ` U : s2� ` (�T:U) : s2 (s1; s2 2 Sort)(Conv) � `M : U � ` V : s U �� V� `M : V (s 2 Sort)Figure 6. Typing Rules for the Calculus of ConstructionsTHEOREM 18 (church rosser). The �-reduction satis�es the Church-Rosser property:8u; v 2 Term: u �� v) 9t 2 Term: (u B�� t ^ v B�� t):Remark 19. We proved a non computational version of Church-Rosser.A computational proof would be much more di�cult, because it pre-cludes reasoning by induction on the hypothesis u �� v, which is notcomputational. Such a proof would give an algorithm computing a com-mon reduct of two convertible terms. This will be made possible insection 7.1.COROLLARY 20 (inv conv prod fl, rg). The uniqueness of productformation property holds, i.e. if two products are convertible, their left(resp. right) subterms are convertible:�A:C �� �B:D) � A �� BC �� D3. The Rules3.1. DefinitionAs usual, derivability is de�ned as an inductive predicate; each inferencerule being read as a clause. We chose to de�ne two kinds of judgementsby mutual induction: coqencoq.tex; 28/03/1997; 14:47; no v.; p.8

Coq in Coq 9� � ` to express that the context � is well-formed� � ` t : T to express that the term t is of type T in �.DEFINITION 21 (predicates wf, typ). We de�ne the two sets of deriv-able judgements as the smallest sets respectively closed by the inferencerules of �gure 6.Note that it would not be necessary to require that T is well-typedin the formation rules of the product and the �-abstraction. This waywe stick to the usual PTS formulation.Loosening the conversion rule in a similar way (requiring U B�� Vinstead of U convertible with a well-formed type V) is more problematicwith respect to subject reduction; see [18].3.2. Inversion lemmasThe context of any derivable judgement is well-formed. In other words:LEMMA 22 (typ wf). The rule� `M : T� `is admissible.LEMMA 23 (wf sort). The terms of a well-formed environment arewell-typed: �;T ; � `) 9s 2 Sort: � ` T : sBoth proofs go easily by induction over the structure of the derivation.The inversion lemmas state that the derivation and the typed termhave the same shape. One consequence is that every subterm of a well-typed term is well-typed. But the main point is that we can use recur-sion on a term instead of an induction on a logical hypothesis. Thatway, we are able to perform computational proofs.THEOREM 24 (inv typ fkind, prop, ref, abs, app, prodg).� ` Kind : T) ?� ` Prop : T) T �� Kind� ` n : T) T ��"n+1�(n)� ` �A:M : U) 9T 2 Term: 9s1; s2 2 Sort: 8>><>>: � ` A : s1�;A `M : T�;A ` T : s2U �� �A:Tcoqencoq.tex; 28/03/1997; 14:47; no v.; p.9

10 B. Barras and B. Werner� ` (u v) : T) 9V; Ur 2 Term: 8<: � ` u : �V:Ur� ` v : VT �� Ur[0nv]� ` �u:v : T) 9s1; s2 2 Sort: 8<: � ` T : s1�;T ` U : s2T �� s2COROLLARY 25 (inv typ conv kind). No term convertible with Kindis well-typed t �� Kind) 8T: :(� ` t : T):4. Basic MetatheoryThis section is devoted to the usual elementary properties of the typesystem. All these results are of combinatorial nature and are the deBruijn counterparts of what can be found in, say, [9, 2] and others. Insome cases, the order of the lemmas might be changed, due to slightdi�erences in the formulation of the typing rules.4.1. Thinning lemmaThis lemma (often also called \weakening") simply states that typingfor a term is preserved if new assumptions (i.e. variables) are added tothe environment. The exact formulation is slightly more complex in itsde Bruijn version, since inserting new assumptions induces some liftingoperations.DEFINITION 26 (predicate ins in env). We �rst extend the de�ni-tion of lifting to contexts by the two inductive clauses:[]+ = [](�;T)+ = �+; "1j�jTThe predicate stating that (�;T ; �+) is obtained by inserting T in(�;�) is then de�ned as a Prolog-style inductive predicate by theclause: (ins in env T j�j (�;�) (�;T ; �+))LEMMA 27 (thinning). The following rule is admissible:� ` t : T �;A `�;A `"1t : "1Tcoqencoq.tex; 28/03/1997; 14:47; no v.; p.10

Coq in Coq 11Proof In two steps; one �rst shows a stronger version, not assum-ing anymore that A is the last assumption of the context (inductionloading): �;� ` t : T �;A; �+ `�;A; �+ `"1j�j t : "1j�jTThis is done by induction over the �rst hypothesis � ` t : T . The case ofapplication is treated using the algebraic property distr lift subst.The result follows by taking � = [].4.2. Substitution lemmaTyping is preserved by (well-typed) substitution. Again, we �rst haveto extend the de�nition of substitution to contexts, taking care of real-location of de Bruijn indexes.DEFINITION 28 (sub in env). Informally, substitution in an envi-ronment is described by the two following rules:[][t] = [](�;T)[t] = �[t];T [j�jnt]The formal de�nition is given by the following clause:(sub in env M T j�j (�;T ; �) (�;�[M]))THEOREM 29 (substitution). The rule:�;T ` u : U � ` d : T� ` u[0nd] : U [0nd]is admissible.Proof Similar to the proof of the thinning lemma. The �rst thing todo is show that:�;T ; � ` u : U � ` d : T �; (�[d]) `�; (�[d]) ` u[j�jnd] : U [j�jnd]Here again, we apply this result with � = [].4.3. Type uniqueness resultsAn easy consequence of the inversion lemmas is that a term has at mostone type, up to �-conversion:coqencoq.tex; 28/03/1997; 14:47; no v.; p.11

12 B. Barras and B. WernerTHEOREM 30 (typ unique).� ` t : T� ` t : U �) T �� UTHEOREM 31 (type case). Every inhabited type is either Kind or awell-formed term itself:� ` t : T) (9s 2 Sort: � ` T : s) _ (T = Kind)ProofBy induction on the derivation of � ` t : T . The only non-trivial caseis that of application in which case one applies the induction hypothesisto the left subterm: either its type is of type a sort and the substitutionlemma allows to conclude, or its type is Kind, which is absurd since itis not convertible to a product.4.4. Subject reductionFor induction loading it is necessary to also state subject reduction forthe context.DEFINITION 32 (red1 in env). We de�ne �-reduction as the small-est relation over context verifying:t B� u�; t B� �; u � B� �0�; t B� �0; tTHEOREM 33 (subject reduction). The rule� ` t : T t B�� u� ` u : Tis admissible.ProofWe �rst prove: � ` t : T � B� �0 �0 `�0 ` t : T :COROLLARY 34 (typ conv conv). Two well-typed �-convertible termshave the same types: u �� v� ` u : U� ` v : V 9=;) U �� V
coqencoq.tex; 28/03/1997; 14:47; no v.; p.12

Coq in Coq 135. Type approximationsThis section prove results needed in the normalization proof. We intro-duce a classi�cation of terms which is an approximation of its type.After de�ning a function that computes this approximation, we provestability results, and then soundness with respect to typing.5.1. Definition of classesThe type case lemma states that any inhabited type is either typedby a sort, or Kind itself. A well-known consequence is that one candistinguish 3 levels of terms:� those of type Kind: they make up the level of kinds,� those whose type has type Kind: they form the level of predicates,� those whose type has type Prop: they constitute the level of terms.This corresponds to the alternative way of de�ning the terms of theCalculus of Constructions, introducing 3 syntactic classes:K := Prop j �T:K j �K1:K2T := i 2 N j �T1:T2 j �K:T j �T1:T2 j (T t) j �K:T j (T1 T2)t := i 2 N j �T:t j (t1 t2) j �K:t j (t T)We can see that kinds are functions types, and if we forget dependenttypes (i.e. erase the leaf T in nodes of the form �T:K), kinds are simplybinary trees, called kind skeleton. This kind skeleton is a representationof the arity of this kind, which is the signi�cative part of kinds andpredicates.DEFINITION 35 (type skel). Kind skeletons are isomorphic to binarytrees: Skel := F j (S1 ! S2)DEFINITION 36 (types class, cls). The set of classes has 3 levels:kind, predicate and term; the �rst two being annotated by a skeleton:Class := (Knd S) j (Typ S) j Trmwhere S is a skeleton.We also consider lists of classes, the counterpart of contexts. Theywill generally be noted �. coqencoq.tex; 28/03/1997; 14:47; no v.; p.13

14 B. Barras and B. WernerThe kind skeleton annotating the predicate classes is intended to bethe skeleton of the type of this predicate (which is a kind).DEFINITION 37 (cv skel, typ skel). We de�ne projections from class-es to skeletons: Knd�1(c) = � S if c = (Knd S)F otherwiseTyp�1(c) = � S if c = (Typ S)F otherwiseDEFINITION 38 (cl term, class env). Given the classes of free vari-ables (�), the class of a term is computed according to the followingrules: Cl�(s) = (Knd F)Cl�(n) = ((Typ S) if �(n) = (Knd S)Trm otherwiseCl�(�A:M) = match (Cl�(A);Cl�;Cl�(A)(M)) withj (; (Knd)) 7! (Knd F)j ((Knd S1); (Typ S2)) 7! (Typ (S1 ! S2))j (; c) 7! cCl�((u v)) = match (Cl�(u);Cl�(v)) withj ((Knd) ;) 7! (Knd F)j ((Typ (S1 ! S2)); (Typ)) 7! (Typ S2)j (c ;) 7! cCl�(�T:U) = match (Cl�(T);Cl�;Cl�(T)(U)) withj ((Knd S1); (Knd S2)) 7! (Knd (S1 ! S2))j (; c) 7! cThis de�nition extends straightforwardly to contexts:Cl([]) = []Cl(�;T) = (Cl(�); Cl�(T))We note Cl�(T) for ClCl(�)(T).5.2. Loose stability resultsWe prove stability of class by lifting, substitution, reduction, and sound-ness w.r.t. typing. In this section, these results are stated for level andcoqencoq.tex; 28/03/1997; 14:47; no v.; p.14

Coq in Coq 15kind skeleton; they are necessary to prove similar lemmas for the pred-icate skeleton in section 5.3.We de�ne the loose equality on classes that consists in neglecting thepredicate skeletons:DEFINITION 39 (predicate loose eqc). The loose equality is de�nedas follows:(Knd S) ' (Knd S) (Typ S1) ' (Typ S2) Trm ' TrmLEMMA 40 (loose eqc stable).� ' �0) Cl�(T) ' Cl�0(T)DEFINITION 41 (predicate adj cls). The loose order on classes onlyconsiders class level:(Typ S1) @ (Knd S2) Trm @ (Typ S)LEMMA 42 (cl term subst). The class is stable by substitution:Cl�(N) @ c) Cl�;c;�0(M) ' Cl�;�0(M [j�0jnN])LEMMA 43 (class fknd, typ, trmg). For every derivable judgement � `M : T , T = Kind) Cl�(M) = (Knd Knd�1(Cl�(M)))� ` T : Kind) Cl�(M) = (Typ Typ�1(Cl�(M)))� ` T : Prop) Cl�(M) = TrmEach lemma uses the previous one.COROLLARY 44 (cl term sound). The loose class order is sound w.r.t.the typing rules:� ` t : T ^ � ` T : K) Cl�(t) @ Cl�(T)5.3. Strict stability resultsWe now consider a more precise order on classes, taking into accountthe following facts:� the skeletons of a predicate and his type are the same,coqencoq.tex; 28/03/1997; 14:47; no v.; p.15

16 B. Barras and B. Werner� the types of elements of level Trm are predicates of skeleton F,since their type is Prop.DEFINITION 45 (predicate typ cls). The strict class order:(Typ S) : (Knd S) Trm : (Typ F)LEMMA 46 (class subst). Stability of class by substitution.Cl�(N) : c) Cl�;c;�0 (M) = Cl�;�0(M [j�0jnN])THEOREM 47 (class sound). The strict class order is sound w.r.t.the typing rules:� `M : T ^ � ` T : K) Cl�(M) : Cl�(T)6. Strong normalization proofThe normalization proof certainly is the part of the work which was themost di�cult to adapt to type-theory. Let us recall the three essentialsteps of a reducibility proof:� for any type T , one de�nes a set of terms [[T]] interpreting it.� one veri�es that [[T]] � SN .� Normalization then follows from the soundness of the interpreta-tion: t : T) t 2 [[T]].Altenkirch [1] has shown the normalization property for system F inLego. From there, encoding a proof for the Calculus of Constructionspresented two di�culties.The �rst is to deal with dependent types, i.e. many redexes mayactually occur inside types. This was not too painful to take care of: itis well-known that, in Calculus of Constructions, one might forget thedependency of types w.r.t. terms and obtain well-formed judgementsin F! . A consequence is that [[T]] might not depend of the terms; fromthis point of view, our work is similar to [8].The second problem is the possibility to de�ne, for instance, func-tions from types to types. Such objects have to be interpreted by map-pings associating sets of terms to sets of terms. In other words, the typeof the interpretation of T depends, in a very strong way, of the class ofT . This is the main reason for the next paragraph.coqencoq.tex; 28/03/1997; 14:47; no v.; p.16

Coq in Coq 17In some cases, proofs were also a little more tedious that in settheory, since the intuitive proof makes intensive use of partial functions.6.1. CandidatesWe introduce the type of the interpretations of predicates.6.1.1. Reducibility schemesDEFINITION 48 (type Can). We de�ne a function associating a typeto every skeleton by structural recursion:CF def� P(Term)C(S1!S2) def� CS1 ! CS2(P denotes the powerset operator)We consider an extensional equality on these schemes:DEFINITION 49 (predicates eq cand, eq can). For any skeleton S wede�ne a binary predicate S= over CS by structural recursion:C1 F= C2 def� 8t: t 2 C1 , t 2 C2C1 (S1!S2)= C2 def� 8X1; X2: X1 S1= X1 ^X2 S1= X2 ^X1 S1= X2) C1(X1) S2= C2(X2)This \equality" is only a partial equivalence relation and is notreexive (next lemma). The schemes belonging to the domain of S=(i.e. schemes C such that C S= C) will be called invariant. In whatfollows we will be only interested by invariant schemes.LEMMA 50 (eq can sym, eq can trans). Extentional equality is tran-sitive and symmetric over the sets of invariant schemes.6.1.2. Higher order reducibility candidatesWe can now de�ne the notion of reducibility candidate, generalizingit to higher-order schemes. On CF, we use Girard's original de�nitionof candidates [11] like in [1]; alternative de�nitions like saturated setswould probably also work.Following Girard, a term is said to be neutral if it is not an abstrac-tion. We write this set N . coqencoq.tex; 28/03/1997; 14:47; no v.; p.17

18 B. Barras and B. WernerDEFINITION 51 (predicates is cand, is can). For every skeleton Swe de�ne the set CRS of candidates of order S by structural recur-sion:� a scheme X of order F (i.e. a set of terms) is a candidate, if andonly if it veri�es the three following closure conditions:X � SNt 2 X ^ t B� u) u 2 Xt 2 N ^ (8u: t B� u) u 2 X)) t 2 X� a scheme of order (S1 ! S2) is a candidate if and only if it mapsinvariant candidates (of order S1) to candidates (of order S2).We write ICRS for the set of invariant elements of CRS .The elements of CRF are Girard's reducibility candidates. The fol-lowing results are usual and easy:LEMMA 52 (var in cand,clos red star, cand sat). For any C 2 CRF,any variable n and terms t; t0; u; v:n 2 Ct 2 C ^ t B�� t0) t0 2 Ct[0nu] 2 C ^ u; v 2 SN) (�v:t u) 2 C6.1.3. Canonical candidatesFor every skeleton we de�ne a canonical candidate.DEFINITION 53 (default can). By recursion:CdF def� SNCd(S1!S2) def� �CS1X: CdS2LEMMA 54 (def inv, def can cr). The canonical candidate is actu-ally an invariant higher order candidate:CdS 2 ICRS6.1.4. Product of candidatesA function type A ! B is generally interpreted as the set of termsmapping elements of the interpretation of A to the interpretation of B.The following generalizes this to higher-order schemes.coqencoq.tex; 28/03/1997; 14:47; no v.; p.18

Coq in Coq 19DEFINITION 55 (Pi). Let C be a scheme of order F and F a schemeof order (S ! F). Their product is a scheme of order F de�ned by:�S(C; F) = ft 2 Term j 8u 2 C: 8ICRSX: (t u) 2 F (X)gLEMMA 56 (eq can Pi, is can Pi). The product formation preservesextentional equality and the notion of higher-order candidate.C1 F= C2 ^ F1 (S!F)= F2) �S(C1; F1) F= �S(C2; F2)C 2 CRF ^ F 2 CR(S!F)) �S(C; F) 2 CRFTo show the soundness of the interpretation w.r.t. the �-abstractionwe will later need the following result:LEMMA 57 (Abs sound). T 2 SNC 2 CRFF 2 CR(S!F)8N 2 C: 8ICRSX: M [0nN] 2 F (X)9>>=>>;) �T:M 2 �S(C; F)6.2. Interpretation of terms and typesThis is the key of the proof. We build an interpretation where terms(occurring left in judgements) are interpreted by terms, via a parallelsubstitution, and types (occurring right in judgements) by an invariantcandidate.As usual, we have to give ourselves the interpretation of free vari-ables. Since there are two levels of variables, our interpretation has twocomponents: a term part, and a type part.DEFINITION 58 (type intt). The term part of an interpretation is afunction from positive integers to terms. The common notation is �.DEFINITION 59 (int term). The interpretation of a term t in �, not-ed t[�], is the parallel substitution of any free de Bruijn indice i by �(i).For the predicate level, a smooth way is to use a �-type.DEFINITION 60 (types Int K, IntP, a.o.). The interpretation of a vari-able is either a dependent pair hS;Ci where C 2 CS , or 2. We alsoconsider lists of variable interpretations. Given such a list I, we de�neCl(I) by applying the following mapping to I:hS;Ci 7! (Knd S)2 7! (Typ F)We write ClI(T) for ClCl(I)(T). The notions of invariance and exten-tional equality straightforwardly extend to interpretations.coqencoq.tex; 28/03/1997; 14:47; no v.; p.19

20 B. Barras and B. WernerThe interpretation hS;Ci is intended for predicate variables of skele-ton S, and 2 is intended to interpret term variables.The idea is that to interpret a term variable, we only need a term(�(n)), whereas a predicate variable has to be interpreted both by ascheme and a term (the latter to take care of type-redexes).DEFINITION 61 (int typ). Let T a term. Given I and a skeleton S,one de�nes the type interpretation [[T]]SI by:[[s]]SI = CdS[[n]]SI = C if I(n) = hS;Ci[[�A:M]]SI = match (ClI(A); S) withj ((Knd); (S1 ! S2)) 7! �C: [[M]]S2I;hS1;Cij ((Typ) ;) 7! [[M]]SI;2[[(u v)]]SI = match ClI(v) withj (Typ Sv) 7! [[u]](Sv!S)I ([[v]]SvI)j Trm 7! [[u]]SI[[�T:U]]FI = match ClI(T) withj (Knd ST) 7! �ST ([[T]]FI ; �C: [[U]]FI;hST ;Ci)j 7! �F([[T]]FI ; � : [[U]]FI;2)[[T]]SI = CdS otherwiseA few remarks: �rst, this de�nition is relevant only when T is awell-formed predicate or kind in a context � and S = Typ�1(Cl�(T)).It is also interesting to note how the di�erent levels interact. Supposethat � ` T : K and � ` K : Kind. Then, assuming I and � verify somewell-chosen conditions to be de�ned below, we will have:� The type interpretation of T is a candidate of order K.� The term interpretation of T is in the type interpretation of K(which is a set of terms).� Furthermore, if K = Prop, then for any t of type T we also havet[�] 2 [[T]]I .As usual, this de�nition calls for some stability results.LEMMA 62 (int equiv int typ). The interpretations of a given typein two equivalent interpretations are extentionaly equal:I := J) [[T]]I S= [[T]]J :As a consequence, [[T]]I is invariant.coqencoq.tex; 28/03/1997; 14:47; no v.; p.20

Coq in Coq 21LEMMA 63 (int typ cr). If all variables are interpreted by an invari-ant candidate, then the interpretation of any type is an invariant can-didate. (8n: I(n) = hS;Ci) C 2 ICRS)) [[T]]I 2 CRSLEMMA 64 (lift int typ). Interpretation is stable by lifting:(I; i; I 0) := (I; i; I 0)) [[T]]I;I0 S= [["1jI0jT]]I;i;I0The next lemma is usually essential in reducibility proofs. It is inter-esting to remark that the two results below where, by far, the mosttedious of the whole development1.LEMMA 65 (subst int typ). Type interpretation is stable (extention-aly) by substitution, provided the substituted variable is correctly inter-preted.We de�ne the correct possible interpretations inductively:ClI(M) = (Typ S)DS; [[M]]SIE 2 AVI(M;I) ClI(M) = Trm2 2 AVI(M;I)The following holds:� ` T : KCl�(T) 6= Trm(I; i; I 0) := (I; i; I 0)Cl(�) = Cl(I; i; I 0)i 2 AVI(v;I) 9>>>>>=>>>>>;) [[T]]I;i;I0 Typ�1(Cl�(T))= [[T [jI 0jnv]]]I;I0The next lemma is of course needed for soundness w.r.t. the conver-sion rule.LEMMA 66 (conv int typ). Type interpretation is (extentionaly) sta-ble by �-conversion. U �� VCl�(U) 6= Trm� ` U : K� ` V : KI := ICl(�) = Cl(I)9>>>>>>>=>>>>>>>;) [[U]]I Typ�1(Cl�(U))= [[V]]I1 This is mainly due to the fact that the interpretation is thought of as a partialfunction and formally de�ned as a total function. In lots of cases one has to checkmany conditions in order to determine whether one actually is inside the \interestingdomain" or not. In general, it appears that it is very important to chose carefullythe values of such functions outside this intended domain (phony values) in orderto keep the properties to prove as uniform as possible; this choice can make hugedi�erences in the size of the formal statements and proofs.coqencoq.tex; 28/03/1997; 14:47; no v.; p.21

22 B. Barras and B. Werner6.3. Adapted interpretationsTo state the soundness result, we have to restrict quanti�cation tointerpretations adapted to the context.DEFINITION 67 (int adapt). An interpretation is adapted to � if itveri�es the 3 following conditions:(I;�) 2 AI� def� 8><>: Cl(I) = Cl(�)8n: I(n) = hS;Ci) C 2 ICRS8n: �(n) 2 [[�(n)]]FIjn+1We can now state and prove the main result:THEOREM 68 (int sound). For every derivable judgement � ` t : T ,the interpretation of t in an interpretation adapted to � belongs to theinterpretation of its type T :� ` t : T ^ (I;�) 2 AI�) t[�] 2 [[T]]FI6.4. The default interpretationFor every well-formed context we produce an adapted interpretation.DEFINITION 69 (def intt, def intp). The term part of the defaultinterpretation of any variable is itself, and predicate variables are inter-preted by the adapted default candidate:�d� = �n: nId[] = []Id�;T = (�Id�; DS;CdSE� if Cl�(T) = (Knd S)(Id�;2) otherwiseLEMMA 70 (id int term). The term part of the default interpreta-tion is the identity: t[�d�] = tLEMMA 71 (def adapt). The default interpretation is adapted to anywell-formed context. � `) (Id�;�d�) 2 AI�coqencoq.tex; 28/03/1997; 14:47; no v.; p.22

Coq in Coq 236.5. Main theoremWe put everything together to get the strong normalization theorem:THEOREM 72 (str norm, type sn). All the well-typed terms and inhab-ited types are strongly normalizing:� ` t : T) t 2 SN ^ T 2 SN7. Checking the programsWe here deal with computational results, i.e. the correctness proofsof the extracted and certi�ed routines. The main point is to provedecidability of type-checking.We point to [16, 17] for more precise references about programextraction and certi�cation in Coq. Let us just recall that in Coq onedistinguishes between computational and non-computational types. Thelatter play the role of logical assertions and are erased in the processof program extraction.For example, the good way to specify a type-checking function isthe following formulation of decidability2 :(e:env)(t,T:term){(typ e t T)}+{~(typ e t T)}The extracted program will take three arguments corresponding to ajudgement and return the boolean true (corresponding to the left caseof disjunction) if the judgement is derivable and false if not. Sincetyp is non-computational, the actual derivation will not be built.The algorithm of the extracted program depends of the structure ofthe proof of the speci�cation. Using the Program tactic [15] it is possibleto use a given program to guide the proof, thus enabling easier controlover the obtained algorithm. This feature appeared to be extremelycomfortable and well-adapted to the present development.7.1. Conversion algorithmsIt is quite clear and well-known that type-checking a calculus withdependent types requires a conversion check. Of course, this functionwill be restricted to normalizing terms.2 Note that if we were only interested in the correctness, and not completeness, ofthe implementation, we could use the weaker speci�cation:(e:env)(t,T:term)f(type t T)g+fTrueg. coqencoq.tex; 28/03/1997; 14:47; no v.; p.23

24 B. Barras and B. WernerThe idea is to perform normalization and then check whether thetwo normal forms are equal. The recursive calls of a normalizationalgorithm, fed with a term u, take place either on a strict subterm ofu, or on a reduct of u. In other words, termination of the algorithmdepends of the well-foundedness of the following relation:DEFINITION 73 (predicates ord norm1, ord norm). We de�ne the rela-tion � by: x � y def� (x �st y) _ (y B� x):We call its transitive closure the normalization order, written �+.We formulate the termination result re-using de�nition 9:THEOREM 74 (wf ord norm). The normalization order �+ is wellfounded for strongly normalizing terms:SN � Acc�+ :Proof We have already proven �st and B�1� commute. Since bothare well-founded, this is su�cient for their union to be well-founded(lemma Acc union of the Coq theory RELATIONS/WELLFOUNDED).LEMMA 75 (program compute nf). Every strongly normalizing termhas a normal form.Proof We used a simple call-by-value strategy. The previous lemmaensures termination (n�therian recursion over the term to normalize).The only, non-computational results which then have to be proven arequite straightforward:� The recursive calls follow the normalization order.� The result of the function is a reduct of the argument and is normal.For instance �A:B is normal if A and B are.COROLLARY 76 (program is conv). The conversion relation �� isdecidable on strongly normalizing terms.7.2. Auxiliary functionsThe following function is used when one has to check that a term is awell-formed type (i.e. is of type a sort).coqencoq.tex; 28/03/1997; 14:47; no v.; p.24

Coq in Coq 25LEMMA 77 (program red to sort). Given any strongly normalizingterm T , we can decide whether it is convertible to a sort. If it is, thefunction returns the sort.Proof We check whether the normal form of T is a sort.To treat the application rule, one has to check whether a type canbe converted to a function type.LEMMA 78 (program red to prod). Given a strongly normalizing termT , we can decide whether there exist two terms A and B such thatT B�� �A:B. If they exist, the function also returns A and B.Proof We check whether the normal form of T is a product.Note that these two programs could be improved a lot; for instance,reducing T to its weak head normal form would have been su�cient.7.3. Decidability of type inference and type checkingThe main theorem we prove here is the decidability of type-checking.But type-inference is necessary to type-checking, because of the case ofapplication.We �rst prove these properties assuming that the context is valid,for e�ciency reasons: if we naively follow the inference rules, we willcheck the validity of the whole context at every leaf of the term. Ifwe assume that the context is valid, we only check validity when thecontext grows. The gain in complexity is exponential.THEOREM 79 (program infer). Type inference in a valid context isdecidable.Proof The algorithm is based on a recursion over the term to check,which ensures e�ciency, except when the conversion rule is often used.As an example, we only detail the case of the product: to inferthe type of �A:B, one �rst infers the type of A and check it to beconvertible to a sort. The same is applied to B, but we rememberwhich sort s was convertible with the type of B (red to sort yieldsthe sort). The type of �A:B is therefore s. Returning the type of Bwould be wrong, for it is the type of B in the context (�;A), and itmay be ill-typed in �.LEMMA 80 (program check typ). Type-checking in a valid context isdecidable.LEMMA 81 (program add typ). For all well-formed context � and forall term T , the validity of �;T is decidable.coqencoq.tex; 28/03/1997; 14:47; no v.; p.25

26 B. Barras and B. WernerTHEOREM 82 (programs decide wf,decide typ). The context valid-ity and type-checking judgements are decidable in the Calculus of Con-structions.Proof We prove the decidability of context validity by inductionon the context to check. The inductive case is solved by the pro-gram add typ. The second result is a combination of check typ anddecide wf. 8. Program extractionOnce the essential algorithms were certi�ed, the obvious next step wasto use and test them. We therefore implemented a small proof-checker,christened Coc, built around the extracted code. The following might beconsidered as a small-scale model of a user manual for this small-scaleproof-checker, annotated with technical details on the implementation.8.1. Building a stand-alone proof-checkerThe idea of the proof-checker is to consider a machine whose state is aset of assumptions, initially empty. This list of assumptions is stored inthe global variable glob axioms, and we keep the corresponding printnames in glob names. The invariant of the state is the following:� glob axioms is a well-formed context,� glob axioms and glob names have the same length,� all the elements of glob names are di�erent.One can enter commands to add an axiom, infer the type of a term,or check a typing judgement in this context. The syntax and descriptionof these commands is the following (terms grammar described �gure 7):Axiom ident:term. adds an axiom in the current context. term ischecked to be a well-formed type and the print name (ident) tobe fresh.Infer term. infers and displays the type of term or answers \maltype" if the term is ill-typed.Check term1:term2. checks whether term2 is a type of term1, andprints \Correct", or \Echec" if the judgement doesn't hold.coqencoq.tex; 28/03/1997; 14:47; no v.; p.26

Coq in Coq 27term := sort sj ident xj [ident-list : term] term �~x : t1:t2j (term-list) (t1 : : : tn)j let ident : term := term in term (�x : t1:t3 t2)j (ident-list : term) term �~x : t1:t2j term -> term t1 ! t2sort := Kind Kindj Prop PropPriorities :� -> is right associative� -> has a higher priority than [] and ()Figure 7. Coc terms grammarNote that the programs add typ, infer, and check typ of the pre-vious section �t exactly this description. We didn't use the generaldecidability results, since in our implementation, we build the contextincrementally, and we check its validity step by step.The user interface consists mainly of a parser and a pretty-printer.The commands have several representations, from the most concrete tothe most abstract:1. concrete syntax (string),2. abstract syntax tree (named variable term),3. term in de Bruijn notation.The user interacts with the former, but we formally checked resultsonly on the latter. The translation between 1 and 2 is probably verydi�cult to formalize and certainly outside the scope of this work. Thesecond translation between 2 and 3 certainly seems feasible and inter-esting to formalize.8.2. A complete example in CocWe can consider Coc as a proof-checker with a very low level mathe-matical language which precludes using it as a proof assistant.In [3], Boyer and Dowek explain how a complex proof assistant maybe reliable when only a small part of it is certi�ed. One layer is incoqencoq.tex; 28/03/1997; 14:47; no v.; p.27

28 B. Barras and B. Wernercharge of providing proof-terms, incorporating user-friendly facilitiessuch as subgoal-directed proof search, powerful decision procedures,etc. A second layer (the kernel), reads the proof-term produced by the�rst layer and answers whether the proof is correct or not. Certifyingthe kernel ensures the consistency of the whole system.In order to test Coc, we applied this procedure to an example: New-man's lemma.Statement of Newman's lemma: if R is a locally conuent and an�therian relation, then R is conuent.We used the formalization of this lemma in the Calculus of Con-structions by Huet [12]. In the Coq contributions, the proof appearsin the form of tactics. We compiled it in Coq and pretty-printed theresulting �-terms.In practice, we had to perform some proof encodings, for Coc doesn'tprovide constant de�nition, or the possibility of proving intermediarylemmas. Fully expanding all the constants would obviously lead to agigantic term. We preferred using two axioms instead; the followingCoq de�nition:Definition x: T := t.would be written in Coc:Axiom x: T.Axiom unfold_x: (P:T->Prop)(P t)->(P x).Intermediary lemmas can easily be encoded by a �-redex, thanks tothe let in syntax.The resulting proof was then given to Coc, which validated it. Itis interesting to notice that the extracted code showed up to be sur-prisingly e�cient, faster than the \real" Coq by a factor of 4 (withouttaking into account Coq's notoriously slow parsing).This could be improved still further by integrating more carefullythis kernel inside a real system, without using the concrete syntax totransfer proof-terms. 9. ConclusionWe view this work as a positive experience. As expected, the way toformalize the de�nitions was quite straightforward which gives a goodcon�dence about what was actually implemented. Most of the mathe-matical developments were quite natural and the degree of detail wasgood: almost all formal results are worth to be informally stated. Notecoqencoq.tex; 28/03/1997; 14:47; no v.; p.28

Coq in Coq 29this last claim has to be a little refrained concerning the very �rstresults, but this is probably a subjective impression, since the basicresults have, with time, become extremely familiar.The methodology extracting functional programs from proofs is obvi-ously quite well-suited for the present purpose.Future workIt seems reasonable to continue the e�ort, especially by extending theencoded formalism and closing the gap with formalism of Coq itself.We consider the following extensions:� De�nitions: this would require the formalization of �-reduction,which should be easy.� A universe mechanism: this would simply require to generalize theproofs to PTSs [2] and should not be di�cult (except for normal-ization).� Inductive types, which certainly is the crucial and most di�cultpoint, since it induces many complications of the syntax.� program extraction, which is necessary to fully certify the extractedcode.Achieving this would allow a bootstrap of Coq. It does not seemimpossible, that such an objective could be within reach in the future.References1. Thorsten Altenkirch. A Formalization of the Strong Normalization Prooffor System F in LEGO, In Proceedings of the International Conference onTyped Lamdba Calculi and Applications, TLCA'93. Springer-Verlag, LNCS 664,March 1993.2. H. Barendregt. Lambda Calculi with Types. In Handbook of Logic in ComputerScience, Vol II, Elsevier, 1992.3. Robert S. Boyer, Gilles Dowek. Towards Checking Proof-Checkers. In HermanGeuvers, editor, Informal Proceedings of the Nijmegen Workshop on Types forProofs and Programs, May 1993.4. N.J. de Bruijn. Lambda-Calculus Notation with Nameless Dummies, a Toolfor Automatic Formula Manipulation, with Application to the Church-RosserTheorem. Indag. Math. Vol. 34 (5), pp. 381{392, 1972.5. Thierry Coquand. Une Th�eorie des Constructions. Th�ese de doctorat, Univer-sit�e Paris 7, 1985.6. Thierry Coquand, G�erard Huet. The Calculus of Constructions, in: Informationand Computation Vol. 76, February/March 1988 (ed.A.R.Meyer), AcademicPress, London, 95-120. coqencoq.tex; 28/03/1997; 14:47; no v.; p.29

30 B. Barras and B. Werner7. Cristina Cornes, Judica�el Courant, Jean-Christophe Filliâtre, G�erard Huet,Pascal Manoury, Christine Paulin-Mohring, C�esar Mu~noz, Chetan Murthy,Catherine Parent, Amokrane Sa��bi, Benjamin Werner. The Coq Proof AssistantReference Manual Version 5.10. Rapport Technique 0177. Projet Coq-INRIARocquencourt-ENS Lyon. Juillet 95.8. J. H. Geuvers. A short and exible proof of strong normalization for the Cal-culus of Constructions. In Types for Proofs and Programs, P. Dybjer, B. Nord-str�om and J. Smith (eds), LNCS 996, Springer, 1994.9. Herman Geuvers, Mark-Jan Nederhof. A Modular Proof of Strong Normaliza-tion for the Calculus of Constructions. Journal of Functional Programming,1(2):155-189, April 1991.10. J.-Y. Girard. Interpr�etation fonctionnelle et �elimination des coupures de l'arith-m�etique d'ordre sup�erieur. Th�ese de doctorat d'�etat, Univerit�e Paris 7, 1972.11. J.-Y. Girard, Y. Lafont, P. Taylor. Proofs ans Types. Cambridge Tracts inTheoretical Computer Science 7. Cambridge University Press.12. G�erard Huet. The Constructive Engine. In R. Narasimhan, editor, A Perspec-tive in Theoretical Computer Science. WorldScienti�c Publishing, 1989. Com-memorative Volume for Gift Siromoney.13. G�erard Huet. Residual Theory in �-calculus: A Complete Gallina Development.Rapport de recherche INRIA 2002, 1993.14. B. Nordstr�om. Terminating General Recursion. BIT, 28, 1988.15. Catherine Parent. Developing certi�ed programs in Coq { The Program tactic.In Types for Proofs and Programs '93, LNCS 806, Springer, 1993.16. Christine Paulin-Mohring. Extraction de programmes dans le Calcul des Con-structions. Th�ese de doctorat, Universit�e Paris 7, 1989.17. Christine Paulin-Mohring, Benjamin Werner. Synthesis of ML programs inCoq. Journal of Symbolic Computation{special issue on automated program-ming,1993.18. Robert Pollack. A Proof Checker for the Extended Calculus of Constructions.Ph. D. Thesis, University of Edinburgh, 1994.Address for correspondence: Bruno.Barras, Benjamin.Werner@inria.fr

coqencoq.tex; 28/03/1997; 14:47; no v.; p.30

