MPRI 2-7-2: Proof Assistants

Bruno Barras, Matthieu Sozeau

Jan 12,2017

/34

Recap: Inductive Types and Elimination Rules

Simple inductive types (datatypes):

Inductive nat : Type := O : nat | S : nat->nat.
Inductive bool := true | false.
Inductive list (A:Type) : Type :=

nil | cons (hd:A) (tl:1list A).
Inductive tree (A:Type) :=
leaf | node (_:A) (_:nat->tree A).

Smallest type closed by introduction rules (constructors)

Parameters: cons : forall A:Type, A -> list A -> list A
Coq prelude: cons 0 nil : list nat

Recap: Elimination rules

Generated elimination scheme (not primitive):
nat_rect
forall P:nat->Type,

P O -> (forall n, Pn -> P
forall n, P n.

fun P hO hS => fix F n
match n return P n with

(S n)) —>

| O => ho
| S k =>hS k (F k)
end

Eliminator of recursive type =
dependent pattern-matching + guarded fixpoint

/34

Logical connectives

Logical connecctives and their non-dependent elimination
schemes:

Inductive True : Prop := I.
True_rect : forall P:Type, P —-> True -> P.

Inductive False : Prop :=
False_rect : forall P:Type, False -> P

Inductive and (A B:Prop) : Prop :=
conj (_:A) (_:B).
and_rect : forall (A B:Prop) (P:Type), (A->B->P)-> A/\B
-> P

Inductive or (A B:Prop) : Prop :=

or_introl (_:A) | or_intror (_:B).
or_ind : forall (A B P:Prop), (A->P) -> (B->P) —-> P.

4/34

Plan

Inductive families
Predicate defined by inference rules
Definition of equality
Vectors

Non-uniform parameters

Theory of Inductive types
Strict Positivity
Dependent pattern-matching
Guarded fixpoint
The guardedness check

Limitations of parameters

Defining a predicate:

Inductive even (n:nat) : Prop :=
even_1i (half:nat) (_:half+half=n).

Inductive types with parameters are some kind of “template”

Inductive listnat :=

nilnat | consnat (_:nat) (_:listnat).
Inductive listbool :=
nilbool | consbool (_:bool) (_:listbool).

No dependency between both types.
But in the definition of even:nat->prop as an inductive type/set

eieven n

Egp:even 0 Ess(e) :even (S (S n))

even (S (s 0)) depends on even o.

Inductive families

Family = indexed type
P : nat -> Type represents the type family (P(n))nen
Inductive family:

» Constructors do not inhabit uniformly the members of the
family

» Recursive arguments can change the value of the index
Even numbers:

Inductive even : nat —-> Prop :=

EO : even O

| ESS (n:nat) (e:even n) : even (S (S n)).

Syntax very close to inference rules!

Elimination scheme

Elimination scheme: minimality of predicate, rule-induction

even_ind : forall (P:nat->Prop),
P O -> (forall n, Pn -—> P (S (S n))) —>
forall n, even n -> P n.

Seems the analogous of nat’s dependent scheme

8/34

Elimination scheme

Elimination scheme: minimality of predicate, rule-induction

even_ind : forall (P:nat->Prop),
P O -> (forall n, Pn -> P (S (S n))) —>
forall n, even n -> P n.

Seems the analogous of nat’s dependent scheme

Even’s dependent scheme (refers to constructors ro and ess):

forall (P : forall n, even n —-> Prop),

P 0 EO —>

(forall n (e:even n), Pne —->P (S (S n)) (ESS n e)) —>
forall n (e:even n), P n e

Definable in Coq, but not automatically generated (why? wait
and see...)

Defining the dependent elimination scheme

Even more complex return clause: in

Definition even_ind_dep (P:forall n , even n -> Prop)

(h0:P 0 EO0)

(hSS:forall n e, Pne —> P (S (S n)) (ESS n e))
forall n, even n -> P n :=

fix F ne :=

match e as e’ in even k return P k e’ with

| EO => hO : P 0 EO

| ESS k e’ =>
hsSsS k e’ (F k e’) : P (S (S k)) (ESS k e’)

end

Notation as e’ in even k return P k e’ isjustaway to write
the term fun x e’ => P k e’.
Becomes natural with time...

9/34

Equality: the paradigmatic indexed family

Propositional equality is defined as:

Inductive eq (A : Type) (a : A) : A —> Prop :=
eq_refl : eqg A a a.
Notation "x = y" := (eq x V).

Its dependent elimination principle is of the form:

r-e:eqAtu T,y:A€:eqAtyt C(y,€):s
FEt: C(teq_refly;)

(match eas € ineq_y return C(y,€) with)
re

eq_refl =t
end

: C(u, e)

10/34

Tactics related to equality

Tactics:

>

>

f_equal (congruence) ; W

discriminate (constructor discrimination)
C(tr,...,tn)=D(u1,...,Ux)
A

C(t17 ,tn) C(u17 - U

injection (injectivity of constructors) =

inversion (necessary conditions) =g =

rewrite (Substitution) %Xf(y)

symmetry, transitivity

even (S(Sn))

th= Un

11/34

Inductive types with parameters and index
Example of vectors with size

Inductive vect (A:Type) : nat —-> Type :=
| niln : vect A O
| consn :

A —> forall n:nat, vect A n —> vect A (S n).

which defines

» a family of types-predicates:
I+ vect : Type — nat — Type

» a set of introduction rules for the types in this family

M= A:Type
Fnilna: vect AO

rN-A:Type ra:Al-n:natlT+/:vectAn
't consnganl:list A(Sn)

12/34

Inductive types with parameters and index

vectors : elimination

» an elimination rule (pattern-matching operator with a result
depending on the object which is eliminated)

Nv:vectAn TI,m:nat x:vectAmt C(m,x):s
Nt C(O,nilng)
Ma:An:nat l:vect Ank t, : C(S n,consnganl)

niln=t |consnanl=1b
end

. C(n, v)

(match v as X in vect _ p return C(p, x) with)
M

13/34

Inductive types with parameters and index

» reduction rules preserve typing (c-reduction)

niln= t|consnanl/=t
end
— t1
match consnad@ ' l"asxinvect_p return C(x,p) with
niln = t|consnanl/=1bt
end
—, bld,n',I'/a,n,|

(matchnilngasXinvect_p return C(x,p) with)

14/34

Non-uniform parameters

Non-uniform parameter:
» Like parameters: uniform conclusion
» Like indices: value can change in recursive subterms

Inductive tuple
| HO (_:A)
| HS (_:tuple (AxA)).

(A:Type) :=

Definition t4

: tuple nat :=
HS nat (HS

(nat*nat) (HO _ ((1,2),(3,4))).

15/34

Elimination rules
Pattern-matching:
l-e:tuple A T, h:tupleA+ P(h):s
Mx:Aty: P(HOAX) T,h:tuple(AxA)t ts: P(HSAh)

match e as hreturn P(h) with
HOx = 1y
| HSh=ts
end

: P(e)

re

Elimination:

tuple_rect :
forall (P:forall A, tuple A -> Type),
(forall A x, P A (HO A x)) —>
(forall A h, P (A¥A) h -—> P A (HS A h)) —>
forall A (h:tuple A), P A h.

Non-uniform parameters:
» In pattern-matching, behaves like a parameter
» In recursive principles, behaves like an index

16/34

Encoding inductive families

Non-uniform parameters can encode inductive families:

Inductive even (n:nat) : Prop :=

EQO’ (_:n=0)
| ESS’” (k:nat) (e:even k) (_:n=S (S k)).
Definition E0O : even 0 := E0’ 0 eqg_refl.
Definition ESS n e : even (S (S n)) :=

ESS’” (S (S n)) n e eq_refl.

17/34

Well-formed inductive definitions

18/34

Issues

Constructors of the inductive definition / have type:

I V(Z1 : C1)...(zk:Ck).la1...an

where C; can feature intances of /.
Question: can these instances be arbitrary?

19/34

Issues

Constructors of the inductive definition / have type:

I V(Z1 : C1)...(zk:Ck).la1...an

where C; can feature intances of /.

Question: can these instances be arbitrary?
Example:

Inductive lambda : Type :=
| Lam : (lambda —-> lambda) —-> lambda

19/34

Issues

Constructors of the inductive definition / have type:

I V(Z1 : C1)...(zk:Ck).la1...a,,

where C; can feature intances of /.
Question: can these instances be arbitrary?

Example:

Inductive lambda : Type :=

| Lam : (lambda —-> lambda) —-> lambda
We define:

Definition app (x y:lambda)

:= match x with (Lam f) => f y end.
Definition Delta := Lam (fun x => app X X).
Definition Omega := app Delta Delta.

and the evaluation of Q loops.

19/34

Necessity of restrictions

Things can even be worse:

Inductive lambda : Type :=

| Lam : (lambda —-> lambda) -> lambda
Now define:
Fixpoint lambda_to_nat (t : lambda) : nat :=

match t with Lam £ -> S (lambda_to_nat (f t)) end.

20/34

Necessity of restrictions

Things can even be worse:

Inductive lambda : Type :=

| Lam : (lambda —-> lambda) -> lambda
Now define:
Fixpoint lambda_to_nat (t : lambda) : nat :=

match t with Lam £ -> S (lambda_to_nat (f t)) end.

VVhathappenS\NHh (lambda_to_nat (Lam (fun x => x)))?

20/34

The way out: (strict) positivity condition

» An inductive type is defined as the smallest type generated
by a set (I';)1<j<n Of constructors.

» We can see it as uX, ®1<j<nli(X) (with 1 a fixpoint
operator on types).

» The existence of this smallest type can be proved at the
impredicative level when the operator AX, ®1<j<,li(X) is
monotonic.

» In order both to ensure monotonicity and to avoid paradox,
Coq enforces a strict positivity condition: X should never
appear on the left of an arrow in the type of its constructors.

21/34

The way out: (strict) positivity condition

More precisely, if the type (a.k.a arity) of a constructor is:
c :ClL > ... —>Ck -—>1Ial .. ak
it is well-formed when:
> T al .. akis well-formed w.r.t. the uniformity of
parametric arguments and typing constraints;
» 1 does not appear in any of the a1, ... ak;
» Each ci should either not refer to 1 or be of the form:
cC’'l -=> ... C'm —> I bl ... bk
well typed and with no other occurrence of 1.

And the rule generalizes as such to dependent products
(instead of arrow).

22/34

More well-formation conditions...

There are more constraints, that will be explained later:
1. predicativity/impredicativity
An inductive is predicative when all constructor argument

types live in a sort not bigger than the declared sort for the
inductive

2. restriction on eliminations

23/34

Dependent pattern-matching

Inductive I (p:Par) : A -> s :=
.l T (x1:Cq) ... (xp:Cp) : I pu
[
match t as h in I _ a return P(a,h) with
| T x1 ... xp => e
end

Typing conditions:

»Ht:lqga

» a:Aqg/pl,h:I1gakP:¢

> x1:Cy[q/p], ... Xn : Cnlg/p] - €: P(ulq/p],T g X1...Xn)
Then the match has type P(a, t)

24/34

Tactics for case analysis

» case t is the most primitive. It:
» generates a (proof) term of the form match t with ...;
» guesses the return type from the goal (under the line);
» does not introduce/name the arguments of the constructor
by default, but there is a syntax for chosing names.
» The case_eq variant modifies the guessing of the return
type so that equalities are generated.

» The destruct variant modifies the guessing of the return

type so that it generalizes the hypotheses depending on t.

25/34

The fixpoint operator (reduction)

Fixpoint expression with dependent result

(£ix f (x: A): B(x) == {(f, x))

» Typing

f:(v(x:A), ()
F(£ix f (x: A): B(x) =

/-\><
)>
T
~
E'i

26/34

Fixpoint operator : well-foundness
Requirement of the Calculus of Inductive Constructions :

» the argument of the fixpoint has type an inductive definition

» recursive calls are on arguments which are structurally
smaller

Example of recursor on natural numbers

AP :nat — s,
)\Ho : :D(O)7
AHs :¥Ym : nat, P(m) — P(S m),
fix f(n:nat) : P(n) :=
match nas y return P(y) with
O= Ho|Sm= Hsm(fm)
end

is correct with respect to CClI : recursive call on m which is
structurally smaller than nin the inductive nat.

27/34

Fixpoint operator : typing rules

FEl:sTx:AFC: 8 Tx: L f:(vx:1,C)Ft:C 1) </ x
N=(fixf(x:): C:=t):¥x:1,C

the main definition of t|} <, x are:

G|x:Vy Ul
zepU{x} (Ulf <iX)ict.n AL <jx (HeoXErUIE o,

match Z Uy...Up return Awith ... ¢ X; =t ...end|';]</x

t#(zu)yforzepu{x} tf <x Af<ix ... Glf</x ...
match t return Awith... G X, =t ... end]? <1 X

yeEp fe&t
fylf <ix tf</x

+ contextual rules ...
28/34

Remarks on the criteria

» It covers simply the schema of primitive recursive
definitions and proofs by induction which have recursive
calls on all immediate subterms.

AP:1list A— s,
Ay Pnil,
Mr:V(a:A)(l:1ist A),Pl — P(consal),
fix Rec (x: 1list A) : Px =
match X return PX with
nil = f; | (consal) = f,al(Recl)
end

» has type
VP:1list A— s,
Pnil,—

(V(a: A)(/:1ist A),Pl — P(consal)) —
V(x:1list A),Px

29/34

Remarks on the criteria
Possibility of recursive call on deep subterms

Fixpoint mod2 (n:nat) : nat :=
match n with O => 0 | S O => S O

| S (S x) => mod2 x
end

Possibility of recursive call on terms build by case analysis if
each branch is a strict subterm:

Definition pred (n:nat) : n<>0->nat:=
match n return n<>0->nat with
S p => (fun (h:S p<>0) => p)
| O => (fun (h:0<>0) =>
match h (refl_equal 0) return nat with end

)

end
Fixpoint F (n:nat) : C :=
match iszero n with
(left (H:n=0)) => ...
| (right (H:n<>0)) => F (pred n H)
end

30/34

Remarks on the criteria

Note : only the recursive arguments with the same type are
considered recursive (otherwise paradox related to

impredicativity)

Inductive Singl (A:Prop) : Prop := c : A —-> Singl A.
Definition ID : Prop := forall (A:Prop), A —-> A.
Definition id : ID := fun A x => x.

Fixpoint f (x : Singl ID) : bool :=

match x with (c a) => f (a (Singl ID) (c ID id)) end.

f(cIDid) —s f (id (Singl ID) (¢ ID id)) —> f (c ID id)

31/34

Tactics for induction

fix

fun

<n>, where <n> is a numeral is the most primitive. It:

generates a (proof) term of the form:

gl g2 => fix £ hl h2 t h3 {struct t} := ?F hl h2 t
where:

g1, g2 are the objects in the context (above the line);

h1, h2, t, h3 are the objects quantified in the goal
(under the line);

2r can call £ (= recursive calls);

the termination of £ is should eventually be guaranteed by
structural recursion on t;

oed checks the well-formedness, which was not guaranteed so
far: error messages come late and may be difficult to interpret.

32/34

Tactics for induction

elim t applies an induction scheme, i.e. a lemma of the form:
forall P : T -> Type, —> forall t’ : T, P t’

» It guesses argument r from the goal (under the line),
abstracting all the occurrences of «.

» It guesses the elimination scheme to be used (T_ind,
T_rect,...) from the sort of the goal and the type of «.

» The e1im t using s variant allows to provide a custom
elimination scheme (or lemmal) s, with the same
unification heuristic.

» The induction t tactic guesses argument p taking into
account the possible hypotheses depending on t present
in the context (above the line). Plus it can introduce and
name things automatically.

Remark: the rewrite tactic does a similar guessing job...

33/34

Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

(Fix f(x: A): B(x) = t(f,x)) e — t(Eix f (x : A) : B(x) := H(f, X)), €

34/34

Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

(Fix f(x: A): B(x) = t(f,x)) e — t(Eix f (x : A) : B(x) := H(f, X)), €

... but this leads to infinite unfolding (SN broken)

34/34

Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

(Fix f(x: A): B(x) = t(f,x)) e — t(Eix f (x : A) : B(x) := H(f, X)), €

... but this leads to infinite unfolding (SN broken)

Solution: allow this reduction only when e is a constructor

34/34

	Inductive families
	Predicate defined by inference rules
	Definition of equality
	Vectors

	Non-uniform parameters
	Theory of Inductive types
	Strict Positivity
	Dependent pattern-matching
	Guarded fixpoint
	The guardedness check

