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Summary. We revisit the generalisation of the Guruswami-Sudan list decoding
algorithm to Reed-Muller codes. Although the generalisation is straightforward, the
analysis is more difficult than in the Reed-Solomon case. A previous analysis has
been done by Pellikaan and Wu, relying on the theory of Gröbner bases [2, 3].
We give a stronger form of the well-known Schwartz-Zippel Lemma [5, 4], taking
multiplicities into account. Using this Lemma, we get an improved decoding radius.

1 Definitions and Notation

We consider S = {x1, . . . , xn} a set of n distinct elements of Fq. Let N, r be
integers greater than or equal to one, we consider the evaluation map, defined
on Fq[X1, . . . , Xn]:

evN : f(X1, . . . , XN ) 7→ (f(xi1 , . . . , xiN
))(xi1 ...,xiN

)∈SN

We fix the following space of polynomials: L = {f(X1, . . . , XN ), deg f ≤ r}.
Then the code evN (L) is the Reed-Muller code of order r with N variables.

We say that a polynomial Q(X1, . . . , XN ) has multiplicity s at the point
(0, . . . , 0) if it does not contain any monomial of degree strictly less than s. We
say that a polynomial Q(X1, . . . , XN ) has multiplicity s at (xi1 , . . . , xiN

) if
the polynomial Q(X1+xi1 , . . . , XN +xiN

) has multiplicity s at (0, . . . , 0). The
weighted degree wdega1,...,aN

of a monomial Xi1
1 · · ·XiN

N is a1i1 + · · ·+ aN iN .
The weighted degree of a polynomial is the maximum weighted degree of its
monomials.

2 The algorithm

The algorithm is as follows. Let τ be the number of errors that will be cor-
rected. The received word is a N -dimensional array y = (yi1,...,iN

)(i1,...,iN )∈{1,...,n}N .
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input (x1, . . . , xn) ∈ Fn
q , r, τ ∈ N, y = (yi1,...,iN

) the received word; auxiliary
parameters: a degree d and s an order of multiplicity.

interpolation find a polynomial Q = Q(X1, . . . , XN , Z) such that
1. Q(X1, . . . , XN , Z) 6= 0,
2. wdeg1,...,1,rQ(X1, . . . , XN , Z) ≤ d,
3. mult(Q; (xi1 , . . . , xiN

, yi1,...,iN
)) = s, (i1 . . . , iN ) ∈ {1, . . . , n}N .

factorisation Compute L = {f = f(X1, . . . , XN ) | Q(X1, . . . , XN , f) = 0}.
verification return all f ∈ L such that deg f ≤ r, and d(f, y) < τ .

The analysis of this family of interpolation based decoding algorithms is in two
steps. First we must find conditions such that the polynomial Q(X1, . . . , XN , Z)
always exists, and secondly analyze the conditions under which Q(X1, . . . , XN , f) =
0. For the existence of the polynomial Q, we will require that the num-
ber of unknowns is greater than the number of equations. Each condition
mult(Q; (xi1 , . . . , xiN

, yi1,...,iN
)) = s implies

(
s+N
N+1

)
linear equations on Q. On

the other hand, the number of unknowns in the Q polynomial is roughly
dN+1

(N+1)!r , and a condition for the existence of Q is

dN+1

(N + 1)!r
>

(
s + N

N + 1

)
nN ,

Let Qf be the polynomial Q(X1, . . . , Xm, f). We note that, since the condi-
tion wdeg1,...,1,rQ(X1, . . . , XN , Z) ≤ d holds, we have that deg Qf ≤ d. We
need a Theorem to conclude that the polynomial deg Q(X1, . . . , XN , f) has
“more zeros than allowed”. In the univariate case, it is enough to state the
a polynomial can not have more zeros than its degree. In the multivariate
case, things are harder. Pellikaan and Wu have overcome this difficulty by
relying on the theory of Gröbner bases and footprints. They eventually get
the following relative decoding radius:

τ

nN
≤

(
1− N+1

√
r

n

)N

. (1)

3 The analysis

Lemma 1. Let Q(X1, . . . , XN ) be of total degree less than d. Let x1, . . . , xn

be n distinct points in Fq. The sum of multiplicities of Q(X1, . . . , XN ) over
the nN points (xi1 , . . . , xiN

) ∈ FN
q is less than or equal to dnN−1.

Proof. By induction. The statement is true for N = 1. Let us consider the set
I of points xi1 , . . . , xil

, such that Q(X1, . . . , XN−1, xij
) is identically zero, j =

1, . . . , l. Also let I ′ be {1, . . . , n}\I. Then, for xij
6∈ I, let Qij

be the polynomial
Q(X1, . . . , XN−1, xij ). Then the number of zeros, counted with multiplicities
of Qij , over the points whose last coordinates is xij is by induction bounded
by dnN−2. Now, for xij

∈ I, we can write
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Q(X1, . . . , XN ) = (Xn − xij
)tij Q̃ij

(X1, . . . , XN )

for some tij
> 0, and where Q̃ij

(X1, . . . , XN ) is such that Q̃ij
(X1, . . . , XN−1, xij

)
is not identically zero. The degree of Q̃ij (X1, . . . , XN ) is d−tij . Now the num-
ber of multiplicities of Q̃ij

(X1, . . . , XN ) over the points whose last coordinate
is xij

is bounded by (d− tij
)nN−2, using the induction hypothesis. Let Σ be

the sum of multiplicities. Let Sij be the set of points whose last coordinates
is xij . Then

Σ =
∑

xij
∈I′

∑
p∈Sij

mult(Q, p) +
∑

xij
∈I

∑
p∈Sij

mult(Q, p)

≤ |I ′|dnN−2 +
∑

xij
∈I

∑
p∈Sij

(
tij + mult(Q̃ij , p)

)
≤ |I ′|dnN−2 +

∑
xij

∈I

(
tij

nN−2 + (d− tij
)nN−2

)
≤ |I ′|dnN−2 + |I|dnN−2 = dnN−1.

To ensure that the polynomial Qf is identically zero, we must have that Qf

has more than dnN−1 zeros counted with multiplicities. If s(nN−τ) > dnN−1,
Qf is identically zero. Working out the formulas leads to:

τ ≤ nN − N+1

√
rnN (1 +

1
s
) . . . (1 +

N

s
) ≤ nN

(
1− N+1

√
r

n

)
. (2)

This compares favourably to the Pellikaan-Wu radius. In conclusion, we note
that, over the binary field, the Reed-Muller codes can be considered as sub-
field subcodes of classical Reed-Solomon codes [1], and one can get a better
decoding radius, using the univariate Guruswami-Sudan algorithm.
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