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Abstract—We address the problem of the algebraic decoding which appear in the Newton identities. This elimination pro-
of any cyclic code up to the true minimum distance. For this, cedure is hand crafted by the authors. So it is tedious, prone

we use the classical formulation of the problem, which is to find , erors; and the authors eventually fail to find formulas for
the error locator polynomial in terms of the syndromes of the th ff,' ients of the locat | ial
received word. This is usually done with the Berlekamp-Massey € coeflicients ot the locator polynomial.

algorithm in the case of BCH codes and related codes, but for A separate path of research has been to use the theory of
the general case, there is no generic algorithm to decode cyclic Grobner bases for decodiramy cyclic code. It was originated
codes. Even in the case of the quadratic residue codes, which arehy Cooper [10], [11], [12], although the results were unproven.
good codes with a very strong algebraic structure, there is N0 cqoper yses an algebraic system of equations, closely related
available general decoding algorithm. : .

For this particular case of quadratic residue codes, several _to th.e_ decoding problem, but dlfferent from the Newton
authors have Worked ou’[, by hand, formu|as for the Coeﬁicients IdentItIeS These WOI’kS Only deal W|th BCH COdeS Later, these
of the locator polynomial in terms of the syndromes, using the algebraic systems have been studied by Loustaunau and von
Newton identities. This work has to be done for each particular York [13], Caboara and Mora [14], for any cyclic code, and
guadratic residue code, and is more and more difficult as the they give proofs of the statements by Cooper. In this vein

length is growing. Furthermore, it is error-prone. ) .
We propose to automate these computations, using elimina- of research, one studies the ideal generated by the system

tion theory and Grobner bases. We prove that, by computing Of equations, and tries to prove that the symbolic locator
appropriate Grobner bases, one automatically recovers formulas polynomial belongs to this ideal. Then this polynomial can
for the coefficients of the locator polynomial, in terms of the be found by the computation of a @mer with respect to a

syndromes. _ _ _ relevant ordering on the monomials.
Index Terms—Algebraic decoding, general cyclic codes, New-  These systems of equations, and the correspond so-called
ton identities, elimination theory, Grobner bases. CRHT variety, have been extensively studied by Orsini and

Sala [15]. They improve by introducing a new variety, which
eliminates spurious solutions. Orsini and Sala prove that
There is a longstanding problem of efficiently decodingvery cyclic admits general error locator polynomialwhich
binary quadratic residue codes. For each prime nurhbach is a polynomial whose coefficients are polynomials whose
that 2 is a quadratic residue modulathere exists essentially indeterminates are the syndromes. This polynomial is such
one such code. It is a cyclic code of lendttwhose defining that, when evaluated on the syndromes of an error, it turns
set if the set of the quadratic residue moduldt is proven to be the error locator polynomial of the error. In [16], the
that the minimum distance of these codes is at léaét| same authors extensively compute the general error locator
(the square-root bound). But compiled tables show that thelynomials of all binary cyclic codes of length less than or
minimum distance of these codes is much better than tkigual to 63, correcting two errors.
bound, and it is an open question to find or to estimate theAnother system defined by the Newton identities has been
minimum distance of these codes, although some progress bassidered by Chen, Helleseth, Reed and Truong [17] (see
been achieved [1]. also [18], [19]). In that case, the aim is to prove that the
Up to date, there is no general decoding algorithm fadeal generated by the Newton identities contains, for each
the whole class of quadratic residue codes. Several effoctsefficient o; of the locator polynomial, a polynomial of
have been put up for particular cases, that is to say for eaghose leading monomial is of degree onedp and that
particular length, mainly by Chen, Truong, Reed, Hellesethis polynomial does not involve the unknown syndromes.
and others [2], [3], [4], [5], [6], [7], [8], [9], for the lengths So we may say that we recover also a general error locator
31, 23,41, 73,47,71, 79, 97, 103 and 113. All these decodipglynomial, but with a different system of equations.
algorithms are based on the Newton identities, which involve
the so-callederror locator polynomialand thesyndromesof
the received word. These Newton identities are to be writtenWe have already discussed the use obl@er bases for
for each particular length, and then to be worked out fatecoding cyclic codes [20] with a system different from the
isolating the coefficients of the locator polynomial in termlewton identities. At that time, we discussed the computation
of the syndromes, while eliminating thenknown syndromes of Grobner bases online: for each received word, one computes

I. INTRODUCTION

II. OUR CONTRIBUTION



the syndromes, and substitutes them into an algebraic systém. .., Z,, the locators ot. Findinge is equivalent to finding

of equations. Then the computation of thedBmer basis gives o(Z), and the problem is considered to be solved whé#)

the coefficients of the locator polynomials, which are sought found, thanks to the Chien search [21].

for. The Newton identities relate the elementary symmetric
In this work, we discuss the idea of precomputing thiinctions of the locators of to the coefficients of the Fourier

Grobner basis of a system in which the syndromes are left Biansform ofe. They have the following form (see [22]):

indeterminates. Then we show that thisi@mer basis leads to i1

formulas for the coefﬁcpnts of the locator polynomial. This S, + Zo'jsifj tio; =0, i<uw,

is calledone-step decoding — '

=1
Still, there is the problem that these formulas for the T (1)
coefficientso;’s of the locator polynomial are of the form Si + Zo'jsifj =0, w<i<n+w.
pio; + q; = 0, wherep,, ¢; involve only the syndromes. Thus j=1
finding o; can be done as follows Note that the indices of th§; are cyclic, i.e.S;, = S;. In
o= & these equations, there are theés, that we are looking for, the
Lop) Si, 1 € Q, and theS;’s, i € @, that we try to eliminate. Our
which may lead to a division by zero, when the actual vaIuQQJeCF'Ve is to find an expression of the's in terms of the
of the syndromes are substituted intp Si's, i€ Q.
Our second contribution is to introduce a new |d_eal, which V. ELIMINATION THEORY
contains formulas of the form; + ¢; = 0. Thus finding the ) ]
o;'s do not involve any division after substitution.  We consider the idealy ., generated by the Newton
identities:
[1l. DEFINITIONS i1
We consider only binary cyclic codes. Letbe the length, Si+ Y 0iSij+io;, i<w
which is odd, andx be a primitiven-th root of unity in some ) j=1
extensionF,m of Fy. To each binary wor@d = (co, ..., cn—1) g g -
of lengthn, is associated the polynomia} + c; X + --- + it Z‘Tﬂ' iy MEWZ1>W

cn_1X" L. The Fourier Transform of is the vectorS = =t

(So,...,Sn_1), with S; = c(a’). A cyclic code is built by Let us note byo the set of the variablesy, ..., o, by Sg
considering adefining setQ = {i,...,4} C {0,1,...,n — theset{S;;i € Q}, andSy the set{S;,i € Q}. Then we have
1}. The cyclic codeC' of defining set@ is then the set of thatIy , is an ideal in the polynomial algebi& o, Sg, Sn].
words whose Fourier Transform satisfies A Grobner basisof an ideal I is a particular set of
generators of, which is well behaved with respect to various
Sip =+ =5, =0. operations: it enables to test equalities of ideals, to test ideal

Let y € F7 the received word, to be decoded. As usual, waembership and so on. Due to lack of space, we will not
write y = ¢ + e, wherec is the codeword, and is the error. recall to formal definition here, which can be found in [23].

We compute the Fourier Transforof y, and fori € Q, we We recall that this notion depends on a monomial ordering: for
have: each particular monomial ordering there exists a corresponding
; ; ; ; . Grobner basis. Of utmost importance for us are the following
Si=y(a') =c(a" +e(a’) =e(a’), i€Q, considerations [23].
sincec € C. The S;’s, i € Q are called thesyndromesf e, Definition 1: Let I C Fa[x1,...,zn]. Then the ideal
and theS;’s, j ¢ @ are theunknown syndromeS§he decoding Iy = I N Fofzgsr, .

problem is to finde given the syndromes;’s, i € @, under
the constraint that the weight efis bounded byt = |41 ], is the k-th elimination ideal It is the set of all the relations

-

where d is the minimum distance o, and thedecoding that can be obtained apy4,...,z,,, by elimination of the
radius of C. k first variableszy, . .., xk.
Proposition 1: Let I C Faylzq,...,2,,] be an ideal and let

IV. THE NEWTON'S IDENTITIES G be a Gbbner basis for the lexicographical ordering, with

Let the errofe be of weightw, and letu, . . ., u,, the indices z; > ... > z,,. Then, the set
of the non zero coordinates ef These indices are encoded
in the locator polynomials(Z), defined as follows: Gr = GNFafzppn, ... om]
w w ) is a Gobbner basis of thek-th elimination ideal I, =
O—(Z):H(]-*O‘UZZ):ZO}ZZ; IFg[ka,...,xm}.
i=1 i=0 Thus it is sufficient to compute a single @ner G, and to
whereoy, ..., 0, are theelementary symmetric functiomd retain the relevant polynomials, to eliminate the unwanted

ot .. o, which are called théocatorsof e. We note by variables. For the problem of decoding, we get:



Proposition 2: Let be given a monomial ordering such thathat thes;’s and theS;'s belong to the fieldFy=. It is the
the S;’s, i € @ are greater than thg;'s, i € @, and theos;’s. ideal
Let G be a Gbbner basis of v, for this ordering. Then

o' tonied{l,... w}

K2

2 ) coon—1
Ijo\f’w:IN,w+< Sé +SL7ZE{O7 7’" }a > (4)
GNTFy [0‘, SQ]
. ; . Lo Thanks to these field equations, the idédl,, is radical, and
S {a}hgnbner b‘;‘:"i 0: the ellmln?tlor.(;]ﬁeﬁ}gw OF2}O’ S?]' has dimension zero (it has a finite number of solutions). It is
'S means that, It we compute a@bner basis oly,,, for o consequence of [25, Chap. 2, Prop. 2.7], which implies that,

E‘ rte Ievanttr(]) rd?rlng, thE;] f'gq a (ﬂmte) b_?ﬁ s of %III the_re![ﬁtl?rw an ideal contains, for each variable, a square-free univariate
eween theo; s an €5's, i € Q. The problem is tha polynomial in this variable, then it is radical.

hese eors ey ot e g o it Our . PO
this igeal wheres;, g; € Fa[So)] PR + Gi Theorem 2:For each binary word of weightw less thart,
’ @ir i € F2150]- for eachi € {1,...,w}, the ideall}, ,, contains a polynomial

w

VI. THE VARIETY ASSOCIATED TO THENEWTON o+ q
Di0; T G,

IDENTITIES
with p;, g; € F2[Sg] such thatp;(Sg . 0, whereSg . is
First we have to study/'(Iy ) the variety associatedo ine set of the s;r[wdcrgc])mes of (Sq.c) # @

the ideally ... It is the set of allo;’s, S;'s, which satisfy the Proof: Omitted due to lack of space. =
Newton identities. Note that we consider this variety[is, Thus the decoding algorithm could be:

the algebraic closure df;. We have the following Theorem,
which is an extension of the main result of [24].

Theorem 1:Let (0,5) be in V(Iny), with o =
(01,...,00) € F;U and S = (Sp,...,S,—1) € F;L. Let e
be the inverse Fourier Transform 6f Note thata priori e
has coordinates iffy. Then

1. the weight ofe is less thanw;

2. e has indeed coordinates ify;

1) (precomputation) For eachr € {1,...,t}, compute a
Grobner basisG,, of I}, for an ordering such that
the S;, i € @, are greater than the;’s which in turn
are greater than thg;’s, i € Q;

2) (precomputation) from each &wner basig7,,, for each
i, collect all the relationg; o, + ¢;, call X, ; this set;

3) (precomputation) from each &ner basis7,,, collect
the polynomials inG,, N F3[Sg], call T, this set of

3. if 0(Z) is the polynomial polynomials:
w 4) (online) for each received worg, compute the syn-
1+ Zaizi, dromesSg,, = Sq.., Wheree is the error to be found,
i=1 5) (online) find the weightv, of e using the criterion (3).

and if 0.(Z) is the locator polynomial o, then there exists 6) (oniine) for eachi € {1,..., w}:

an integerl and a polynomiat?(Z) such that a) find the relationp;,o; + ¢; € X,.; such that
pi(Sq.) #0
0(2)=0.(2)G(2)*Z". b) solve foro;:
Proof: Omitted due to lack of space. [ | o — pi(5q.)
From the NullStellenSatz [23], we have: " qi(Sq.)

~ Corollary 1: Let Iy ., N F3[Sq,Sy] be the elimination  There are two difficulties with this approach. First, the
ideal of theo;'s. If I, is radical, then/n,., N F2[So, Sn]  Grobner basis can contain many polynomials of the form
is the set of all the relations between the coefficients 9§0+qi, i € {1,...,w}, as we have observed on examples.
the Fourier Transform of the binary words of weight lesgecond, the field equations of the typE +o;, andS?" + S,

than w. Furthermore, if we eliminate the's, : ¢ Q, then can be of large degree, even though the length of the code is

Inw N F2[Sq] is the set of all the relations between thenoderate. For instance, in the case of the quadratic residue

syndromes of the words of weight less than< . code of length 41, the splitting field iBy0 = Fioss576.

Corollary 2: Let S, be the set of syndromes of somerhis means thaty, ,, contains equations of degree more than
worde. LetT,, be a basis of v,.,NF2[Sg], thene has weight one million, and the computation of the @mer basis is
w < ¢ if and only if intractable.

It is natural to try to remove the field equations, and to

t(Sq.e) = 0,forall t € T;,, for all v < w. () consider the idealy.,, without the field equations.

VIl. RADICAL IDEALS VIIl. AN AUGMENTED IDEAL

In the above, we have stumbled on the difficulty on proving The difficulty, as mentioned above, is that we have not
that Iy ., is a radical ideal. We believe it is, but we have naproven thatly ., is a radical ideal, which is a necessary
been able to prove it. To overcome this difficulty, we considéngredient, among others, to prove Theorem 2. We will build
the ideaII}'\,ﬁw, where we add the “field equations” to ensuran ideal which containdy ,,, which is radical, and which



will contain “nice” formulas. First we introduce the ided} In particular, it is a radical ideal. Then, by elimination of the
corresponding to the definitions of the elementary symmet;’s, we have the ideal
ric functions, andls corresponding to the definition of the

coefficients of the Fourier Transform: I, = ((Is + Is) : A®) N30, S] D INw
I, ={o,— Z Zi ... Ziie{l,... w}); Note that a _basis of§, can be computed py cqmputipg a
1<j1eis<w Grobner basis of s+ I, +(1—yA) for an ordering eliminating

y and Z;'s, and by retaining the polynomials in terms of the

and w o o;'s and theS;’s. Note also that[;,",w is a radical ideal.
Is = < Si=2j=1 25 L€ {1 n+wh; > ) The variety associated s, can be described as follows:
Sitn — S ie L. w} Theorem 3:The varietyV (I37,,) is exactly the set of the
Note this ideal belongs to the polynomial ringelementary symmetric functions and the elementary power-
Fslo,S, Z1,...,Zy]). When we eliminate theZ!s, we sum functions of the words of weight exactly.
have the following Proof: Omitted due to lack of space. [ ]
Proposition 3: In particular, we have:
Corollary 3: Let Sp. be the set of syndromes of some
Is+I,)NF,[S o] =1 Qe .
Proof: Omit(tesd due)to Iaqc[k gf] spaéve - worde. LetT,, be a basis of 57, N[y [So], thene has weight
Let us introduce the following polynomial: w if and only if
AZy,....Z) =21 Zow || (Zi—2). t(Sq.e) = 0,for all t € T, @)
1<i<j<w Armed with this Theorem, and with the radicality 6f
This polynomial has the property that, if the weight of ¢ W€ Can prove. , _
of the error is less thaw, then one can extend the locators Theorem 4:For eachi € {1,...,w}, IF, contains a

Zi,..., Zy, int0 Zy, ..., Zy, in away such tha,, ..., 7z, Polynomial of the forms; + ¢;, with ¢; € F5[S¢].
are zeros ofA. In other words, it captures, in some sense, tHdote that this polynomial will appear in a &ner basis of

property of being of weight strictly less than. Iy .,» computed as above.
We need the definition of a saturated ideal, with respect toThe algorithm for decoding is
a polynomial. . 1) (precomputation) For each € {1,...,t}, compute a
Definition 2: Let I C Flzy,...,z,] be an ideal, and € Grobner basigz,, of I3, written for the weightw;
Flxy,...,x,] be given. The'saturated ideal ofwith respect 2) (precomputation) From eacfi,,, for eachi, pick the
to f, denoted! : f°°, is the ideal polynomial ¢; ., which appears in the polynomial; +
I:f*={g€cFxy,...,x,]: f"gecIfor somem >0} iw IN Theorem 4.

(5) 3) (precomputation) From eadh,,, pick all the polynomi-

One has that, under some restrictions, the variety associated alS in Gw NF2[Sq], call T, this set of polynomials;
to the saturated idedl: f>, does not contain the zeros ¢f ~ 4) (online) for each received word, compute the syn-

Proposition 4:Let I = (fi,...,fs) C Flz,...,z,] be dromesSq,, = Sq.., wheree is the error to be found;

an ideal andf € Flzy,...,z,] be given. Lety be a new 5) (online) for each possible weight of the error, find the
indeterminate. Consider weight w, of the error using the criterion (7).

_ 6) (online) computer; = g; ., (Sg.e)-

I=(fuoeees fo 1= fy) CFlaa @n,yl, Thus we have removed the problem of the field equations,
thenl: f* = INFlxi,..., 2. and the problem of the division by zero.
Thus the saturated ideal can be computed by @b@er basis
computation and elimination. Now we introduce the saturated IX. CONCLUSION
ideal

(I, + Is) : A® (6) For the decoding of any cyclic code, up to the true minimum

Then distance, we have shown how to find relations of degree one

for the coefficients of the locator polynomials, in terms of the

Proposition 5: The ideal syndromes. These relations can be computed from the Newton

(I, +Ig) : A*® identities. Then we have introduced an ideal containing the
) ) ideal generated by the Newton identities, which give formulas
contains the polynomials for the coefficient of the locator polynomial, with no leading
70+ Z i€ {1,...,w}, terms (and thus avoiding the problem of dividing by zero).
o +oie{l,...,w}, We thus obtain a general error locator polynomial as Orsini
S2" 4850 e {0,...,n—1}. and Sala [15], but we do not if it the same polynomial. That

Proof: Omitted due to lack of space. m should be investigated in the future.
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